
 

 

 

 

        Abstract— In this article we are considering unsteady 

magnetohydrodynamic flow of an incompressible, viscous fluid 

bounded by two no-conducting parallel plates placed vertically in 

presence of uniform inclined magnetic field. One of the plates is 

considered to be in motion with constant velocity whereas the other 

plate is adiabatic. Using transformation associated with decay 

factor, we have deduced a set of ordinary differential equations 

which are solved analytically for the flow field, temperature field 

and induced magnetic field for different values of 

magnetohydrodynamic flow parameters. The results are presented 

graphically and corresponding effects have been discussed.     

   

      Keywords— MHD fluid flow, Heat transfer, unsteady, Prandtl 

number, adiabatic, analytical solution.   

I. INTRODUCTION  

       The study of MHD flow under the action of a uniform 

transverse magnetic field has generated much interest in 

recent years in view of its numerous industrial applications 

such as the MHD generators and plasma MHD accelerators, 

pumps, flowmeters, petroleum industry, purification of 

crude oil, electrostatic precipitation, polymer technology 

etc..  

       The consequent effect of the presence of solid particles 

on the performance of such devices has led to the studies of 

particulate suspensions in conducting fluids in the presence 

of externally applied magnetic field. 

       Seth and Ghosh [1] considered the unsteady 

hydromagnetic flow of a viscous incompressible electrically 

conducting fluid in a rotating channel under the influence of 

a periodic pressure gradient and of uniform magnetic field, 

which was inclined with the axis of rotation. An analytical 

solution to the problem of steady and unsteady 

hydromagnetic flow of viscous incompressible electrically 

conducting fluid under the influence of constant and periodic 

pressure gradient in presence of inclined magnetic field has 

been obtained exactly by Ghosh [2] to study the effect of 

slowly rotating systems with low frequency of oscillation 

when the conductivity of the fluid is low and the applied  
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magnetic field is weak. Yang and Yu [3] have investigated 

the entrance problem of convective magnetohydrodynamic 

channel flow between two parallel plates subjected  

simultaneously to an axial temperature gradient and a 

pressure gradient. They have also considered both the cases 

of constant heat flux and constant wall temperature.  

The unsteady magnetohydrodynamic flow of an electrically 

conducting viscous incompressible non- Newtonian 

Bingham fluid bounded by two parallel non-  

conducting porous plates with heat transfer considering the 

Hall Effect has been studied by Attia and Ahmed [4]. 

Borkakati and Bharali [5] have studied the problem of flow 

and heat transfer between two infinite horizontal parallel 

porous plates, where the lower plate is a stretching sheet and 

the upper one is a porous solid plate in presence of a 

transverse magnetic field. The heat transfer in an 

axisymmetric flow between two parallel porous disks under 

the effect of a transverse magnetic field was studied by 

Bharali and Borkakati [6]. Shih-I-Pai [7] studied an 

unsteady motion of an infinite flat insulated plate set 

impulsively into the uniform motion with velocity in its own 

plane in the presence of a transverse uniform magnetic field. 

The problem of combined free and forced convective 

magnetohydrodynamic flow in a vertical channel has been 

studied by Umavathi and Malashetty [8]. They had also 

considered the effect of viscous and ohmic dissipations. It 

has been observed that the viscous dissipation enhances the 

flow reversal in the case of downward flow while it 

countered the flow in the case of upward flow. Singha and 

Deka[9] considered the problem of two phase  MHD flow 

and heat transfer problem in a horizontal channel. Jordán 

[10] has investigated the transient free convection MHD 

flow of a dissipative fluid along a semi-infinite vertical plate 

with mass transfer, the surface of which is exposed to a 

constant heat flux. In his paper he also studied the influences 

of the viscous dissipation, buoyancy ratio parameter, 

Schmidt number and magnetic parameter on heat and mass 

transfer and on the time needed to reach the steady-state. 

  The effects of heat transfer on unsteady hydromagnetic 

flow in a parallel-plate channel of an electrically conducting, 

viscous, incompressible fluid have been investigated by 

Singha [11].  He found that velocity distribution increases 

near the plates and then decreases very slowly at the central 

portion between the two plates. The principal numerical 

results presented in his work showed that the flow field is 

appreciably influenced by the applied magnetic field. 

Singha[12] investigated  the effect of transversely applied 

external magnetic field on the unsteady laminar flow of an 

incompressible viscous electrically conducting fluid in a 

channel of two horizontal heated plates. 

A Study of Unsteady MHD Vertical Flow of  

an Incompressible, Viscous, Electrically conducting 

Fluid bounded by Two Non-Conducting Plates in 

Presence of a Uniform inclined Magnetic Field 

MRINMOY GOSWAMI, KRISHNA GOPAL SINGHA,  

AMARJYOTI GOSWAMI, P.N.DEKA 

Proceedings of the World Congress on Engineering 2018 Vol I 
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

mailto:amarjyoti@kazirangauniversity.in
mailto:pndeka@yahoo.co.in


 

 

 

      Hence the present study investigates the effect of the 

unsteady MHD flow of an incompressible, viscous, 

electrically conducting fluid bounded by two non-

conducting parallel plates vertically in presence of uniform 

inclined magnetic field. one of which is at rest, other 

moving in its own plane with a velocity
0u . The analytical 

solutions for the fluid velocities, magnetic field and 

temperature distributions are obtained. The effects of 

various parameters on the flow and heat transfer are shown 

graphically. 

II. FORMULATION OF THE PROBLEM 

    The unsteady laminar flow of an incompressible viscous 

electrically conducting fluid between two non-conducting 

parallel plates placed vertically at a distance 2h apart is 

considered in presence of uniform inclined magnetic field. 

The flow is assumed to be along the X -axis parallel to 

vertical direction through the central line of the channel and 

Y  -axis is normal to it. 

 
           Figure: 1 Geometrical configuration 

 

   The plates of the channel are at hy   and that the 

relative velocity between the two plates is 02u  and also, 

there is no pressure gradient in the flow field. An external 

uniform magnetic field of strength 0B  makes an angle   

with the positive direction of X -axis which induces a 

magnetic field )(yB  makes also an angle    to the free 

stream velocity. The plate at hy   is maintained at 

temperature 0T , while the other plate hy   is kept at 

temperature 1T  )( 01 TT  and the plates are electrically 

non-conducting. 

The components of the velocities and the magnetic field are 

given as follows: 

   , , ( , ) ,0,0V u v w u y t


  , 

B


= , ,x y zB B B = 0

0( , ), (90 ) , 0cos B y t cos B   

                           = 0{ ( , ), , 0}cos B y t sin B   

                           =
2

0{ ( , ), 1 , 0}B y t B   

where p = constant pressure gradient in the flow direction, 

 cos  and ''t  is the time. 

 

III. ASSUMPTIONS 

 

      In order to derive the governing equations of the 

problem the following assumptions are made. 

(i) The fluid is finitely conducting and the viscous 

dissipation and the Joule heat are neglected. 

(ii) Hall effect and polarization effect are negligible.  

4 Governing equations 

The governing equations of the problem under the above 

conditions are as follows: 

 0V


  .                                                                      (1) 

2V
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

BBV
t

B

e
.                 (3) 

    p

T d dT
c

t dy dy
 

  
   

   
.                                      (4) 

Here the third term in the right hand side of Eq. (2) is the 

magnetic body force and 


J  is the electric current density 

due to the magnetic field defined by 

    ( )J E V B
   

                                                       (5) 

 Z


is the force due to buoyancy, 

0( )Z g T T


                                                          (6)  

 

It has been taken that 0E  . 

That is, in the absence of convection outside the boundary 

layer, 0B B  and 0Curl B J  , then (5) leads to

0E  . 

    The fluid motion starts from rest at 0t  , and the no-slip 

condition at the plates implies that the fluid velocity has 

neither a z-nor an x-component at y h  . 

   Using the velocity and magnetic field distribution as stated 

above, the Eq. (1)- (4) are as followed: 

                          
22

20
02

(1 ) ( )
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
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 Let us assume that the other plate is adiabatic i.e. thermally 

insulated walls, then the boundary conditions are  

                 

0 1

0 0 1

0 0

0 : 0, ,

0 : , , , at  ,

0 : , , 0, at  .

t u B B T T

t u u B B T T y h

T
t u u B B y h

y


   


      

      

 

       (10)                                                                                

Introducing the following non-dimensional quantities: 

* * * 0 0

0 0 1 0

, , , , .
t u T Tu y B

u y t b T
u h h B T T


    


    (11) 

   In terms of the above non-dimensional variables and 

parameters, the basic equations (7)-(9) take the form  

 

2
2

2 2

1
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a e

e e

Gu u
H R u T

t R y R

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       (13)                                                                                  

2

2

1

e

T T

t P y

  
  
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                                                      (14)                                                                                                                                           

The asterisks have been dropped with the understanding that 

all the quantities are now dimensionless. 

For relation (11) the boundary conditions (10) becomes 

                

0 : 0, 1, 1

0: 1, 1, 1, at  y=+1,

0: 1, 1, 0, at  y= 1.

t u b T

t u b T

T
t u b

y


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


     


      
 

    (15) 

 In order to solve Eqs. (12) - (14), we consider 

( ) , ( ) , and ( ) ,nt nt ntu f y e b g y e T F y e    
       

                                                                               
(16) 

where ‗ n ‘ is the decay constant. 

Substituting (16) in Eqs. (12) - (14), we get  

 2''( ) (1 ) ( ) ( ) 0r
e a e

e

G
f y R H R n f y F y

R
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                                                                                      (18) 

and 

''( ) ( ) 0eF y nP F y                                               (19)    

For relation (16) the boundary conditions (15) again 

becomes 
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F
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(20)                                              

 

The solutions of Eqs. (17) - (19) with the help of the 

boundary conditions (20) and substituting in the relations 

(16) are  
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IV. RESULTS AND DISCUSSION 

  

    Numerical solutions for the Eqs. (21) - (23) are obtained 

for different values of , where  

= cos which varies as  =
030 ,

045 ,
060 ,

075 . 

All plotting for such cases are carried out by using 

MATHEMATICA. 

    In fig. 2, the variations in velocity field due to variations  

in magmatic field inclination with flow direction have been 

plotted. When the external field is more inclined to flow 

direction the Hartmann effect is considerably reduced. Near  

 is near zero, the flow field behaves like an ordinary 

Couette flow. With the increase of angle of inclination of 

magnetic field with flow direction the influence of 

Hartmann effect become more and more clearer. 

    In fig.3,  it has been observed that, with the increase of 

Grashof number, there  appear sharp changes in velocity 

field. When the Grashof number is increased beyond the 

critical value Gr=10, reverse flow phenomena near plate 

which is in  motion with velocity v=-1,  is observed. We can 

conclude that for small Grashof number regimes, velocity 

field changes almost linearly. It indicates that the dominance 

of buoyancy force in the flow may have nonlinear influence 

on flow field. 

Plottings in fig.4 indicate that greater  the angle of 

inclination of imposed field with flow direction , more the 

corresponding changes in velocity field due to increase in 

Hartmann effect. The increased changed in velocity field  

intensifies the induced field.   

Fig. 5  shows effect of Grashof number on  induced 

magnetic field. With the increase in value of Grashof 

number it is observed that intensity of induced field in flow 

in increased and it is more clearer in the central region of 

channel whereas viscous effect out from the walls 

diminishes the difference in velocity field. The relative 

dominance of bouncy force and inertia force over viscous 

force in the flow may increase the intensity of induced 

magnetic field. 

From the plotting of Fig.6 it has been observed that with the 

increase magnetic Reyonld number, intensity of induced 

magnetic field is increased. Field intensity in central flow 

region of the channel is much higher than near the boundary 

plates. This increase in intensity in central flow region of the 

channel is much rapid with increase in magnetic Reynold 

number. This indicates that stronger magnetic convection 

effect over magnetic diffusion process may result in increase 

in induced field intensity in such a flow. 

In fig.7 it is observed that temperature field changes much 

rapidly with increase of Prandtl number. In this vertical 

channel flow, the temperature variation across the boundary 

plates is more and more rapid with increase of momentum 

diffusion process in the flow along with decrease in heat 

diffusion process in the flow. 

 

Nomenclature 

   h      half width between parallel plates channel (m) 

  0B     external uniform magnetic field (T) 

        thermal conductivity (Wm-1K-1) 

 aH    magnetic Hartmann number, 

2

0

2

0

B

u

 


 

 eR   Reynolds number, 
0u h


 

 rP    Prandtl number, 
1




 

 rG   Grashoff number, 
 3

1 0

2

gh T T




 

 eP     Peclet number,  eP = r eP R     

 aR    Rayleigh number, 

3

0

1

g h T

 
 

 mR    Magnetic Reynolds number, 1 e    

 E


     electric field intensity (NC-1 ) 

  0u    free stream velocity (ms-1)      

  0T    temperature of the lower plate (K) 

  1T    temperature of the upper plate (K) 
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    t    time (s)  

  c
p

 specific heat at constant pressure (
1 1.J kg K 

) 

   g   acceleration due to gravity (
2ms ) 

 

Greek symbols 

 1    thermal diffusitivity, 

pc




  

      electrical conductivity (
1 1m  ) 

      co-efficient of viscosity (
1 1kg m s 

) 

     density of the fluid  (
3kg m

) 

     kinematic viscosity (
2 1m s ), 




 

    co-efficient of thermal expansion of the fluid (
1K 
) 

 e   permeability of the medium  

  m  magnetic diffusitivity, 
1

e
 

Superscript 

 *   non-dimensional variables defined in Eq. (11) 
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