



Abstract— The path planning problem finds a collision free

path for an object from its start position to its goal position

while avoiding obstacles and self-collisions. Many methods

have been proposed to solve this problem but they are not

optimization based. Most of the existing methods find feasible

paths but the objective of this current research is to find

optimal paths in respect of time, distance covered and safety of

the robot. This paper introduces a novel optimization-based

method that finds the shortest distance in the shortest time. It

uses particle swarm optimization (PSO) algorithm as the base

optimization algorithm and a customized algorithm which

generates the coordinates of the search space. We

experimentally show that the distance covered and the

generated points are not affected by the sample size of

generated points, hence, we can use a small sample size with

minimum time and get optimal results, emphasizing the fact

that with little time, optimal paths can be generated in any

known environment.

Index Terms— Path Planning, Particle Swarm Optimization

Algorithm. Robotics, Optimization

I. INTRODUCTION

LANNING a feasible path for a mobile robot is an

intractable problem. Yet, it finds applications in

robotics, medicine, virtual reality, search and rescue

operations and bioinformatics. Motion planning algorithms

finds sequence of valid configurations from the free space to

form a path, which the mobile robot takes while avoiding

collisions. Finding these configurations deterministically

becomes a difficult task as the dimensions of the

configuration space increases (Reif, [7]).

A lot of solution methods have been proposed to solve

this problem. Most of the algorithms find paths that are

feasible (Ekenna et al., [3]; Denny et al., [4]; Zhou et al.,

[10]) while a few try to find the optimal feasible paths (Mac

et al., [5], Bayat et al., [1], Wang et al., [9]. Not many have

considered how expensive an algorithm is, that is, an

algorithm that finds an optimal path as well as seeks to

minimize the speed of the planner. This is the motivation of

this work.

In this paper, we present an optimization - based

algorithm that works with Particle Swarm Optimization

Manuscript received February 27, 2018; revised March 27, 2018. This

work was sponsored by Covenant University, Ota, Nigeria.

 P. I. Adamu, H. I. Okagbue, P. E. Oguntunde and A. A. Opanuga are

with the Department of Mathematics, Covenant University, Ota, Nigeria.

patience.adamu@covenantuniversity.edu.ng

 hilary.okagbue@covenantuniversity.edu.ng

pelumi.oguntunde@covenantuniversity.edu.ng

abiodun.opanuga@covenantuniversity.edu.ng

(PSO) algorithm to find an optimal path. It uses a

customized algorithm to generate the coordinates of the

search space and passes the result to the PSO algorithm

which then uses the coordinate values to determine the

optimal path from start to finish.

In our experiment, we considered four environments with

different number of obstacles and different population sizes

in each environment (Figures 1 – 7). In each of the

environment, we considered different number of generated

points from the initial point to the final point which is

passed on to PSO to find the best ten points that gives the

optimal path (Tables 1-3).

In this paper, we considered population sizes 100

(Figures 2, 4 and 6) and 10 (Figures 3, 5 and 7). We used

the distance metric to calculate the distances covered in each

of the environment and made comparisons (Table 4).

Additionally, we compared the coordinates of different

population sizes in different environments with obstacles

(Figures 8-10). The experiments show that using our

algorithm, the population size does not affect the distance

covered (Table 4) neither does it affect the coordinates

generated from the start point to the end point in any

environment (Figures 8-10). Hence, the smallest population

size with a minimum time can be used because it gives the

desired results. This makes our algorithm to be a fast one in

planning a path for a mobile robot. What this implies is that

our customized algorithm is able to generate the best points

from the initial point to the final position without having to

generate so many points and then begin to select from them

for the optimal path.

The main contribution of this paper is the introduction of a

novel optimization-based method to find a fast algorithm

that finds an optimal path for a mobile robot.

II. PRELIMINARIES AND RELATED AREA

A Distance Metrics

A distance metric is a function,
() (,) ,On

ps s t R  which

calculates the Euclidean distance between two

configurations 1 2(, ,...)ns s s s and 1 2(, ,...)nt t t t in

the Euclidean space, where ‘On’ is the number of obstacles

and ‘ps’, the population size, in the environment under

consideration.

Mathematically,

     
2 2 2()

1 1 2 2(,) ...On

ps n ns t t s t s t s       

A Fast Path Planning Algorithm for a Mobile

Robot

Patience I. Adamu, IAENG, Member, Hilary I. Okagbue, Pelumi E. Oguntunde and Abiodun A.

Opanuga

P

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

This work uses this metric to calculate the distances covered

by the mobile robot from the initial position to the end

position in the different environments shown in Figures 1-7.

The essence of doing this is to be able to compare the

distances covered in the different environments and

different population sizes.

B. Path Planning

The path-planning problem is usually defined as follows

[11]; “Given a robot and a description of an environment,

plan a path between two specific locations. The path must

be collision free (feasible) and satisfy certain optimization

criteria”. In other words, path planning is generating a

collision-free path in an environment with obstacles and

optimizing it with respect to some criteria.

C. Global and Local Path- Planning

Global path planning requires the environment to be

completely known and the terrain, static. In this approach,

the algorithm generates a complete path from the start point

to the destination point before the robots starts motion. On

the other hand, local path planning means that path planning

is done while the robot is moving; in other words, the

algorithm is capable of producing a new path in response to

environmental changes. Assuming there are no obstacles in

the navigation area, the robot moves in a straight line start

point and the end point (Figure 1). The robot proceeds along

this path until an obstacle is detected. At this point, our

path-planning algorithm is utilized to find a feasible path

around the obstacle. After avoiding the obstacle, the robot

continues to navigate towards the end-point along a straight

line until the robot detects another obstacle or the desired

destination is reached.

D. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a stochastic global

optimization technique which provides an evolutionary

based search. The term PSO refers to a relatively new

family of algorithms that may be used to find optimal or

near optimal solutions to numerical and qualitative

problems. It is implemented easily in most of the

programming languages since the core of the program can

be written in a single line of code and has proven both

very effective and quick when applied to a diverse set of

optimization problems. PSO algorithms are especially

useful for parameter optimization in continuous and multi-

dimensional search spaces. PSO is mainly inspired by

social behavior patterns of organisms that live and interact

within large groups. In particular, PSO incorporates

swarming behaviors observed in flocks of birds, schools

of fish, or swarms of bees.

E. Particle Swarm Optimization Algorithm

The procedure is as follows:

 Set iteration counter i = 0

 Initialize the parameters ,ω c1 and c2

 Initialize N random particles p1, p2 … pN (also

called positions) and their velocities v1, v2, … vN.

The velocities indicate the amount of change that is

applied to a current position (i.e. particle or

solution) to arrive at the updated particle (position).

The subscripts indicate the particle number in the

swarm.

 Evaluate the fitness of each particle from the

objective function)(
n

i

n
pFf  , where)(F

is the

objective function to be optimized.

 Update
i

n
f and

i

n
p

pair as in (1), where

i

n
f

is

the pbest and
i

n
p the pbest-yielding particle in the

i-th generation.

1 1 1

1

[] if is better than

[] if is better than

i i i i

i i n n n n

n n i i i i

n n n n

p f f f
p f

p f f f

  



 
       
  

 (1)

That is, compare the current and the previous pbest values

and retain whichever is better; also retain the corresponding

position (or particle) that yielded the pbest.

 Update the global best gbest with best fitness
i

gf .

The particle that yields gbest is called the global

best particle (or position)
i

gp The pair can be

obtained from (2).

 Update velocities and positions of each particle

according to (3) and (4)

1

1 1 (i i i

n nv v c r     
i

n
p

2 2) (i i

np c r   
i

gp)i

np

 (3)

1 1i i i

n n np p v   (4)

For the PSO implemented in this paper, the global best

particle
i

gp is slightly perturbed to explore positions in its

vicinity using (5). This guarantees faster convergence [2]

and reduces the chances of the algorithm getting stuck in a

local minimum (or local maxima).

1i

gv  
i

gp
3

i i i

g gp v r      (5)

 Set i = i + 1 (6)

 Terminate on convergence (ε is the convergence

measure) or when the iteration limit is reached.

 Go to the fourth step.

 In (3), r1, r2 and r3 are unit random numbers, c1 and c2 are

scaling coefficients such that 2,0
21
 cc [6], α and β are

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

constants while ω is an inertia weight which may be

adjusted dynamically to control the fineness of the search at

different stages of the iteration process [8]. Availability of

an expert input in step three increases the convergence

speed of the algorithm.

III. FAST PATH PLANNING ALGORITHM

 The search space is viewed as a grid which can be

described by the Cartesian plane. This search space contains

small square-shaped cells whose reference point is at the

center. Hence, the coordinate of each cell can be described

with the x and y points on the Cartesian plane. In order to

avoid ambiguous solutions, we assume that the robot moves

along the mid-points of the cells from one cell to another.

Another assumption in this process is that the obstacles are

placed along the optimal path of the robot motion, that is,

the path the robot will take if the search space is free of

obstacles (Figure 1). A last assumption is that the start and

finish points of the robot motion are fixed. In this case, the

starting point is (0.5, 0.5) and the finishing point is (9.5,

9.5) for a 10 x 10 search space or the starting point is (0.5,

0.5) and the finishing point is (99.5, 99.5) for 100 x 100

search space. However, the algorithm is developed in such a

way to handle any square shaped search space.

The algorithm we developed using PSO as the base

optimization algorithm requires that a valid number, for

example 10 for 10 x 10 or 100 for 100 x 100 search space is

specified along with a valid integer 1, 2 or 3 for the number

of obstacles to be introduced. Thereafter, the algorithm

requires that you specify the coordinates of the obstacles

corresponding to the number of obstacles specified earlier.

Once this is done, the algorithm generates the coordinates of

the search space and then uses PSO to determine the optimal

path taking into consideration the obstacles introduced

earlier. Ordinarily, Particle Swarm Optimization can be used

to determine the optimal path between the start and finish

point of the robot motion. But, this can only be possible if

the coordinates of the search space are known. Practically, it

is easier to know the coordinate of the obstacles than the

coordinates of the search space with obstacles introduced.

Hence, our customized algorithm generates the coordinates

of the search space and passes the result to the PSO

algorithm which then uses the coordinate values to

determine the optimal path from start to finish.

IV. EXPERIMENT

Experimental Set up

The Environment:

We considered four environments: an environment without

any obstacle, environments with one obstacle at point (3.5,

3.5), two obstacles at points (3.5, 3.5) and (5.5, 5.5) and

three at points (3.5, 3.5), (5.5, 5.5) and (6.5, 6.5)

respectively. An environment is a 10 x10 grid terrain. In

each of the environment, we ran our algorithm on different

population sizes 100, 50, 20 and 10. The algorithm

generated the best ten points from the initial point to the end

point in all the populations of the different environments. In

this paper, we use the two extreme population sizes 100 and

10 only (Tables 1–3). We then use the tables to draw the

graphs for the different environments (Figures 2-6).

A. Enviroment 1: 10 x 10 grid terrain without Obstacles.

The optimal path of running our algorithm in an enviroment

without any obstacle is a straight path from the initial

position to the final position. The path coincides with the

diagonal of the 10 x 10 grid terrain (Figure 1), which is the

shortest distance between two nonadjacent vertices of a

polygon.

 Figure. 1: 10 x 10 grid terrain without obstacle

Distance Covered

The distance covered is calculated using the Euclidean

distance metric:

2 2(,) (9.5 5.0) (9.5 5) 12.73 unitsstart end     

B. Environment 2:10 x 10 grid terrain with one Obstacle at

point (3.5, 3.5)

Running our algorithm on this environment with population

sizes 100 and 10, We use Table 1 to draw the graphs of

Figures 2 and 3.

Table 1: Shows the points of sample sizes 100 and 10

Environment with One Obstacle

 Population Sizes

 100 10

x-

cord.

y-

cord.

x-

cord.

y-

cord.

0.5021 0.4988 0.5039 0.4221

1.5025 1.5016 1.4666 1.5092

2.5009 2.4999 2.4972 2.4999

4.4976 2.4991 4.4943 2.4916

4.4972 4.5001 4.5168 4.5279

5.5006 5.4996 5.4854 5.5090

6.5005 6.5004 6.4800 6.5565

7.5003 7.4986 7.4834 7.4910

8.5066 8.4994 8.4886 8.5376

9.4980 9.4994 9.5014 9.5125

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

 Figure 2: Shows the optimal path of population 100

 Figure 3: Shows the optimal path of population 10

Distance Covered

i. The distance covered when the population size is 100

(Figure 2):

(2) 2 2

100 (,) (2.5009 0.5021) (2.4999 0.4988)start end    

(4.4976 2.5009) (4.5001 2.4991)   

2 2(9.4980 4.4972) (9.4994 4.5001)

 13.87 units.

   



ii. The distance covered when the population size is 10

(Figure 3):

(2) 2 2

10 (,) (2.4972 0.5039) (2.4999 0.4221)start end    

(4.4943 2.4972) (4.5279 2.4916)   

2 2(9.5014 4.5168) (9.5125 4.5279)

 13.96 units.

   



C. Environment 3:10 x 10 grid terrain with two Obstacles

at points (3.5, 3.5) and (5.5, 5.5)

The results of this environment with population 100 and

10 are shown in Table 2 and Figures 4 and 5.

Table 2: Shows the generated points of sample sizes 100

 and 10

Environment with Two Obstacles

 Population Sizes

 100 10

x-

cord.

y-

cord.

x-

cord.

y-

cord.

0.4996 0.5009 0.4912 0.5046

1.5003 1.5034 1.5035 1.4405

2.4999 2.4992 2.4522 2.5455

4.5008 2.5004 4.5624 2.5287

4.5014 4.5003 4.5553 4.4807

6.5005 4.5031 6.4896 4.4993

6.5007 6.4963 6.4897 6.5078

7.4996 7.5034 7.5133 7.4968

8.4995 8.4977 8.3001 8.4999

9.499 9.4993 9.5408 9.5296

 Figure 4: Shows the optimal path of population 100

 Figure 5: Shows the optimal path of population 10

Distance Covered

i. The distance covered when the population size is 100

(Figure 4):

(3) 2 2

100 (,) (2.4999 0.4996) (2.4992 0.5009)start end    

(4.5008 2.4999) (4.5003 2.5004)   

(6.5005 4.5014) (6.4963 4.5031)   

2 2(9.4990 6.5007) (9.4993 6.4963)

 15.06 units.

   



ii. The distance covered when the population size is 10

(Figure 5):

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

(3) 2 2

10 (,) (2.4522 0.4912) (2.5455 0.5046)start end    

(4.5624 2.4522) (4.4807 2.5287)   

(6.4896 4.5553) (6.5078 4.4993)   

2 2(9.5408 6.5007) (9.5296 6.5078)

 15.13 units.

   



D. Environment 4:10 x 10 grid terrain with three

Obstacles at point (3.5, 3.5), (5.5, 5.5) and (6.5, 6.5)

The results of this environment with population 100

 and 10 are shown in Table 3 and Figures 6 and 7.

Table 3: Shows the generated points of sample sizes

100 and 10

Environment With Three Obstacles

 Population Sizes

 100 10

x-

cord.

y-

cord.

x-

cord.

y-

cord.

0.4993 0.5008 0.4665 0.4827

1.5002 1.5030 1.5113 1.4915

2.5031 2.4970 2.4399 2.4890

4.5024 2.5024 4.4216 2.5207

4.5003 4.4972 4.4868 4.5528

6.5010 4.5028 6.5026 4.4865

7.5037 5.499 7.5238 5.5060

7.5010 7.5012 7.5094 7.4853

8.4984 8.5004 8.4884 8.5110

9.4990 9.5022 9.4680 9.4668

Figure 6: Shows the optimal path of population 100

Figure 7: Shows the optimal path of population 10

Distance Covered

i. The distance covered when the population size is 100

(Figure 6):

2

(4)

100 2

(2.5031 0.4993)
(,)

(2.4970 0.5008)
start end


 

 

 (4.5024 2.5031) (4.4972 2.5024)   

2 2

(6.5010 4.5003)

(7.5037 6.5010) (5.4990 4.5028)

 

   

2 2

(7.5012 5.4990)

(9.4990 7.5010) (9.5022 7.5012)

 =15.07

 

   

ii. The distance covered when the population size is 10

(Figure 7):

(4) 2 2

10 (,) (2.4399 0.4665) (2.4890 0.4827)start end    

 (4.4216 2.4399) (4.5528 2.5207)   

2

2

(7.5238 6.5026)
(6.5026 4.4868)

(5.5060 4.4865)


  

 

2

2

(9.5408 6.5007)
(7.4853 5.5060)

(9.5296 6.5078)

 =15.20


  

 

Discussion:

A. Comparing the Distances covered in Different

Populations:

We compare the distance covered in different population

sizes in different environments. Calculating the percentage

differences of the distance covered in the different

populations as shown in Table 4, we discover that with our

algorithm, the population sizes does not affect the distance

covered.

Table 4: Shows the Population sizes with the distance

covered.

 Environments

 One Obstacle Two

Obstacles

Three

Obstacles

Populatio

n Sizes

100 10 100 10 100 10

Distance

Covered

13.8

7

13.9

6

15.0

6

15.1

3

15.0

7

15.2

0

%

Difference

 0.0009 0.0007 0.0013

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

B. Comparing the Coordinates of Different Populations

We compare the generated coordinates of populations 100

and 10 in the different environments (Figures 8-10).

Series1is 100 x-coordinates, Series 2 is 100 y- coordinates,

Series 4 is 10 x- coordinates and Series 5 is 10 y-

coordinates. This comparison shows that with our

algorithm, the population size does not significantly affect

the coordinates generated. Hence, we can make do with the

small sample size 10.

Figure 8: Compares the coordinates of the population size

 100 & 10 in one-obstacle environment.

Figure 9: Compares the coordinates of the population

size100 & 10 in two-obstacle environment.

 Figure 10: Compares the coordinates of the

population size100 & 10 in three-obstacle environment

V. CONCLUDING REMARKS

In this paper, we present a new algorithm that seeks to

minimize the computation and convergence time of finding

an optimal path in a known environment. It uses particle

swarm optimization (PSO) algorithm as the base

optimization algorithm and a customized algorithm which

generates the coordinates of the search space.

Experimentally, we calculate and compare the distances of

the optimal paths in population sizes 100 and 10 in each of

the three different obstacle environments. We also compare

the generated points of the different population sizes. The

results show that the population size does not affect the

distance covered neither does it affect the coordinates

generated from the start point to the end point in any

environment. Hence, we can use the smallest population

size with small computation and convergence time. This

makes our algorithm to be a relatively fast one in planning a

path for a mobile robot since we do not need to consider a

large population size to get an optimal result. Additionally,

the experimental results also illustrate that though PSO

algorithms are especially useful for parameter optimization

in continuous and multi-dimensional search spaces, with

customized algorithm, they are also useful for discrete and

2D search spaces. This can be seen for example in Figure 2,

that in trying to avoid the obstacle at point (3.5, 3.5), our

algorithm at point (2.5, 2.5) moved to point (3.5, 2.5), then

to point (4.5, 2.5) and then finally to point (4.4, 4.5). This is

a discrete case. This happened in all the other cases.

ACKNOWLEDGMENT

This research benefited from sponsorship from the

Statistics sub-cluster of the Industrial Mathematics

Research Group (TIMREG) of Covenant University and

Centre for Research, Innovation and Discovery (CUCRID),

Covenant University, Ota, Nigeria.

REFERENCES

[1] F. Bayat, S. Najafinia and M. Aliyari, “Mobile robots path planning:

Electrostatic potential field approach”; Expert Systems with

Applications, vol. 100; pp 68 -78; 2018.

[2] F. Bergh van den, “An Analysis of Particle Swarm Optimizers”. PhD

Thesis. Department of Computer Science, University of Pretoria, pp

15 – 30, 2002.

[3] J. Denny, E. Greco, S. Thomas and N.M. Amato, “MARRT: Medial

Axis biased rapidly-exploring random trees”. In Robotics and

Automation IEEE International Conference on (pp. 90-97), 2014.

[4] C. Ekenna, D. Uwacu, S. Thomas and N.M. Amato, Studying learning

techniques in different phases of PRM construction. In Machine

Learning in Planning and Control of Robot Motion Workshop (IROS-

MLPC), Hamburg, Germany, 2015.

[5] T. T. Mac, C. Copot, D. T. Tran and R. De Keyser “A hierarchical

global path planning approach for mobile robots based on multi-

objective particle swarm optimization”, Applied Soft Computing, vol.

59, pp. 68-76 2017

[6] U. Paquet and A. P. Engelbrecht, ”Training Support Vector Machines

with Particle Swarms”. In Proceedings of International Joint

Conference on Neural Networks (IJCNN) Conference, pp 1593 -1598,

2003.

[7] J. H. Reif. “Complexity of the mover’s problem and generalizations”.

In Proc. IEEE Symp. Foundations of Computer Science (FOCS),

pages 421–427, San Juan, Puerto Rico, October 1979.

[8] G. G. Venu, and K. V. Ganesh, “Evolving Digital Circuits Using

Particle Swarm”, In Proceedings oInternational Joint Conference on

Neural Networks (IJCNN) Conference, pp 468 – 471. 2003.

[9] B. Wang. S. Li, J. Guo and Q. Chen, “Car-like mobile robot path

planning in rough terrain using multi-objective particle swarm

optimization algorithm”, Neurocomputing, vol. 282, pp 42-51 2018

[10] Z. Zhou, J. Wang, Z. Zhu, D. Yang and J. Wu, “Tangent navigated

robot path planning strategy using particle swarm optimized artificial

potential field”, Optik, vol. 158. pp. 639-651, 2018.

[11] K. Sugihara and J. Smith, Genetic algorithms for adaptive motion

planning of an autonomous mobile robot. In Computational

Intelligence in Robotics and Automation, Proceedings., IEEE

International Symposium on. pp. 138-143, 1997.

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

