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Abstract—The notion of topological invariants is
very old. Since long used in pure mathematics, it
is now widely used in engineering science, applied
mathematics and theoretical physics. We propose
here revisiting this notion and giving examples that
have advanced the engineering sciences but also
mathematical physics.
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I. Introduction

THe search for invariants dates back to the work of
Euler and Poincaré. An invariant of a topological

space is easily defined, if two topological spaces X and Y
are homeomorphic if I denotes an invariant, necessarily
I(X) = I(Y ). the converse is obviously false, and this
motivates the search for invariant sufficiently sophisti-
cated to separate different spaces. An invariant can be
numerical, it can also be an algebraic structure. Euler
was interested in topological manifolds of dimension 1,
namely, graphs, to solve the problem of the Konigsberg
bridge. He defines the notion of Eulerian graphs. He also
discovered a formula to characterize topologically graphs
or polyhedra: the Euler characteristic. Poincaré general-
izes this invariant, which will become the characteristic
of Euler Poincaré for topological manifolds of higher
dimensions, this invariant is insufficient to distinguish
the sphere S1 from the sphere S3, it is on the other hand
sufficient to classify all the compact surfaces orientable
... A notion derived from graph theory is the notion
of k-connectivity: A graph is k-connected when we can
disconnect it by removing k-edges (this is a "discrete"
version of the homotopy theory introduced by Poincaré).
In defining the fundamental group, then the groups of
higher homotopies, Poincaré does no more than translate
the notion of k-connectivity. in the context of topological
spaces. In algebraic topology, we say that a topological
space is k-connected, if all groups of homotopies are
zero until i = k − 1 . So the Sk+1 sphere or the
space Rk+2 − {0} are k-connected. We can notice that
to disconnect the sphere of dimension k + 1, we must
remove a sphere of dimension k:. On the other hand,
in topology a space is contractile when all his higher
homotopy groups are null, so, maybe we could to invent

Philippe Durand is with the Department of Mathematics (In-
geniérie mathématique: IMATH), Conservatoire National des Arts
et Métiers, 292 rue Saint Martin, 75141 Paris FRANCE e-mail:
philippe.durand@lecnam.net

an equivalent notion for graph theory (to convince oneself
that a complete graph could do the trick ...). In the
first part, we give an application to tensor analysis of
electrical networks was developed by Gabriel Kron. In
the following, we revisit the applications to mathematical
physics and field theory. Atiyah at the beginning of the
sixties upsets the world of mathematics to the index
theorem. We discuss the machinery for defining new
invariants and its applications in physics.
So, first of all„ we consider an example, applied to elec-
trical networks of invariant for manifolds of dimension
1: the invariant of Kron: two equations that connect, in
the graph of an electric circuit, the number of nodes,
branches and meshes, independent between us, after,
which must be considered to put into equation an electri-
cal network in the space of the meshes. In the second part
of the paper, we give a reminder of some simple invariants
that can be considered for topological manifolds. The
third part, finally, shows that mathematical physics has
provided new invariants. to better understand symplectic
manifold but also three- and four-dimensional manifolds.

II. Tensorial analysis of networks: Kron
method

Gabriel Kron, inspired by Einstein’s work on general
relativity, proposes to study electrical machines from the
angle of tensor analysis [1]. An electrical circuit can then
be decomposed into nodes (vertices of a graph), edges
then meshes.
The most classical invariant to which we think in graph
theory is the characteristic of Euler Poincaré. For a
graph, we can consider the number of cycles decreased
by the number of vertices and increased by a number
of edges. This invariant is not interesting for the study
of the electrical circuits because it does not distinguish
among the vertices, edges, cycles, how many are in-
dependent. only those, will be taken into account for
transformed currents in the space of the meshes in the
method of Kron.

A. Kron Invariant
We consider the vector space of the formal chains

constituted by the nodes:n1, n2, ...nN .
Similarly, we consider the vector space of the branches
generated by B: b1, b2..., bB .
we consider linear map: δ de B dans N define by:
δ(bi) =εj .nj with εj = 1 if the end of bi is nj
εj = −1 the origin of bi is nj
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εj = 0 if the end of bi is origin of bi
For example for the graph whose branches are:
b1: origin n1 and the end n2

b2: origin n2 and the end n3

b3: origin n1 and the end n3

b4: origin n2 and the end n2

The matrix of linear map is given by:

G =

 −1 0 −1 0
1 −1 0 0
0 1 1 0


The fundamental relation of linear algebra gives:

dim(B) = dimker(δ) + dim(Im(δ)
This relation is the first relation of Kron, in fact the
kernels of δ is the vector spaceM of meshes of dimension
M . The image of δ, the vector space P of pairs of nodes,
of dimension P of or the dimensional relation:

B = M + P (1)

We also have the relation:
dimIm(δ) = dim(N )− dim(N/Im(δ)),

the last part of this equality is the quotient of the
set of nodes, by the nodes that go in pairs. This gives
the number of connected components of the graph: the
number of subnetworks. This is the second relation of
Kron

P = N − S (2)

these two quantities are topological invariants because it
depends only on the dimension of the spaces and sub-
spaces vector considered. In a previous paper, we use,
starting from the singular homology, finer topological
invariants, to find topologically the law of the mesh and
that of the nodes [2],[4]

B. Example
Figure 1 shows an example of circuit :two networks

such that each one is controlled by the other. The second
network is powered by the voltage Vdc(t) reported from
the first network, and the load current of the second
network is is injected in the first network depending on
a command law.

Fig. 1. Network with two connected components

The second network includes a generator E2, given by:
E2 = V dc ∗ fsw. The visible elements in the graph given
Figure 5 are the topological following character :

• 4 physical nodes n1,..,n4 (→ N = 4)
• 5 branches b1,..,b5 (→ B = 5)
• 3 meshes m1,m2,m3 (→M = 3)
• 2 networks R1, R2 (→ R = 2)
• 2 nodes pair (→ P = 2)

Fig. 2. Topology of previous network

we choosing arbitrarily the initial node 1 on our first
network, , we start of this Node worm node 2, we have an
return of Node 2 to Node 1.We construct by this return
, the first couple P1 who will wear the current source
J1, and will be in final, our current injected in the first
network coming from the second network. We verify the
relationship for node pair: P = N − S = 4 − 2 = 2 and
meshes: M = B −N + S = 5− 4 + 2 = 3. As in our first
Network, we choosing arbitrarily on our second network
the node n3, as reference from depart. We depart of this
Node worm Node 4, we have an return from Node n4 to
Node 3 , we construct with this return, the second couple
"P1", who will wear normally the current source J2, but
all along our study we assume that J2 is null, because it
is rattached to a branch which comported not a current
source. The good number of nodes, edges, pairs of nodes
and mesh provided by the invariant of Kron makes it
possible to transpose the electrical study of the circuit in
the space of the meshes. It is one of the main objectives
of the analysis tensorial network (TAN)

III. Invariants of topological manifolds

The search for invariants of topological and differ-
entiable manifolds is a complicated subject. Although
it is completely solved in dimension smaller than 2,
and thanks to the cobordism for the varieties, of large
dimensions, the case of the intermediate dimensions
three and four is more complicated. It turns out that
these dimensions are interesting because they intervene
in the gauge theories. The topological manifolds with
dimensions 4 are classified thanks to the quadratic form
of intersection: H2(X,Z) × H2(X,Z) → Z, because
simple connectivity and the Poincaré duality shows that
in dimension four the only non-trivial homology groups
are those of dimension 2: Only H2(X) is non zero and
to contribute at the homology. This is exactly what has
been demonstrated Michael Freedman in 1982
if we set IX intersection form of X, we have:

1) IS4 = 0: there are not two non-trivial cycles
(H2(S4, Z) = 0).
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2) IS2×S2, =
(

0 1
1 0

)
: H2(S2 × S2, Z)= Z ⊕ Z:

There are two cycles in general position A =
S2 × pt, B = pt × S2 et 〈A,B〉 = 〈A,B〉 = 1,
〈A,A〉 = 〈B,B〉 = 0.

3) IM]N =
(
IM 0
0 IN

)
:H2(M]N,Z) =H2(M,Z)⊕

H2(N,Z), (M]N is the connected sum of two 4
dimension manifolds.

S. Donaldson [6], in the 80’s, E. Witten [7], in the 90’s,
use new techniques from gauge theories to define new
invariants for manifolds of dimension four in the differ-
entiable category. At the same time, Gromov defined
new invariants for symplectic manifolds: Holomorphic
curves.[3]. There were indeed very few global invariants
in symplectic geometry. In the following we will look at
how mathematics inspired physics and vice versa, how
theories of gauges inspired mathematics for the definition
of new invariants

IV. Deformation invariants From
mathematical physic

A. The theorem of the index, and quantum field theories
The theorem of the index was demonstrated at the

beginning of the sixties by M. Atiyah, then revisited by
many mathematicians and physicists. It is, in a way, a
smooth version of Riemann Roch’s theorem demonstrat-
ing for a long time for the algebraic curves then extended
to the algebraic varieties by A.Grothendieck. The index
theorem says that the index of a certain elliptic operator
on a variety can be calculated taking into account the
topology of the manifold, a quick review is given in
[5].An important application of the index , or Riemann-
Roch’s formula for complex or algebraic varieties, is
the determination of the dimension of a moduli space.
In physics, classical field theory is based on the data
of a Lagrangian that takes into account the theories
considered (gravitation, theories of gauges). Lagrangian
density is a function on one or more fields and its first
derivatives:

L = L(ϕ1, ϕ2, ..., ∂µϕ1, ∂µϕ2...) (3)

Classical action is the integral of the classical Lagrangian
density on space S =

∫
Ldn+1x

This quantity verifie the Principle of least action. The
quantification of these theories leads to the formalism of
the path integral: function of partition given by:

Z =
∫
e−S(ϕ)Dϕ (4)

And correlation functions :

< ϕ1(x1), ..., ϕn(xn) >=
∫
ϕ1(x1)...ϕn(xn)e−S(ϕ)Dϕ

(5)
Not all configurations are interesting in the path integral.
Witten showed that by introducing supersymmetry con-
cept, these path integrals could be localized on particular
configurations: the instantons spaces. In mathematics,
this is called moduli spaces. In the case of a gauge theory
in dimension 4 whose main bundle is modeled by the
group SU(2), we have the theory of S. Donaldson.

B. Strategy for the search of invariants
To determine new invariants related to the topological

field theory, it is necessary to:
1) Define a moduli space (instanton space)
2) Compactification of this space
3) Linearization and define ellipic complex
4) Calculate dimension of the moduli space using

Riemann-Roch, or index Theorem
5) Add constraints, for the appropriate dimension of

the moduli space.
6) We can count instantons.

V. Exemple: Symplectic geometry and
correlation function for strings

A. A toy model
In symplectic geometry, there are very few local in-

variants. This is due to Darboux’s theorem which as-
sumes that locally all symplectic manifolds are similar,
unlike the Riemanian varieties that can be separated
locally by the curvature. A strategy, due to M. Gromov,
for constructing invariants is to consider sub varieties
such as, for example, holomorphic curves (function from
Riemann surface to a symplectic manifold); There are
parameterized curves: u : (Σ, j) → (Y, J),checking the
conditions of Cauchy Riemann: du ◦ j = J ◦ du, where
j and J are almost complex structures respectively on
Σ and Y , and modelized a sigma-model in quantum
field theory. Counting the holomorphic functions passing
through marked pointson a Riemann surface, makes it
possible to determine the correlation functions in super-
string theory, the so-called invariants of Gromov Witten.
Indeed E. Witten showed that a holomorphic function
represents an instanton among all complex parametric
curves. these parametric curves represent the evolution
of a strings in space-time, in theoretical physics. A toy
model, consists in defining the moduli space of the planar
curves: (function :P1(C) → P2(C) of given degree (this
degree corresponds to a class of cohomology in H2(Y,Z).
For example, for degree one:

M = {u/u : P1(C)→ P2(C)/PGL(2,C) (6)

PGL(2,C) represents automorphism group of P2(C) ,
his dimension is three; the space of the applications u is
of complex dimension 5, therefore, one finds again that
the space of the complex lines has complex dimension 2
For example, for lines passing through two fixed points,
we have another moduli space:

M′ = {(u, z1, z2)/u : P1(C)→ P2(C), z1 6= z2}/PGL(2,C)
(7)

with the constraint of passing through two points, we find
that this space has the dimension 4 Because you add, two
parameters (two points) each of them is an element of
P2(C). It is possible now to evaluate (u, z1, z2) in other
words, construct:

ev : (u, z1, z2) ∈M′ → (u(z1), u(z2)) ∈ P2(C)×P2(C)
(8)

Here we have the simplest example of what is called a
Gromov-Witten invariant: evaluation from a degree one
map u through two points give only one line.. . In physics
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this correlation function is called a propagator.
If we now choose a complex curve of degree 2, we define
a conic, we can show that the moduli space considered
has dimension 5: five points determine only one conic. In
this case, the moduli space must be compactified: there
is a sequence of conics which converges towards a couple
of line for example...
Kontsevich [8] has demonstrated a recurrence formula
for counting all planar complex curves of given degree
and thereby solved an enumerative geometry conjecture.
The consideration of mirror symmetry in string theory
has made it possible to demonstrate other conjectures in
simple cases.

B. Theorical model
we are now considering an application of a Riemann

surface in any complex manifold. let φ an application
of a Riemann surface in any complex manifold. Note
respectively Mg,Mg,n the space of the curves modules
(actually riemann surfaces), and the space of curve with
n marked points. Thee Riemann-Roch formula for Curve
give:

dimCH
0(TΣ)− dimCH

1(TΣ) =
∫

Σ ch(TΣ)td(TΣ)

= 3− 3g
(9)

If φ : Σ→ X is a map from Σ to X The Riemann Roch
formula give:

dimCH
0(φ∗TX)− dimCH

1(φ∗TX)

=
∫

Σ ch(φ∗TX)td(Σ)

= n(1− g) +
∫

Σ φ
∗c1(TX)

(10)

The deformation invariant of the problem are obtained
thanks to the short exact sequence.

0→ TΣ → φ∗TX → NΣ/X → 0 (11)

The long exact sequence associated, gives the index of
the complex: the dimension of the moduli space of the
applicationsMg(X,β, n), β degree of the map, n number
of marked point on Σ :

Roughly, the first term manages the deformation of
the Riemann surface, the second the deformation of the φ
the surface of Rieman being fixed, and the third term the
deformations of the application. The long exact sequence
associated,combines the two previous formula [9] and [10]
and compute the index of the complex: the dimension
of the compactified moduli space of the applications
Mg,n(X,β) degree of the map, n number of marked point
on Σ :

dimvirtMg,n(X,β) =

(dimX)(1− g) +
∫
f∗(Σ) c1(TX) + 3g − 3 + n

(12)

Taking care not to confuse real and complex dimensions,
in the case of the plane curves of degree one (the straight
lines), we retrieve the dimension of the space of module
M′ seen previously.

VI. conclusion
Other invariants have been introduced in field theory

adapted to gauge theories. In dimension 3: the action
of Chern-Simons [11] involves topological invariants en-
riching those obtained by the knot theory. Donaldson
then Witten [9], [10] quantifying the action of Yang-Mills
also use module spaces, and define invariants on well-
chosen spaces of connections. We hope with this quick
survey demonstate the power of the topology whose field
of application sweeps the sciences of the engineer up to
theoretical physics.
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