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Abstract—This report considers a family of second order time
stepping schemes for Boussinesq system. The scheme uses the
idea of curvature stabilization in which the discrete curvature
of the solutions is added together with the linearized advective
term at each time step. Unconditional stability and convergence
of the method are established. Several numerical experiments
are provided to demonstrate the accuracy and the efficiency of
the method.

Index Terms—Boussinesq equations, curvature stabilization,
linear extrapolation, error analysis.

I. INTRODUCTION

The governing equations of natural convection is given by
the Boussinesq system consisting of the incompressible NSE
together with the heat transport equation as

ut + (u · ∇)u− ν∆u+∇p = Ri〈0, T 〉+ f in Ω,

∇ · u = 0 in Ω,

Tt + (u · ∇)T − κ∆T = γ in Ω,

u(0, x) = u0 and T (0, x) = T0 in Ω,

u = 0 and T = 0 on ∂Ω. (1)

Here u is the flui velocity, u0, the initial velocity, p the
pressure, T the temperature, T0, the initial temperature, f
represents the prescribed forcing, Ri the Richardson number,
accounting for the gravitational force, Ri〈0, T 〉 represents
the vector, γ the heat source, ν the kinematic viscosity,
which is inversely proportional to the Reynolds number
Re = O(ν−1), κ := Re−1Pr−1, where Pr is the Prandtl
number and Ω ⊂ R

d, d = (2, 3), is a bounded region with
Lipschitz continuous boundary ∂Ω.
The main goal in computational flui dynamics is to develop
efficient accurate and sufficientl stabilized method for the
solution of the incompressible flui fl ws. The application
of the standard finit element method remains inefficien for
the numerical solution of the time dependent multiphysics
problems that lead to oscillations and unstable modes. In
general, the solution technique for the time-stepping methods
is to combine the stabilization terms with the linearization
of the advective term at each time step. There are many
studies using such numerical method see, e.g [1]. Moreover,
since there is a need of only one linear system solution at
each time step, the linear extrapolation schemes have more
advantages over the fully implicit schemes which are more
expensive in terms of stability and accuracy. There have
been many recent studies based on the Crank Nicholson with
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linear extrapolation (CNLE) such as [2] and two step back-
ward differentiation formula BDF2 with linear extrapolation
(BDF2LE) for different flui problems [3], [4]. For natural
convection with different right hand side function of velocity
eqaution in [5], the similar model has been considered.
The purpose of this study, is to obtain an accurate stabi-

lization for a family of second order time stepping methods
for the Boussinesq system by extending the ideas of [6] to
the time dependent natural convection fl ws. As it is shown
below, appropriate choices of parameters leads to well-known
second order time stepping methods namely CNLE and
BDF2LE. As explained in [6], the method based on curvature
stabilization achieves a sufficien stabilization with optimal
accuracy in time.

II. NUMERICAL SCHEME

To defin the method precisely, we will approximate the
solution of (1) by using the finit element method. Let X =
(H1

0(Ω))
d, Q = L2

0(Ω) be the velocity and pressure spaces
and W = H1

0 (Ω) be the temperature space.
Let X

h ⊂ X,Wh ⊂ W,Qh ⊂ Q be finit element
spaces where the velocity and pressure spaces fulfil the
inf-sup condition. The usual L2(Ω) norm and the inner
product is denoted by ‖.‖ and (·, ·), respectively. Defin skew
symmetric trilinear forms

b∗(u,v,w) =
1

2
(u · ∇v,w)−

1

2
(u · ∇w,v), (2)

c∗(u, T, S) =
1

2
(u · ∇T, S)−

1

2
(u · ∇S, T ) (3)

Algorithm. We divide [0, t] time interval into N equal
subintervals and set time step size ∆t = t/N . Denote the
fully discrete solutions by

u
h
n+1 := u

h(tn+1), phn+1 := ph(tn+1)

Th
n+1 := Th(tn+1),

for all n = 1, 2, ..., N − 1. Let the initial conditions u0 and
T0, the forcing function f and the heat source γ be given.
Defin u

h
0 , uh

−1, Th
0 and Th

−1 as the nodal interpolants of
u0(x) and T0, respectively. Then, given time step ∆t and
un,un−1, Tn and Tn−1, compute un+1 ∈ X

h, Tn+1 ∈ Wh
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andpn+1 ∈ Qh satisfying

(

(θ + 1

2
)uh

n+1 − 2θuh
n + (θ − 1

2
)uh

n−1

∆t
,vh

)

+ν

(

θ
(ν + ε)

ν
∇u

h
n+1 +

(

1− θ
ν + 2ε

ν

)

∇u
h
n

+θ
ε

ν
∇u

h
n−1,∇v

h

)

+ b∗
(

(θ + 1)uh
n − θuh

n−1,

θ
(ν + ε)

ν
u
h
n+1 +

(

1− θ
ν + 2ε

ν

)

u
h
n + θ

ε

ν
u
h
n−1,v

h

)

−

(

θ
(ν + ε)

ν
phn+1 +

(

1− θ
ν + 2ε

ν

)

phn + θ
ε

ν
phn−1,∇ · vh

)

= Ri
(

〈0, (θ + 1)Th
n − θTh

n−1〉,v
h
)

+
(

fn+θ,v
h
)

, (4)
(

∇ · uh, qh
)

= 0, (5)
(

(θ + 1

2
)Th

n+1 − 2θTh
n + (θ − 1

2
)Th

n−1

∆t
, Sh

)

+κ

(

θ
(κ+ ε1)

κ
∇Tuh

n+1 +
(

1− θ
κ+ 2ε1

κ

)

∇Th
n

+θ
ε1
κ
∇Th

n−1,∇Sh

)

+ c∗
(

(θ + 1)uh
n − θuh

n−1,

θ
(κ+ ε1)

κ
Th
n+1 +

(

1− θ
κ+ 2ε1

κ

)

Th
n θ

ε1
κ
Th
n−1, S

h

)

=
(

γn+θ, S
h
)

(6)

for all (vh, Sh, qh) ∈ (Xh,Wh, Qh).

III. N UMERICAL EXPERIMENTS

In this section, we perform two numerical tests in order
to show the efficiency of proposed method. We first test
the numerical convergence rates with a known analytical
solution. Then, we provide the so-called Marsigli’s flow
example to prove that the method captures flow patterns
by using a coarse mesh discretization. All computations
are carried out with the finite element software package
FreeFem++ [7]. In all numerical studies, the Taylor-Hood
finite elements for velocity and pressure spaces and piecewise
quadratics for temperature were used on uniform triangular
grids. In order to see the effect of stabilization parameters,
we sometime make comparison with usual BDF2LE method,
which is obtained through pickingǫ = ǫ1 = 0 (unstabilized
case) in continuous case of (4)-(6) and takingθ = 1, which
gives

(θ + 1

2
)un+1 − 2θun + (θ − 1

2
)un−1

∆t
− θν∆un+1

−(ν − θν)∆un + ((θ + 1)un − θun−1) · ∇(θun+1

+(1− θun)) + θ∇pn+1 + (1− θ)∇pn

= Ri(〈0, ((θ + 1)Tn − θTn−1)〉+ fn+θ (7)

∇ · un+1 = 0 (8)

(θ + 1

2
)Tn+1 − 2θTn + (θ − 1

2
)Tn−1

∆t
− θκ∆Tn+1

−(κ− θκ)∆Tn + ((θ + 1)un − θun−1) · ∇(θTn+1

+(1− θTn)) = γn+θ. (9)

We note that, the similar results are also obtained with CNLE
in which θ = 1/2 and ǫ = ǫ1 = 0.

A. Numerical convergence study

In this subsection, we show that the theoretical orders of
the errors are also obtained through a numerical simulation.
In order to do so, we pick the known-solution

u =

(

cos(y)
sin(x)

)

exp(t),

p = (x− y)(1 + t),
T = sin(x+ y) exp(1− t).

(10)

with the parametersPr = Re = Ri = κ = 1 and the right
hand sidef, γ functions are chosen such that (10) satisfies
(1). We will present computational results withǫ = ǫ1 = 0
(no stabilization),θ = 1 andǫ = ǫ1 = 1 (with stabilization).
The final time and the time step size are chosen ast = 10−4

and∆t = t/8. To test the spatial convergence, we fix the time
step size and calculate the errors for varyingh and consider
the velocity errors in the discrete normL2(0, T ;H1(Ω))

‖u
¯
− uh‖2,1 =

{

∆t

N
∑

n=1

‖u(tn)− uh
n‖

2

}1/2

.

The results with differentǫ and ǫ1 values for spatial errors
and error rates are given in Table I and Table II. One can
see that the order of convergence of‖u − uh‖2,1 is around
2 for all simulations, which is an optimal order for both
BDF2LE and for the proposed method. We also fix the

TABLE I
SPATIAL ERRORS AND RATES OF CONVERGENCE FORǫ = ǫ1 = 0.

h ‖u− uh‖2,1 Rate ‖T − Th‖2,1 Rate
1/4 0.0007139 – 0.0005043 –
1/8 0.0001778 2.005 0.0001259 2.002
1/16 4.360e-5 2.027 3.068e-5 2.036
1/32 1.131e-5 1.946 7.446e-6 2.042
1/64 2.937e-6 1.945 1.847e-6 2.015
1/128 7.529e-7 1.963 4.616e-7 2.000

TABLE II
SPATIAL ERRORS AND RATES OF CONVERGENCE FORǫ = ǫ1 = 1.

h ‖u− uh‖2,1 Rate ‖T − Th‖2,1 Rate
1/4 0.0007131 – 0.0005045 –
1/8 0.0001771 2.009 0.0001256 2.005
1/16 4.352e-5 2.025 3.065e-5 2.035
1/32 1.125e-5 1.959 7.440e-6 2.040
1/64 2.934e-6 1.941 1.841e-6 2.015
1/128 7.525e-7 1.963 4.611e-7 2.002

mesh size toh = 1/128 to see the temporal errors and the
convergence rates by using different time steps with an end
time of t = 1. The results are given in Table III and Table IV
for ǫ = ǫ1 = 0 and ǫ = ǫ1 = 1, respectively. As expected,
we observe a second order convergence in time. However,
the velocity error rates becomes better for the stabilized case
as∆t decreases and also the rates for the temperature error
is far more better then the no stabilization case compared
with the proposed method.

B. Marsigli’s Flow Experiment

As another numerical test, we apply the proposed method
to so-called Marsigli flow. This flow experiment was firstly
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TABLE III
TEMPORAL ERRORS AND RATES OF CONVERGENCE FORǫ = ǫ1 = 0.

∆t ‖u− uh‖2,1 Rate ‖T − Th‖2,1 Rate
1 1.951e-2 – 6.572e-2 –

1/2 3.483e-3 2.48 3.417e-2 1.01
1/4 7.539e-4 2.20 1.221e-2 1.49
1/8 1.763e-4 2.09 3.618e-3 1.75
1/16 4.354e-5 2.01 9.838e-4 1.88
1/32 1.356e-5 1.78 2.565e-4 1.94

TABLE IV
TEMPORAL ERRORS AND RATES OF CONVERGENCE FORǫ = ǫ1 = 1.

∆t ‖u− uh‖2,1 Rate ‖T − Th‖2,1 Rate
1 2.333e-2 – 7.005e-1 –

1/2 8.980e-3 1.37 1.991e-1 1.81
1/4 3.043e-4 1.51 5.230e-2 1.92
1/8 7.682e-4 1.98 1.151e-2 2.18
1/16 1.913e-4 2.00 2.610e-3 2.14
1/32 4.855e-5 1.99 6.212e-4 2.07

motivated by the undercurrent in Bosphorus by Marsigli
in 1681. The problem set up was given in [8]. It is hard
to capture correct flow patterns such as the velocity and
the temperature contours for this flow example. A direct
numerical simulation is known to fail even for finer meshes
[9]. Our main goal in this numerical experiment is to demon-
strate the correct flow patterns by comparing the results
of [8] in which a fourth order finite difference scheme
is used for the Boussinesq equations. Since we assume
the Boussinesq approximation, the density differences could
be seen as temperature differences and so the Boussinesq
equations we solve could be used as a model problem here.
We simulate the problem in a rectangular box in the domain
(0, 1)×(0, 8). No slip velocity boundary conditions are used
and the temperature gradients are taken to be zero at all
boundary. Our initial temperature is a piecewise function
given by

T0 =

{

1.5 x ≤ 4.0
1.0 x > 4.0

. (11)

and the initial velocity is zero. We take flow parameters as
Pr = 1, Re = 1000, Ri = 4. We use a rather large time step
size of∆t = 0.02 to calculate the behavior of temperature
contours and velocity streamlines at dimensionless time
instancest = 2, 4, 6, 8. The stabilization parameterǫ is taken
as ofO(ν) and ǫ1 is taken as ofO(κ).

The method we apply captures the correct patterns for all
time instances for a very coarse mesh consisting of13362
velocity degree of freedom and6681 temperature degree of
freedom. The resulting natural convection patterns are given
in Figure 1 and Figure 2. As expected, fluids at different
temperature mix at the interface and as time evolves the
warmer fluid tends to spread out on the colder one. When
these results are compared with [8] one can easily deduce
the excellent agreement between the flow patterns even for
this very coarse mesh. This comparison proves the promise
of the method in this sense.

IV. CONCLUSION

The accuracy and the efficiency of the algorithm (4)-(6)
are verified for two numerical tests.

IsoValue
0.866635
0.919772
0.955197
0.990622
1.02605
1.06147
1.0969
1.13232
1.16775
1.20317
1.2386
1.27402
1.30944
1.34487
1.38029
1.41572
1.45114
1.48657
1.52199
1.61055

IsoValue
0.862113
0.917815
0.954949
0.992084
1.02922
1.06635
1.10349
1.14062
1.17776
1.21489
1.25202
1.28916
1.32629
1.36343
1.40056
1.4377
1.47483
1.51197
1.5491
1.64194

IsoValue
0.858317
0.911903
0.947627
0.983351
1.01907
1.0548
1.09052
1.12625
1.16197
1.19769
1.23342
1.26914
1.30487
1.34059
1.37631
1.41204
1.44776
1.48349
1.51921
1.60852

IsoValue
0.810744
0.872422
0.913542
0.954661
0.99578
1.0369
1.07802
1.11914
1.16026
1.20138
1.2425
1.28361
1.32473
1.36585
1.40697
1.44809
1.48921
1.53033
1.57145
1.67425

Fig. 1. Temperature iso-contours att = 2, 4, 6, 8, respectively
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Fig. 2. Streamlines att = 2, 4, 6, 8, respectively
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