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Abstract— Here the model of anisotropic elastic medium is 

considered. Law of wave propagation for such mediums is 

more difficult than for isotropic medium and stress-strain state 

essentially depends from degree of its anisotropy. For the 

equations of motion of such media, fundamental solutions that 

correspond to the action of concentrated forces are 

constructed. The pictures of wave fronts and the amplitudes of 

displacements for orthotropic media under the action of a 

concentrated impulse force are presented. The existence of 

lacunae for strongly anisotropic media is shown. 

 
Index Terms—anisotropic medium, elasticity, Green’s 

tensor, hyperbolic system 

 

I. INTRODUCTION 

study of the wave’s propagation in continuous media 

refers to the actual problems of mechanics and 

mathematical physics. Such investigations are associated 

with the solution of boundary value problems for systems of 

equations of hyperbolic types. The solutions of these 

equations can have characteristic surfaces on which the 

solutions themselves, or their derivatives, are discontinuous 

[1]. In physical processes, they describe shock waves, on the 

fronts of which the studied characteristics of the process 

(velocities, stresses, pressure, temperature, etc.) can have 

jumps. 

For this, various models are used to take into account the 

real properties of the medium. The most studied is the 

linearly elastic isotropic model. In this paper, we consider 

an anisotropic elastic medium. Such medium have the 

characteristics closest to the real environment, in particular 

rock massif. Wave propagation in such medium is subject to 

more complex laws than in an isotropic medium, and the 

stress-strain state of the medium depends strongly on the 

degree of anisotropy. For example, in medium with strong 

anisotropy of the elastic properties we have the lacunas 

(moving unperturbed regions bounded by the wave fronts 

and expanding over time), and the front of the wave is very 

different from the classic, has a complex non-smooth shape.  
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II. SYSTEM OF MOTION EQUATIONS 

The motion equations of anisotropic media are described 

by the strictly hyperbolic system of equations with 

derivatives of the second order: 
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ii x / , tt  / ,  is the 

density of the medium, 
iu  are the components of 

displacement vector, 
ij is Kronecker symbol. In physical 

problems 2N  corresponds to a planar deformation, 

3N  corresponds to the spatial case. The matrix of elastic 

constants ml

ij
C has symmetry properties with respect to 

permutation of the indices (3) and satisfies the strict 

hyperbolicity condition: ,00),(  nvvnnCvnW ji
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0v . For an isotropic elastic medium we have 
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C   , where ,  are the elastic 

Lame constants. Assuming the summation over the repeated 

indexes in the above-mentioned limits of their variation in 

the product (similar to the tensor convolution), we omit the 

sum sign. In view of the positive definiteness of W, the 

characteristic equation of system (1) 
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has (taking into account multiplicity) the real N2 roots: 
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of the phase velocities for the harmonic analysis of the 

system (1) and depending on the direction of propagation of 

the wave in the general case.  

Equations (1) are strictly hyperbolic. Solutions of such 

equations can have characteristic surfaces on which the 

solutions themselves or their derivatives are discontinuous. 

In physical problems, they describe shock waves, which is 

characteristic of external influences that have an impact 

character and are represented by discontinuous or singular 

functions.  

 

III. GREEN’S TENSOR  

Fundamental solutions of the system of equations (1) are 

its solutions, corresponding to the action of impulsive 

concentrated forces of the form ),(),( txtxG k

ii
  (the 

index k indicates the direction of the action of the force) 
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described by the Dirac function )()(),( txtx   . 

Fundamental solutions are determined up to solutions of a 

homogeneous system of equations. A special place among 

them is occupied by the Green's tensor, which satisfies the 

conditions: 00),(  tfortxU
jk

, tcx
max

 .  

To construct the Green's tensor, it is convenient to use the 

Fourier transform, which brings the system (1) to a system 

of linear algebraic equations of the form 
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Here   ,,...,),(
1 N

  are the parameters of the Fourier 

transform corresponding to the variables ),( tx , ),( 
ij

L are 

homogeneous second-order polynomials corresponding to 

the differential operators (2). Solving the system (4), we 

obtain the transform of the Green’s tensor, which, by virtue 

of the homogeneity of the differential polynomials, has the 

form 
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Where )(
jk

Q are the cofactor of the element with the index 

),( jk of  ,),(  iiL )(Q is the symbol of L  (2): 

     ,det)1(,
ij

N LiiQ  .  

In [2] it is shown that the construction of the Green tensor 

reduces to the calculation of integrals over the unit sphere. 

For odd N the above theorem allows to build only approach 

of the Green tensor. For even N to determine   approach 

must be multi-dimensional integration of the surface integral 

over the unit sphere. However, in some cases, this procedure 

could be simplified. 

The symmetry relations (3) allow the tensor ml

ij
C  

represented in the form of a square matrix 
C   6,1,  . 

The correspondence between the pairs of indexes )(ij , 

)(ml and the indexes  ,  , established by the scheme 

1)11(  , 2)22(  , 3)33(  , 4)32()23(  , 

5)13()31(  , 6)21()12(  . Hooke's law for an 

anisotropic (orthotropic) elastic medium, which is under the 

conditions of plane deformation, will be written in the form 
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 For such a medium, the Green's tensor is the sum of the 

residues of fractional-rational functions [3,4]: 
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equation   0,1,
21
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2
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expression (5), the residues of the fractional-rational 

functions in the upper half-plane are summed, which 

requires knowledge of the values of the roots of the 

polynomial Q :   

  0,1,
21
 xxQ   

The roots of this equation of the fourth degree are complex 

conjugate; therefore, we always have two roots satisfying 

the condition 0Ιm .  In the case of an isotropic 

medium )(
iljmjlimlmij
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constants of Lame) we have 
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 The Green's tensor generates a fundamental stress tensor, 

the components of which, according to Hooke's law are  
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IV. WAVES FROM IMPULSE SOURCES 

An investigation of the process of propagation of 

nonstationary waves in anisotropic media shows that the 

stress-strain state of a medium essentially depends on the 

degree of its anisotropy. S5, in the case of an isotropic 

medium, the front of the wave from the pulsed source is 

concentric circles (spheres) expanding with the 

corresponding propagation velocities of the volume and 

shear waves. In media with weak anisotropy of elastic 

properties, the wave propagation pattern is similar to the 

wave propagation pattern in an isotropic medium, but wave 

fronts representing closed smooth curves differ slightly 

from concentric circles. In environments with a strong 

anisotropy of elastic properties, lacunae arise. The 

coordinates of such regions satisfy the 

conditions 2,1,0),,(Im
21

 qtxx
q

 . This phenomenon is 

associated with the waveguide properties of a highly 

anisotropic medium, which are sharply expressed in 

directions with predominant rigidity and are weakened in 

those where the rigidity is small. 

The existence of lacunae for hyperbolic equations with 

constant coefficients was discovered by the IG. Petrovsky 

[5]. They are given necessary and sufficient conditions for 

the existence of lacuna. Lacuna is components of the 

addition to the surface of the wave front, in which 

fundamental solutions (strong lacunae) vanish. An example 

of strong lacunas gives, in particular, the system of 

equations (1) in an even-dimensional space. Lacunas whose 

coordinates satisfy the conditions 

2,1,0),,(Im
21

 qtxx
q

 arise for certain constants of 

equations (1) corresponding to strongly anisotropic media. 

For such media, the wave front patterns differ sharply from 

the classical front as in the case of isotropic media and have 

a complex non-smooth form.  

Below are the wave fronts and displacement amplitudes 

under the action of a concentrated impulse force. 

Calculations were carried out for crystals of siltstone 

( 75,6
11
C , 6875,1

12
C , 75,6

22
C , 5312,2

66
C * 1010

2n/m ), aragonite ( 16
11
C , 73,3

12
C , 67,8

22
C , 

27,4
66
C ), zinc (Zn) ( 219,4

11
C , 59,0

12
C , 
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645,1
22
C , 0,1

66
C ), topaz ( 2,28

11
C , 1,13

12
C , 

9,34
22
C , 6,12

66
C ) and potassium pentaborate 

( 82,5
11
C , 29,2

12
C , 59,3

22
C , 57,0

66
C ). 

 

 

 
Fig. 1 Picture wave fronts (a) and the amplitude of movements (b) for 

siltstone under the action of a concentrated force 

 

 
Fig. 2 Picture wave fronts (a) and the amplitude of movements (b) for 

aragonite under the action of a concentrated force 

 

 
 

Fig. 3 Picture wave fronts (a) and the amplitude of movements (b) for Zn 

under the action of a concentrated force 

 

 
 

Fig.4 Picture wave fronts (a) and the amplitude of movements (b) for topaz 

under the action of a concentrated force 

 
Fig. 5 Picture wave fronts (a) and the amplitude of movements (b) for 

potassium pentaborate under the action of a concentrated force 

 

 It can be seen from the figures that unlike isotropic 

siltstone (Fig. 1) and weakly anisotropic aragonite (Fig. 2), 

there are lacunae (represented by triangular regions) for 

orthotropic zinc, topaz and potassium-pentaborate, which 

are strongly anisotropic media. 

 Studies show that the location of lacuna depends on the 

matrix of constants and the degree of anisotropy is 

determined (in the planar case) by the value of the 

coefficients  

    2
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in the following way:  

if 0
1
A , 0

32
 AA we have an isotropic medium, the 

wave front from a pulsed source is a concentric circle; 

if 0
1
A , 0,

32
AA we have the case of weak anisotropy, 

the fronts of the quasilongitudinal and quasi-transverse 

waves have the form of convex closed curves different from 

the circles with the center at the source.is an isotropic 

medium, the wave front from a pulsed source is a concentric 

circle. 

For strong anisotropy, lacunae appear in the medium and the 

wave front differs sharply from the classical one, has a 

complex non-smooth form, and 

if 0
1
A ,  0

2
A , 0

3
A then lacunas are formed on the 

axis
1

x  , 

if 0
1
A ,  0

2
A , 0

3
A then lacunas are formed on the 

axis
2

x .  

In these cases, the field of a quasilongitudinal wave is a 

three-connected region. In addition, lacunas can be located 

for   

0
i

A   ( 3,2,1i ) lacunas can be located on both axes 

simultaneously 

0
i

A   ( 3,2,1i )lacunas can be located between the axes. 

These are the cases of the five-region region of the field of 

quasilongitudinal perturbations. 

It can be seen from the figures that in the case of an 

isotropic medium - siltstone the front of the wave from the 

pulsed source represents concentric circles (spheres) 

expanding with the corresponding velocities of propagation 

of the volume and shear waves (Fig. 1). So, for orthotropic 

zinc, topaz and potassium-pentaborate, which are strongly 

anisotropic media, there are lacunas (they are represented by 
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triangular regions). The location of the lacunas is different: 

for zinc, it is on one axis (the quasilongitudinal wave field is 

a three-connected region) (Fig. 3), for topaz on both 

orthotropic axes (Fig. 4), for potassium pentaborate between 

the orthotropic axes (Fig. 5). For these media, the region of 

a quasilongitudinal wave is a five-connected region 

bounded by an external front and parts of the inner wave 

front that connect the return points to each other, and with 

nodal points. These sections of the inner front of the wave, 

forming closed piecewise smooth lines, are internal fronts of 

the quasilongitudinal wave. The front of a quasitransverse 

wave consists of piecewise smooth curves 

Below are the results of calculations of the stress-strain 

state in the perturbed zone. The figures show the 

distribution pattern of displacements along the axis for the 

media under consideration in cases of concentrated force, 

dipole, co-torque, flat expansion center, rotation center. 

 

 
 

Fig.6 Components of the Green's tensor for siltstone under the action of 

concentrated forces and moments at t = 3 

 

 
 
Fig.7 Components of the Green's tensor for siltstone under the action of the 

dipole for t = 1.5 

 

 
 
Fig. 2 Components of the Green's tensor for topaz under the action of a 

concentrated force 

 

Fig. 3 Components of the Green's tensor for topaz under the action of a 

dipole 

 

 

 
 

Fig.8 Components of the Green's tensor for potassium pentaborate under 

the action of concentrated forces  

Figure 8 shows the distribution of the displacement tensor 

components along the axis (inclination angle) for potassium 

pentaborate under the action of the concentrated force (I), 

the concentrated moment (III), the center of rotation (V)). 

 

 
Fig.9 Components of the Green's tensor for potassium pentaborate under 

the action of concentrated forces  

Figure 9 shows the distribution of the components of the 

displacement tensor along an axis located at an 

angle 4/   to the axis 
1

x for potassium pentaborate 

under the action of a concentrated force (I), a concentrated 

moment (III), the center of rotation (V). 

In the calculations it was assumed that 1,1  MD , in 

the case of a dipole )0,1(e , for a concentrated 

moment ),0,1(0 G )1,0(e .  

 Calculations show that there are no displacements in the 

sections corresponding to the lacunas.  
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V. CONCLUSION 

The study of the processes of wave propagation from foci 

of earthquakes is associated with the study of the stress-

strain state of the medium under the action of distributed 

mass forces. For regular ),( txG
k

 the components of the 

displacement field are the following integral 

representations: )(),(),(),(ˆ
0

ydVyGtyxUdtxu
k

R

iki

N

  



. 

For a distant source of an earthquake, the distance to which 

substantially exceeds its dimensions, the models of 

concentrated sources in the form of singular generalized 

functions with point support (poles, dipoles, multipoles, 

etc.) are used [6]. The displacement field then has the form 

of a convolution 
jk

U with the corresponding
k

G : 

NkjGUu
kjkj

,1,,*   which should be taken according 

to the rules of convolution definition in the theory of 

generalized functions. 
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