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Abstract— The path planning problem finds a collision free 

path for an object from its start position to its goal position 

while avoiding obstacles and self-collisions. Many methods 

have been proposed to solve this problem but they are not 

optimization based. Most of the existing methods find feasible 

paths but the objective of this current research is to find 

optimal paths in respect of time, distance covered and safety of 

the robot. This paper introduces a novel optimization-based 

method that finds the shortest distance in the shortest time. It 

uses particle swarm optimization (PSO) algorithm as the base 

optimization algorithm and a customized algorithm which 

generates the coordinates of the search space. We 

experimentally show that the distance covered and the 

generated points are not affected by the sample size of 

generated points, hence, we can use a small sample size with 

minimum time and get optimal results, emphasizing the fact 

that with little time, optimal paths can be generated in any 

known environment.     

              

Index Terms— Path Planning, Particle Swarm Optimization 

Algorithm. Robotics, Optimization 

I. INTRODUCTION 

LANNING a feasible path for a mobile robot is an 

intractable problem. Yet, it finds applications in 

robotics, medicine, virtual reality, search and rescue 

operations and bioinformatics. Motion planning algorithms 

finds sequence of valid configurations from the free space to 

form a path, which the mobile robot takes while avoiding 

collisions.  Finding these configurations deterministically 

becomes a difficult task as the dimensions of the 

configuration space increases (Reif, [7]). 

A lot of solution methods have been proposed to solve 

this problem. Most of the algorithms find paths that are 

feasible (Ekenna et al., [3]; Denny et al., [4]; Zhou et al., 

[10]) while a few try to find the optimal feasible paths (Mac 

et al., [5], Bayat et al., [1], Wang et al., [9]. Not many have 

considered how expensive an algorithm is, that is, an 

algorithm that finds an optimal path as well as seeks to 

minimize the speed of the planner. This is the motivation of 

this work. 

In this paper, we present an optimization - based 

algorithm that works with Particle Swarm Optimization 
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(PSO) algorithm to find an optimal path. It uses a 

customized algorithm to generate the coordinates of the 

search space and passes the result to the PSO algorithm 

which then uses the coordinate values to determine the 

optimal path from start to finish. 

In our experiment, we considered four environments with 

different number of obstacles and different population sizes 

in each environment (Figures 1 – 7). In each of the 

environment, we considered different number of generated 

points from the initial point to the final point which is 

passed on to PSO to find the best ten points that gives the 

optimal path (Tables 1-3).  

In this paper, we considered population sizes 100 

(Figures 2, 4 and 6) and 10 (Figures 3, 5 and 7). We used 

the distance metric to calculate the distances covered in each 

of the environment and made comparisons (Table 4). 

Additionally, we compared the coordinates of different 

population sizes in different environments with obstacles 

(Figures 8-10). The experiments show that using our 

algorithm, the population size does not affect the distance 

covered (Table 4) neither does it affect the coordinates 

generated from the start point to the end point in any 

environment (Figures 8-10).  Hence, the smallest population 

size with a minimum time can be used because it gives the 

desired results. This makes our algorithm to be a fast one in 

planning a path for a mobile robot. What this implies is that 

our customized algorithm is able to generate the best points 

from the initial point to the final position without having to 

generate so many points and then begin to select from them 

for the optimal path. 

The main contribution of this paper is the introduction of a 

novel optimization-based method to find a fast algorithm 

that finds an optimal path for a mobile robot. 

 

II. PRELIMINARIES AND RELATED AREA 

A Distance Metrics                                                                                  

A distance metric is a function, 
( ) ( , ) ,On

ps s t R   which 

calculates the Euclidean distance between two 

configurations 1 2( , ,... )ns s s s  and 1 2( , ,... )nt t t t  in 

the Euclidean space, where ‘On’ is the number of obstacles 

and ‘ps’, the population size, in the environment under 

consideration.  

Mathematically, 

     
2 2 2( )

1 1 2 2( , ) ...On

ps n ns t t s t s t s         
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This work uses this metric to calculate the distances covered 

by the mobile robot from the initial position to the end 

position in the different environments shown in Figures 1-7.  

The essence of doing this is to be able to compare the 

distances covered in the different environments and 

different population sizes. 

B. Path Planning 

The path-planning problem is usually defined as follows 

[11]; “Given a robot and a description of an environment, 

plan a path between two specific locations. The path must 

be collision free (feasible) and satisfy certain optimization 

criteria”. In other words, path planning is generating a 

collision-free path in an environment with obstacles and 

optimizing it with respect to some criteria. 

C. Global and Local Path- Planning 

Global path planning requires the environment to be 

completely known and the terrain, static. In this approach, 

the algorithm generates a complete path from the start point 

to the destination point before the robots starts motion. On 

the other hand, local path planning means that path planning 

is done while the robot is moving; in other words, the 

algorithm is capable of producing a new path in response to 

environmental changes. Assuming there are no obstacles in 

the navigation area, the robot moves in a straight line start 

point and the end point (Figure 1). The robot proceeds along 

this path until an obstacle is detected. At this point, our 

path-planning algorithm is utilized to find a feasible path 

around the obstacle. After avoiding the obstacle, the robot 

continues to navigate towards the end-point along a straight 

line until the robot detects another obstacle or the desired 

destination is reached.                                         

D. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a stochastic global 

optimization technique which provides an evolutionary 

based search. The term PSO refers to a relatively new 

family of algorithms that may be used to find optimal or 

near optimal solutions to numerical and qualitative 

problems. It is implemented easily in most of the 

programming languages since the core of the program can 

be written in a single line of code and has proven both 

very effective and quick when applied to a diverse set of 

optimization problems. PSO algorithms are especially 

useful for parameter optimization in continuous and multi-

dimensional search spaces. PSO is mainly inspired by 

social behavior patterns of organisms that live and interact 

within large groups. In particular, PSO incorporates 

swarming behaviors observed in flocks of birds, schools 

of fish, or swarms of bees.   

E. Particle Swarm Optimization Algorithm 

The procedure is as follows: 

 Set iteration counter i = 0 

 Initialize the parameters ,ω c1 and c2  

 Initialize N random particles p1, p2 … pN (also 

called positions) and their velocities v1, v2, … vN. 

The velocities indicate the amount of change that is 

applied to a current position (i.e. particle or 

solution) to arrive at the updated particle (position). 

The subscripts indicate the particle number in the 

swarm.  

 Evaluate the fitness of each particle from the 

objective function )(
n

i

n
pFf  , where )(F

 
is the 

objective function to be optimized. 

 Update 
i

n
f  and 

i

n
p

 
pair as in (1), where 

i

n
f

 
is 

the pbest and 
i

n
p  the pbest-yielding particle in the 

i-th generation.  

       
1 1 1

1

[  ] if  is better than 
 

[  ] if  is better than 
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i i n n n n

n n i i i i

n n n n

p f f f
p f

p f f f

  



 
       
  

 

                                                                             (1) 

That is, compare the current and the previous pbest values 

and retain whichever is better; also retain the corresponding 

position (or particle) that yielded the pbest. 

 Update the global best gbest with best fitness 
i

gf . 

The particle that yields gbest is called the global 

best particle (or position) 
i

gp The pair can be 

obtained from (2). 

 Update velocities and positions of each particle 

according to (3) and (4) 

1

1 1 (i i i

n nv v c r     
i

n
p

2 2) (i i

np c r   
i

gp  )i

np   

                     (3) 

           
1 1i i i

n n np p v                                                       (4) 

For the PSO implemented in this paper, the global best 

particle 
i

gp  is slightly perturbed to explore positions in its 

vicinity using (5). This guarantees faster convergence [2] 

and reduces the chances of the algorithm getting stuck in a 

local minimum (or local maxima). 

1i

gv  
i

gp  
3

i i i

g gp v r                            (5) 

 Set i = i + 1                                                    (6) 

 Terminate on convergence (ε is the convergence 

measure) or when the iteration limit is reached. 

 Go to the fourth step. 

 In (3), r1, r2 and r3 are unit random numbers, c1 and c2 are 

scaling coefficients such that 2,0
21
 cc  [6], α and β are 
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constants while ω is an inertia weight which may be 

adjusted dynamically to control the fineness of the search at 

different stages of the iteration process [8]. Availability of 

an expert input in step three increases the convergence 

speed of the algorithm.  

III. FAST PATH PLANNING ALGORITHM 

 The search space is viewed as a grid which can be 

described by the Cartesian plane. This search space contains 

small square-shaped cells whose reference point is at the 

center. Hence, the coordinate of each cell can be described 

with the x and y points on the Cartesian plane. In order to 

avoid ambiguous solutions, we assume that the robot moves 

along the mid-points of the cells from one cell to another. 

Another assumption in this process is that the obstacles are 

placed along the optimal path of the robot motion, that is, 

the path the robot will take if the search space is free of 

obstacles (Figure 1). A last assumption is that the start and 

finish points of the robot motion are fixed. In this case, the 

starting point is (0.5, 0.5) and the finishing point is (9.5, 

9.5) for a 10 x 10 search space or the starting point is (0.5, 

0.5) and the finishing point is (99.5, 99.5) for 100 x 100 

search space. However, the algorithm is developed in such a 

way to handle any square shaped search space.  

The algorithm we developed using PSO as the base 

optimization algorithm requires that a valid number, for 

example 10 for 10 x 10 or 100 for 100 x 100 search space is 

specified along with a valid integer 1, 2 or 3 for the number 

of obstacles to be introduced. Thereafter, the algorithm 

requires that you specify the coordinates of the obstacles 

corresponding to the number of obstacles specified earlier. 

Once this is done, the algorithm generates the coordinates of 

the search space and then uses PSO to determine the optimal 

path taking into consideration the obstacles introduced 

earlier. Ordinarily, Particle Swarm Optimization can be used 

to determine the optimal path between the start and finish 

point of the robot motion. But, this can only be possible if 

the coordinates of the search space are known. Practically, it 

is easier to know the coordinate of the obstacles than the 

coordinates of the search space with obstacles introduced. 

Hence, our customized algorithm generates the coordinates 

of the search space and passes the result to the PSO 

algorithm which then uses the coordinate values to 

determine the optimal path from start to finish. 

IV. EXPERIMENT 

                                                                                               

Experimental Set up 

The Environment: 

We considered four environments: an environment without 

any obstacle, environments with one obstacle at point (3.5, 

3.5), two obstacles at points (3.5, 3.5) and (5.5, 5.5) and 

three at points (3.5, 3.5), (5.5, 5.5) and (6.5, 6.5) 

respectively. An environment is a 10 x10 grid terrain.  In 

each of the environment, we ran our algorithm on different 

population sizes 100, 50, 20 and 10. The algorithm 

generated the best ten points from the initial point to the end 

point in all the populations of the different environments. In 

this paper, we use the two extreme population sizes 100 and 

10 only (Tables 1–3). We then use the tables to draw the 

graphs for the different environments (Figures 2-6). 

A. Enviroment 1:  10 x 10 grid terrain without Obstacles. 

 
The optimal path  of running our algorithm in an enviroment 

without any obstacle is a straight path from the initial 

position to the final position. The path coincides with the 

diagonal of the 10 x 10 grid terrain (Figure 1), which is the 

shortest distance between two nonadjacent vertices of a 

polygon.  

          

 

           Figure. 1: 10 x 10 grid terrain without obstacle 

Distance Covered  

The distance covered is calculated using the Euclidean 

distance metric:                  

 

2 2( , ) (9.5 5.0) (9.5 5) 12.73 unitsstart end       

B. Environment 2:10 x 10 grid terrain with one Obstacle at 

point (3.5, 3.5) 

Running our algorithm on this environment with population 

sizes 100 and 10, We use Table 1 to draw the graphs of 

Figures 2 and 3.  

Table 1: Shows the points of sample sizes 100 and 10  

Environment with One Obstacle 

           Population Sizes 

           100            10 

x-

cord. 

y-

cord. 

x-

cord. 

y-

cord. 

0.5021 0.4988 0.5039 0.4221 

1.5025 1.5016 1.4666 1.5092 

2.5009 2.4999 2.4972 2.4999 

4.4976 2.4991 4.4943 2.4916 

4.4972 4.5001 4.5168 4.5279 

5.5006 5.4996 5.4854 5.5090 

6.5005 6.5004 6.4800 6.5565 

7.5003 7.4986 7.4834 7.4910 

8.5066 8.4994 8.4886 8.5376 

9.4980 9.4994 9.5014 9.5125 
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         Figure 2: Shows the optimal path of population 100 

 

 

             
      Figure 3: Shows the optimal path of population 10 

 

Distance Covered 

i. The distance covered when the population size is 100 

(Figure 2): 

 
(2) 2 2

100 ( , ) (2.5009 0.5021) (2.4999 0.4988)start end       

(4.4976 2.5009) (4.5001 2.4991)      

2 2(9.4980 4.4972) (9.4994 4.5001)

                13.87 units.

   


  

 

ii. The distance covered when the population size is 10 

(Figure 3): 

 
(2) 2 2

10 ( , ) (2.4972 0.5039) (2.4999 0.4221)start end       

(4.4943 2.4972) (4.5279 2.4916)      

2 2(9.5014 4.5168) (9.5125 4.5279)

                   13.96 units.

   


  

 

C.  Environment 3:10 x 10 grid terrain with two Obstacles  

at points (3.5, 3.5) and (5.5, 5.5) 

 

The results of this environment with population 100 and  

10 are shown in Table 2 and Figures 4 and 5. 

 

 

 

 

 

 

 

Table 2: Shows the generated points of sample sizes 100 

 and 10 

Environment with Two Obstacles 

           Population Sizes 

           100            10 

x-

cord. 

y-

cord. 

x-

cord. 

y-

cord. 

0.4996 0.5009 0.4912 0.5046 

1.5003 1.5034 1.5035 1.4405 

2.4999 2.4992 2.4522 2.5455 

4.5008 2.5004 4.5624 2.5287 

4.5014 4.5003 4.5553 4.4807 

6.5005 4.5031 6.4896 4.4993 

6.5007 6.4963 6.4897 6.5078 

7.4996 7.5034 7.5133 7.4968 

8.4995 8.4977 8.3001 8.4999 

9.499 9.4993 9.5408 9.5296 

 

         

     Figure 4: Shows the optimal path of population 100 

             

        Figure 5: Shows the optimal path of population 10 

Distance Covered 

i. The distance covered when the population size is 100 

(Figure 4): 

 
(3) 2 2

100 ( , ) (2.4999 0.4996) (2.4992 0.5009)start end       

(4.5008 2.4999) (4.5003 2.5004)      

(6.5005 4.5014) (6.4963 4.5031)     

2 2(9.4990 6.5007) (9.4993 6.4963)

               15.06 units.

   


  

 

ii. The distance covered when the population size is 10 

(Figure 5):                   
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(3) 2 2

10 ( , ) (2.4522 0.4912) (2.5455 0.5046)start end       

(4.5624 2.4522) (4.4807 2.5287)      

(6.4896 4.5553) (6.5078 4.4993)     

2 2(9.5408 6.5007) (9.5296 6.5078)

                        15.13 units.

   


  

                         

D. Environment 4:10 x 10 grid terrain with three  

Obstacles at point (3.5, 3.5), (5.5, 5.5) and (6.5, 6.5) 

 

The results of this environment with population 100 

 and 10 are shown in Table 3 and Figures 6 and 7. 

 

Table 3: Shows the generated points of sample sizes  

100 and 10      

 

Environment With Three Obstacles 

                 Population Sizes 

           100            10 

x-

cord. 

y-

cord. 

x-

cord. 

y-

cord. 

0.4993 0.5008 0.4665 0.4827 

1.5002 1.5030 1.5113 1.4915 

2.5031 2.4970 2.4399 2.4890 

4.5024 2.5024 4.4216 2.5207 

4.5003 4.4972 4.4868 4.5528 

6.5010 4.5028 6.5026 4.4865 

7.5037 5.499 7.5238 5.5060 

7.5010 7.5012 7.5094 7.4853 

8.4984 8.5004 8.4884 8.5110 

9.4990 9.5022 9.4680 9.4668 

 

     

Figure 6: Shows the optimal path of population 100 

     

Figure 7: Shows the optimal path of population 10 

Distance Covered 

i. The distance covered when the population size is 100 

(Figure 6): 

 

2

(4)

100 2

(2.5031 0.4993)
( , )

(2.4970 0.5008)
start end


 

 
    

  (4.5024 2.5031) (4.4972 2.5024)        

 
2 2

(6.5010 4.5003)

(7.5037 6.5010) (5.4990 4.5028)

 

   
   

 
2 2

(7.5012 5.4990)

(9.4990 7.5010) (9.5022 7.5012)

                         =15.07

 

        

         

ii. The distance covered when the population size is 10 

(Figure 7): 

 
(4) 2 2

10 ( , ) (2.4399 0.4665) (2.4890 0.4827)start end      

     (4.4216 2.4399) (4.5528 2.5207)   

 

2

2

(7.5238 6.5026)
(6.5026 4.4868)

(5.5060 4.4865)


  

 
   

 

2

2

(9.5408 6.5007)
(7.4853 5.5060)

(9.5296 6.5078)

                         =15.20


  

     

    

Discussion: 

 

A. Comparing the Distances covered in Different 

Populations: 

 

We compare the distance covered in different population 

sizes in different environments. Calculating the percentage 

differences of the distance covered in the different 

populations as shown in Table 4, we discover that with our 

algorithm, the population sizes does not affect the distance 

covered. 

Table 4: Shows the Population sizes with the distance 

covered.  

                                                       Environments 

 One Obstacle Two 

Obstacles 

Three 

Obstacles 

Populatio

n Sizes 

100 10 100 10 100 10 

Distance 

Covered 

13.8

7 

13.9

6 

15.0

6 

15.1

3 

15.0

7 

15.2

0 

% 

Difference 

    0.0009        0.0007       0.0013 
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B. Comparing the Coordinates of Different Populations 

We compare the generated coordinates of populations 100 

and 10 in the different environments (Figures 8-10). 

Series1is 100 x-coordinates, Series 2 is 100 y- coordinates, 

Series 4 is 10 x- coordinates and Series 5 is 10 y-

coordinates. This comparison shows that with our 

algorithm, the population size does not significantly affect 

the coordinates generated. Hence, we can make do with the 

small sample size 10. 

    

Figure 8: Compares the coordinates of the population size 

               100 & 10 in one-obstacle environment. 

 

   
Figure 9: Compares the coordinates of the population 

size100 & 10 in two-obstacle environment. 

    

 Figure 10: Compares the coordinates of the  

population size100 & 10 in three-obstacle environment    

            

V. CONCLUDING REMARKS 

 

In this paper, we present a new algorithm that seeks to 

minimize the computation and convergence time of finding 

an optimal path in a known environment. It uses particle 

swarm optimization (PSO) algorithm as the base 

optimization algorithm and a customized algorithm which 

generates the coordinates of the search space. 

Experimentally, we calculate and compare the distances of 

the optimal paths in population sizes 100 and 10 in each of 

the three different obstacle environments. We also compare 

the generated points of the different population sizes. The 

results show that the population size does not affect the 

distance covered neither does it affect the coordinates 

generated from the start point to the end point in any 

environment.  Hence, we can use the smallest population 

size with small computation and convergence time. This 

makes our algorithm to be a relatively fast one in planning a 

path for a mobile robot since we do not need to consider a 

large population size to get an optimal result. Additionally, 

the experimental results also illustrate that though PSO 

algorithms are especially useful for parameter optimization 

in continuous and multi-dimensional search spaces, with 

customized algorithm, they are also useful for discrete and 

2D search spaces. This can be seen for example in Figure 2, 

that in trying to avoid the obstacle at point (3.5, 3.5), our 

algorithm at point (2.5, 2.5) moved to point (3.5, 2.5), then 

to point (4.5, 2.5) and then finally to point (4.4, 4.5). This is 

a discrete case.  This happened in all the other cases. 
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