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 ABSTRACT—The flow of ferrofluid due to inclined stretching 

sheet in the presence of a magnetic dipole is studied to provide a 

window to a general possibility that can be looked into in a 

stretching sheet problem. The elastic sheet is stretched at an 

angle to the horizontal into the ferrofluid. The fluid momentum 

and thermal energy equations are formulated as a six 

parameter problem. Extensive computation on the velocity and 

temperature profiles is presented for a wide range of values of 

the parameters. It was found that the primary effect of the 

magneto-thermo mechanical interaction is to decelerate the 

fluid motion as compared to the hydrodynamic case. As the 

angle of inclination to the horizontal, , of the stretching sheet 

increases, the momentum boundary layer thickness increases 

and the gravity effects becomes prominent. The inclination 

reduces the thermal boundary layer thickness. The horizontal 

and vertical stretching sheet problems are shown to be the 

limiting cases of the inclined sheet problem. 

 

 
Index Terms - Ferromagnetic liquid, magnetic dipole, shooting 

method, stretching sheet 

 

I. INTRODUCTION 

Generally stretching sheet problems arise in polymer 

extrusion processes that involve cooling of continuous strips 

extruded from a die by drawing them through a stationary 

cooling liquid. The stretching imparts a unidirectional 

orientation to the extrudate thereby improving its fluid 

mechanical properties. The extruded sheet can be a needed 

product in a plastic or glass industry or in industries dealing 

with artificial fibre. Ever since the pioneering works of 

Sakiadis [1], [2] and [3], Tsou et al. [4] and Crane [5] on the 

stretching sheet problem with boundary layer 

approximations, several authors have worked on various 

aspects of the problem as can be seen in Andersson [6], Liao 

and Pop [7], Magyari et.al.[8], Chen [9], Siddheshwar and 

Mahabaleshwar [10], Abel and Mahesha [11]. These studies 

deal with horizontal stretching sheet problems. There are 

practical situations where the sheet is stretched at an angle to 

the horizontal. With this viewpoint Abo-Eldahab and El-
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Aziz [12] have considered the inclined stretching sheet 

problem and obtained numerical solutions for the same. 

Mahesha [13] investigated the mixed convection flow due to 

inclined stretching. Sandeep and Jagadeesh [14] have 

studied heat and mass transfer behaviour of MHD nanofluid 

flow embedded with conducting dust particles past an 

inclined permeable stretching sheet in presence of radiation, 

non-uniform heat source/sink, volume fraction of nano 

particles, volume fraction of dust particles and chemical 

reaction. But the problem pertaining to ferrofluid flow 

arising due to inclined stretching sheet has not been 

investigated before. In literature there are papers concerning 

horizontal and vertical stretching sheet problems as different 

problems. In reality most of the practical applications would 

involve the sheet to be stretched at an angle to the gravity 

which helps in achieving the desired temperature of the 

stretching sheet [13]. The problem of inclined stretching 

sheet is the most general case whose limiting cases gives rise 

to horizontal (θ = 0) and vertical (θ = 2 ). To the best of 

the authors knowledge there are no work on inclined 

stretching sheet problems concerning ferrofluids, hence in 

this paper we study the same. The problem of stretching 

sheet is thus a fundamental one and arises in many practical 

situations that are similar to the polymer extrusion and 

metallurgical processes. Some of these are listed below:  

 Continuous stretching, rolling, manufacturing of polymer 

sheets  

 Drawing, annealing, tinning of copper wires 

 Cooling of an infinite metallic plate in a cooling path 

 Boundary layer along a liquid film in condensation  

    processes 

 Manufacture of materials by extrusion process and heat  

    treated materials travelling between a feed and wind – up   

    rolls or conveyer belts 

 Glass blowing, paper production, crystal growing, etc. 

 

Hence, in this paper the problem involving an inclined 

stretching sheet with ferrofluid as a cooling liquid is 

explored.  

 

II. MATHEMATICAL FORMULATION 

Consider a steady two-dimensional flow of an 

incompressible, viscous and electrically non-conducting 

ferrofluid driven by an impermeable sheet in the inclined 

direction. By applying two equal and opposite forces along 

the direction of gravity which is taken as the x-axis, and y-

axis in a direction normal to the flow, the sheet is stretched 

with a velocity uw(x) = cx which is proportional to the 

distance from the origin, inclined at an angle   with the 
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horizontal. A magnetic dipole is located some distance from 

the sheet. The centre of the dipole lies on  the y-axis at a 

distance ’a’ from the x-axis and whose magnetic field points 

in the positive x-direction giving rise to a magnetic field of 

sufficient strength to saturate the ferrofluid. The stretching 

sheet is kept at a fixed temperature Tw  below the Curie 

temperature Tc, while the fluid elements far away from the 

sheet are assumed to be at a temperature T = Tc and hence 

incapable of being magnetized until they begin to cool upon 

entering the thermal boundary layer adjacent to the sheet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The equations governing the motion and heat transfer are: 
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Here u and v are the velocity components along x and y 

directions respectively,   is the fluid density,   is the 

dynamic viscosity,  /     is the kinematic viscosity, cp is 

the specific heat at constant pressure, k is the thermal 

conductivity, g  is the acceleration due to gravity, 


is the 

coefficient of the thermal expansion, 
0

  is the magnetic 

permeability, M is the magnetization, H is the magnetic field 

and T is the temperature of the fluid. 

The assumed boundary conditions for solving the above 

equations for both the Prescribed Surface Temperature 

(PST) and Prescribed Heat Flux (PHF) are: 
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Here k is the thermal conductivity of the fluid. A and D are 

positive constants, and L = 
c


 is the characteristic length. 

The flow of ferrofluid is affected by the magnetic field due 

to the magnetic dipole whose magnetic scalar potential is 

given by
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where  is the magnetic field strength at the source. The 

components of the magnetic field H are 
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Since the magnetic body force is proportional to the 

gradient of the magnitude of H, we obtain  
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Variation of magnetization M with temperature T is 

approximated by a linear equation 

 
( )

c
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where K is the pyro magnetic coefficient. 

 

III. SOLUTION PROCEDURE 

We now introduce the non - dimensional variables as 

assumed by Andersson [6]: 
1

2

( , ) ( , )
c

x y 



 
 
 

, 
( , )

( , )
u v

U V

c
 ,               (11) 

                                            
2

1 2

2

1 2

( ) ( ) in PST case
( , )

( ) ( ) in PHF case

c

c w

T T

T T

    
  

    


 

 





,            (12)                  

 

Where   c w

x
T T A

L
   in PST case,              

           c w

DL x
T T

k L
    in PHF case. 

 

The boundary layer equations (1) - (3) on using (9) - (12) 

takes the following form: 

 
Fig 1 Schematic of inclined stretching sheet problem 
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The boundary condition given by (4) now takes the form: 
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Introducing the stream function ( , ) ( )f     that 

satisfies the continuity equation in the dimensionless form 

(14), we obtain 
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where the prime denotes differentiation with respect to  . 

On using (9), (11) and (17) in (14) and (15) we obtain the 

following boundary value problem: 
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The six dimensionless parameters, which appear explicitly 

in the transformed problem, are the Prandtl number Pr, the 

viscous dissipation parameter  , the dimensionless Curie 

temperature  , the ferrohydrodynamic  interaction  

parameter  , the  Grashof number Gr  and  the  

dimensionless distance   from the origin to the center of 

the magnetic pole, defined respectively as 
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Equations (18) - (22) and (23) - (27) constitute two sets of 

nonlinear, two-point boundary value problems, which are 

solved by means of a standard shooting technique. The 

higher order ordinary differential equations are decomposed 

into a set of nine first order equations and integrated as an 

initial value problem using the adaptive stepping Runge-

Kutta-Fehlberg (RKF45) method. Trial values of  (0)f  , 

1
(0)  , 

2
(0)  and 

1
(0)  , 

2
(0)   are adjusted iteratively by 

Newton-Raphson’s method to assure a quadratic 

convergence of the iterative trial values required in order to 

fulfil the outer boundary conditions. 

 

IV. RESULTS AND DISCUSSION 

 

In this section we have analysed the effect of magnetic 

field on the flow of the ferromagnetic liquid due to an 

inclined stretched sheet. Heat transfer is studied using two 
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different boundary heating conditions, namely, PST and 

PHF. The numerical results are shown in the graphs. 

 
Fig 2a Effect of Ferrohydrodynamic interaction parameter   on 

  velocity profile in the case of PST 

 
Fig 2b Effect of Ferrohydrodynamic interaction parameter   on 

  velocity profile in the case of PHF 

 
Fig 3a Effect of Ferrohydrodynamic interaction parameter   on        

temperature profile in the case of PST 

 
Fig 3b Effect of Ferrohydrodynamic interaction parameter   on        

temperature profile in the case of PHF 

 

 
Fig 4a Effect of Grashof number Gr on velocity profile in the case 

of PST 

 
Fig 4b Effect of Grashof number Gr on velocity profile in the case 

of PHF 

 
Fig 5a Effect of Grashof number Gr on temperature profile in   

the case of PST 

 

 
 Fig 5b Effect of Grashof number Gr on temperature profile in   

    the case of PHF 
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Fig 6a Effect of Prandtl number Pr on velocity profile in the case 

of PST 

 
Fig 6b Effect of Prandtl number Pr on velocity profile in the case 

of PHF 

 
Fig  7a Effect of Prandtl number Pr on temperature profile in the 

case of PST 

 

 
Fig  7b Effect of Prandtl number Pr on temperature profile in the 

case of PHF 

 
Fig 8a Effect of the inclination   on velocity profile in the case of 

PST 

 
Fig 8b Effect of the inclination   on velocity profile in the case of 

PHF 

 
Fig. 9a. Effect of the inclination   on temperature profile in the 

case of PST 

 

 
Fig. 9b. Effect of the inclination   on temperature profile in the 

case of PHF 
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Fig. 2a, b shows the interaction of the ferrohydrodynamic 

parameter   on the velocity profile. As   increases, the 

presence of the magnetic field induced by the magnetic 

dipole on the fluid acts as a retarding force, hence 

decreasing the axial velocity which results in flattening of 
' ( )f   whereas, the thermal boundary layer thickens which 

is seen in Fig. 3a,b. 

 

  Fig. 4a, b depicts the increase of velocity as Gr increases 

in both the PST and PHF cases. Gr approximates the ratio of 

buoyancy force to the viscous force acting on the fluid, it 

also highlights the significance of convection in controlling 

the axial velocity. As Gr increases the momentum boundary 

layer thickness increases enabling the fluid to flow freely. 

The buoyancy force evolved as a consequence of the cooling 

of the inclined stretching sheet acts like a favourable 

pressure gradient accelerating the fluid in the boundary layer 

region. Physically Gr > 0 means heating of the fluid or 

cooling of the boundary surface. In Fig. 5a,b we notice that 

an increase in the value of Gr results in thinning of the 

thermal boundary layer associated with an increase in the 

wall temperature gradient and hence producing an increase 

in the heat transfer rate. 

 

From Fig. 6a, b and Fig. 7a, b we observe that increasing 

the values of Pr reduces the horizontal velocity and 

decreases the thermal boundary layer thickness respectively. 

This is due to the fact that for small values of the Prandtl 

number, the fluid is highly thermally conductive. Physically 

if Pr increases, the thermal diffusivity decreases and this 

phenomenon leads to the decreasing of energy ability which 

reduces the thermal boundary layer. Thus the viscous 

boundary layer is thicker than the thermal boundary layer. In 

this case the temperature asymptotically approaches zero in 

the free stream region. 

 

As the inclination increases from 12/ to 5 12/  the 

momentum boundary layer thickness increases. When the 

inclination is increased the gravity effect becomes 

prominent, which helps the liquid to flow freely. The 

inclination reduces the thermal boundary layer thickness as 

shown in Fig. 8a, b and Fig. 9a, b respectively. The results 

clearly reveal that the inclination of the stretching sheet can 

be effectively used to obtain a desired temperature. 

       

Further work includes, studying the impact of ferrofluid 

on cooling various stretching sheets of different materials.  

The authors would also consider studying stretching of 

filaments that involve cylindrical geometry.  

 

V. CONCLUSIONS 

 

The problem of inclined stretching sheet is analysed in 

this paper. Numerical solutions of the problem is obtained 

by the shooting method facilitated with a scientific choice of 

the missed initial conditions. The important findings of the 

problem are that the inclination   together with the 

ferrohydrodynamic parameter   can be effectively used to 

have a desired temperature which improves the properties of 

the stretching sheet. The horizontal stretching sheet problem 

is a particular case of the inclined stretching sheet problem 

when   is zero and the vertical stretching sheet problem is a 

particular case of the inclined stretching sheet problem when 

  is 
2

 . 
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