

Abstract— A high number of IT organizations have

problems when deploying their services, this alongside with the

high number of services that organizations have daily, makes

Incident Management (IM) process quite demanding. An

effective IM system need to enable decision makers to detect

problems easily otherwise the organizations can face

unscheduled system downtime and/or unplanned costs. By

predicting these problems, the decision makers can better

allocate resources and mitigate costs. Therefore, this research

aims to help predicting those problems by looking at the

history of past deployments and incident ticket creation and

relate them by using machine learning algorithms to predict

the number of incidents of a certain deployment. This research

aims to analyze the results with the most used algorithms

found in the literature.

Index Terms—Predictive Analysis, Incident Management,

Software Deployment, Machine Learning

I. INTRODUCTION

HOUSANDS of IT organizations worldwide are

struggling with the deployment of IT service

management processes (ITSM) by having problems

deploying the service into the daily IT operations [1] this

alongside with a high number of services, different types of

organization and a huge growth in IT make IT service

managers be under pressure to reduce costs and quickly

deliver cost effective services [2] and consequently makes

Incident Management (IM) process quite demanding.

Nowadays, many tickets are created each day [3],

especially in large-scale enterprise systems [4], [5]. A recent

study from [6] reported that about 12 billion lines of log

messages are generated in their infrastructure each day for

IM and most of these tickets are created with non-structured

text [5] meaning that they can have numerous variations on

the description of it and organizations are not able to extract

value from such data.

Manuscript received March 2019; revised April 2019. This work has

been partially supported by Portuguese National funds through FITEC -

Programa Interface, with reference CIT "Inov - Inesc Inovação -

Financiamento Base",

Jose Messejana is with Instituto Universitário de Lisboa (ISCTE-IUL),

Av. das Forças Armadas, 1649-026 Lisboa, Portgual phone:

+351210464277; (e-mail:Jose_Messejana@iscte-iul.pt).

Ruben Pereira is with Instituto Universitário de Lisboa (ISCTE-IUL),

ISTAR-IUL (e-mail: Ruben.Filipe.Pereira@iscte-iul.pt)

Joao C. Ferreira is with Instituto Universitário de Lisboa (ISCTE-IUL),

ISTAR-IUL and Inov - Inesc Inovação (e-mail: jcafa@iscte-iul.pt)

Marcia Baptista is with Inov - Inesc Inovação (e-mail:

marcia.baptista@inov.pt).

An effective IM system needs to enable decision makers

to detect anomalies and extract helpful knowledge to solve

incidents [2]. These incidents can lead to unscheduled

system downtime and/or unplanned costs [7] and cause a

huge impact since the recovery process can require time and

resources that were not considered [8]. Furthermore, if

administrators can predict these incidents, they can better

allocate their resources and services to mitigate the costs

[7]. Accurate failure predictions can help in mitigating the

impact of computer failures even when the failure is

impossible to solve, because recovery and rescue can be

taken way earlier [9] and allow managers to get a better

response over system performance [7].

This is where Predictive Analysis can help predicting

future incidents by using retrospective and current data [10].

In recent years, machine learning, as an evolving subfield of

computer science has been widely used on the challenging

problem of incidents and anomaly detection problems [11]

and can nowadays provide information on the applications

and the environments where the applications are deployed

[12].

As previously stated, there is a huge number of incidents

reported each day, making it difficult for organizations to

keep up with it and a possible solution would be using

predictive analysis to predict some of those incidents and

therefore reduce those incidents and the possible costs

associated with them.

Software deployments can have critical information to

predict and therefore prevent incidents, like a feature that

often causes many incidents when there is a deployment

with it, and so this research aims to analyze several software

deployments of the last few years and make a match with

the incidents reported in the same period to build a

predictive model capable of predicting and understand

incidents based on the deployments to be made.

II. RELATED WORK

This section provides a critical analysis about what has

been done that relates to this study. Although there are some

studies using the source code and repository information,

such as commits to predict incidents, there was nothing

found using deployment information similar to what this

research will use. Because of that, this section will gather

some of those studies that study software fault predictions

with code inspection and then gather the studies that use

machine learning algorithms to predict incidents based on

some sort of textual information.

The authors from [13] did systematic literature review

software fault prediction metrics of 106 studies to determine

what are the software metrics that contribute the most to the

Jose Messejana, Ruben Pereira, Joao C Ferreira, and Marcia Baptista

Predictive Analysis of Incidents based on

Software Deployments

T

Proceedings of the World Congress on Engineering 2019
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019

software failure. This research focused on code inspection,

code history, context, software development lifecycle and

person who develop the code. Another study that used code

inspection to predict incidents was [14], that focus on using

symbolic analysis on python code to predict possible

failures. The authors from [15] studied the relation between

system logs and code quality.

A. Mukhopadhyay [16] researched 90 papers trough 1990

to 2009, like the previous research all these papers used

code inspection metrics to predict failures. The most used

algorithms found here were Classification and Regression

Trees (CART) (in the early years), logistic regression and

Naïve Bayes.

In [7] used Support Vector Machine (SVM) to encode the

execution logs into features readable by it by using for

example text mining since log messages are often in free-

format text. The authors then refer that the authors from

[15], [17] divided static from dynamic information in logs

and combined sequences by their dynamic information to

standardize them.

The authors from [18] the recall and file inspection ratio

were used to validate the predictions and it was said that

vulnerability predictions favour high recall. The classifiers

were evaluated using Monte-Carlo simulations for different

values of their internal parameters and simulation results are

assessed with precision, recall, accuracy and f-measure.

In the study from [19] the objective was to compare

Neural Networks (NN), CART and non-linear regression

algorithms using a dataset of smokers containing mostly

categorical values by comparing the errors from the

predictions where the predictor values are categorical, and

the known variables are all continuous. They concluded that

NN and CART clearly produced better results than non-

linear regression. It was reported that Decision Trees (DT)

based models (like CART) can scale up to large problems

and can handle smaller data sets better than NN. Despite

that performed better on large data sets but with a low

number of attributes.

G. Tziroglou [11] research made a comparison between

SVM, DT, logistic regression and Naïve Bayes to predict

industrial incidents by using temperature and time attributes

and by evaluating them in the end trough cross validation

using 100 Monte-Carlo iterations (to reduce the bias)

dividing 70% for training and 30% for testing and by

applying Adaptive Boost in the SVM and DT algorithms.

After analyzing the data, they decided to label the classes in

two categories depending on the actual and desired

temperature and a threshold for the difference of the two. In

the end the authors concluded that SVM with adaptive boost

had the best results with 98% accuracy and 97% F-measure.

The cross-validation used by the authors was custom made,

since the regular cross-validation divides the dataset into k

parts, but here the author started by doing set split and then

used Monte-Carlo to reduce bias like they state in the re-

search, but they do not say why they did not use the regular

cross-validation technique that aims to also reduce the bias

[20].

S. Kikuchi [4] research aimed to predict the workload of

incident tickets, to do that the author made an analysis on

incident tickets that might be useful to this research. The

author said that the time that a ticket takes to be closed does

not represent difficulty or amount of workload. The author

ended up using status updates to replace the time. The

difficulty was then categorized into easy and difficult

incidents based on the number of updates. To predict and

evaluate, it was used TF-IDF to relate the ticket descriptions

categorizing each ticket in easy or difficult and then using

Naïve Bayes for clustering. To validate the results the

author split the dataset 75%-25% (training-test).

Like it was said on the beginning of this chapter there

was not any study using deployment information, so this

research aims to fill that gap.

III. WORK METHODOLOGY

The research methodology used in this research will be

the Cross Industry Standard Process for Data Mining

(CRISP-DM). This methodology aims to create a precise

process model for data mining projects [21].

This methodology has six different phases. These phases

include [22]:

• Business Understanding - the objective is to

understand the requirements and objectives of a project and

turn that into a data mining problem.

• Data Understanding – This phase is a

complementation of the previous one as to understand the

data, one needs to understand the context in which they will

be used and to understand the objective of the project, one

must know what the type of data that will be used.

• Data Preparation - After a good understand of the

business and data, data preparation can start. This phase is

the combination of all the necessary activities to build the

final dataset which include attribute selection, data cleaning,

construction of new attributes and data transformation.

• Modelling - As this aims to apply different modelling

techniques and parameter calibration, this phase must be

done back and forth with the previous one.

• Evaluation - After having one or two high quality

models by using data analysis, it is needed to do an

evaluation of the model to prove that it can achieve the

objectives proposed. To do this, the model will be assessed

by using the most used metrics in the literature such as

precision, recall, accuracy and f-measure.

• Deployment - the knowledge obtained in the model

needs to be presented trough a report or presentation or

both.

IV. BUSINESS AND DATA UNDERSTANDING

The data used for this research was from a company

operating in the bank sector in Portugal (only information

possible to reveal due to privacy agreement) and consisted

in two excels, one with deployment tickets information and

the other with incident tickets information, such as date of

end and start of the ticket, description, who made the

deployment, where was the deployment assigned, different

categories of the application or software.

Both have information from 1st January of 2015 to the

28th September of 2018. The deployment file had initially

281091 entries and 126 attributes and the incident file had

Proceedings of the World Congress on Engineering 2019
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019

114146 entries and 161 attributes.

Unfortunately, the dataset did not contain information

that links an incident directly to a deployment. The

description given in the incident tickets is not enough to

know what may have been the deployment that caused it

and so the only way to relate them is by the name of the

application or software.

Table I and Table II show the top value for each dataset

in a specific attribute.

The detailed description average length is 184 characters.

The value of both Operational Categorization Tier 2

attributes in both tables are not the real ones for privacy

reasons.

V. DATA PREPARATION

To achieve better results and to remove not necessary

entries and attributes, several transformations were made

before having the final dataset. Fig. 1 shows the workflow

of the transformations, which will then be further explained

throughout this chapter.

Fig. 1. Data preparation workflow

TABLE I

DEPLOYMENTS ANALYSIS

Attribute Value Occurrences

Operational

Categorization Tier 2
Application X 96189

Operational

Categorization Tier 1

Software/Applications

– Production
175927

Operational

Categorization Tier 3

Request for analysis /

Clarification
22329

Completed Date 12th July 2017 406

TABLE II

INCIDENTS ANALYSIS

Attribute Value Occurrences

Operational

Categorization Tier 2
Application Y 14058

Operational

Categorization Tier 1

Software/Applications

– Production
71786

Operational

Categorization Tier 3
Anomaly 31372

Reported Date 11th July 2016 634

Proceedings of the World Congress on Engineering 2019
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019

A. Initial Attribute Cleaning

After the first analysis it was taken out attributes that did

not have any relevant information such as ticket ID and

attributes that had repeated information of other attributes.

11 attributes from deployments and 6 from incidents were

removed in this process.

B. Irrelevant attributes

Then after checking with the company to validate the

relevance of some attributes, it was decided to eliminate

more attributes such as attributes that most of the entries

were empty and others, such as email, phone number,

breach reason, model/version and many others that both the

company and the authors agreed that would not bring much

information.

After this the files went from 115 attributes to 23 in the

deployment’s dataset and from 155 attributes to 26 in the

incident’s dataset. In this process the start date of the

deployments and the end date of the incidents were removed

as they would not be needed because the intention is to

relate when the deployment was made, and the incident was

created.

C. Irrelevant and duplicated entries

After this, it was removed tickets entries with states other

than closed to avoid having repeated tickets with only

different states due to the dataset having different entries for

the different states of the ticket and in the end the duplicates

entries were removed.

442 entries from deployments and 1040 from incidents

were removed in this process, leaving the dataset with

280649 entries in the deployment’s dataset and 113106 in

the incident’s dataset.

D. Efficiency Cleaning

Then for efficiency purposes, it was removed the entries

which didn’t have a match in the other excel making the

deployment data going from 280649 entries to 199776 and

the incident data from 113106 to 109652. The deployment

dataset had deployments after the last incident date making

them not useful, so these were removed, there were 274

deployment in this situation leaving the final deployment’s

dataset with 199502. After the first results the authors

decided to remove more attributes to see if it would make

the algorithm have better results and so ten more attributes

were removed leaving the deployments dataset with 13

attributes.

E. Attribute Creation

To make it possible to make a prediction it was needed to

add an attribute that had the number of incidents of a

deployment in the following days (for this research we used

3, 7 and 10 days), leaving the deployment dataset with 14

attributes.

F. Data transformation

The description attribute had all sort of information on it,

so the authors decided to categorize it based on the size of

the text by comparing them with the average field size. In

the end, the attribute was divided in short, medium and long

description and none.

Fig. 2 shows the final set of attributes used from the

deployment’s dataset. Fig. 3 shows the final set of attributes

present in the incident’s dataset.

Fig. 2. Final set of deployment attributes

Fig. 3. Final set of incidents attributes

For this research the only relevant attributes used from

the incident dataset was the Reported Date and Operation

Categorization Tier 2.

Proceedings of the World Congress on Engineering 2019
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019

VI. MODELING

Following what was done in the previous section, the

authors decided to apply Naïve Bayes and SVM to measure

the accuracy of the prediction. The algorithms were used

with the library sklearn in python with a validation size of

25% and 7 as seed. For the library to use the algorithm all

data could not have any fields of type String or be empty, so

the empty fields were filled with zeros and the strings were

categorized by using a function from the same library. The

algorithm was applied to the deployment file by trying to

predict the number of incidents attributes that were created

based on the comparison of the two datasets.

VII. EVALUATION

When the number of incidents were not categorized, the

number of incidents had the following distribution, as

showed in Table III.

As it can be seen there is a big distribution of values, so

the authors decided to make different types of predictions.

 First, where the number of categories is zero

meaning that the algorithm tries to predict

exactly the number of incidents.

 Second, where the number of incidents is

categorized in “no accidents” and “accidents”.

 Third in “no accidents”, “below average

accidents” and “above average accidents”.

 Finally, in “no accidents”, “residual accidents”

(one or two), “below average accidents” and

“above average accidents”.

After applying the Naïve Bayes and SVM algorithms the

results were the ones present in Table IV.

To evaluate the results the authors used accuracy,

precision, recall and f-measure. The precision recall and f-

measure are the weighted average of each category meaning

it considers the number of samples of each category.

 Accuracy - represents the ratio of correct

predictions by the total number of predictions

[23].

 Precision – Number of correct results divided by

the number of guesses [23].

 Recall – Number of values that were supposed to

be guessed and were guessed [23].

 F-Measure – Relates precision with recall by

doing a weighted harmonic mean between them

[23].

Both algorithms have similar results, although SVM has

slightly better precision and slightly worse recall than Naïve

Bayes.

VIII. CONCLUSION

As shown in the previous chapter, the best result came

from Naïve Bayes with 82.7% when setting the number of

incidents over 10 days and by categorizing them in no

accidents and accidents. This does not allow to differentiate

a deployment with 1 or 2 incidents from one with 100

incidents but allows us to predict with confidence if a

deployment will or will not have a deployment.

In most cases the Naïve Bayes algorithm worked slightly

better than SVM. The only time where this was not true was

when there was not any categorization of the incidents. This

might be due to the fact that SVM works better when there

are few entries for a certain number of incidents, possibly

relating the attributes better to each number of incidents,

while Naïve Bayes goes more for a statistic approach, which

ends up being worse if there are few examples for each

category.

There is only a small difference in accuracy between 7

and 10 days, although with 10 days is slightly better. The

prediction by using only 3 days of incidents had lower

results, which can indicate that most of the incidents are not

detected within this time, although this can be highly

affected by the fact that weekends and holidays are not

being considered.

TABLE IV

ALGORITHM RESULTS

Number of

categories
Days

Accuracy (%) Precision (%) Recall (%) F-Measure (%)

Naïve Bayes SVM Naïve Bayes SVM Naïve Bayes SVM Naïve Bayes SVM

0

3 22.9 24.3 12 24 23 24 23 10

7 15.4 15 6 22 15 15 8 4

10 13.1 13 5 25 13 13 6 3

2

3 69.8 62.7 68 66 70 63 68 49

7 80.5 79 79 82 81 79 79 70

10 82.7 82.7 81 86 83 73 82 75

3

3 58.9 52.7 53 57 59 53 54 37

7 62.3 60 57 69 62 60 57 45

10 62.5 60.4 56 72 61 60 55 46

4

3 43.8 31.7 38 48 44 32 36 16

7 56.1 49 51 63 56 49 51 33

10 56.2 52.2 51 70 56 52 51 36

TABLE III

NUMBER OF INCIDENTS DISTRIBUTION

Days Min Max Average Standard Deviation

3 0 562 9.1 20.2

7 0 648 19.9 37.3

10 0 679 28.7 48.5

Proceedings of the World Congress on Engineering 2019
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019

Overall and despite not having any way to associate an

incident directly to a deployment and not having detailed

information on what was changed in the deployments the

results still allow us to predict if a certain type of

deployment with certain types of attributes has a high or low

probability of having incidents, by raising aware of the

deployment team to be more careful when doing the

deployment. Although it does not have a high accuracy on

guessing the exact number of incidents, it does have a good

accuracy when deciding if a certain deployment has or not a

incident and even when predicting if it will have just a few

or around the average incidents which allows once again the

deployer to have a better trust when deploying the

application or software.

IX. FUTURE RESEARCH

Despite the interesting results already achieved, the

authors are currently evolving this investigation by applying

more algorithms such as Random Forest and CART. Other

attributes are also being correlated, like severity of the

incident, holidays, different days for the number of incidents

attribute and by grouping up deployments made on the same

day

ACKNOWLEDGMENT

This work has been partially supported by Portuguese

National funds through FITEC - Programa Interface, with

reference CIT "INOV - INESC INOVAÇÃO -

Financiamento Base"

REFERENCES

[1] M. Jäntti and J. Järvinen, “Improving the Deployment of IT Service

Management Processes: A Case Study,” in Systems, Software and

Service Process Improvement, vol. 172, R. V. O‘Connor, J. Pries-

Heje, and R. Messnarz, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011, pp. 37–48.

[2] J. F. F. Aguiar, R. Pereira, J. B. Vasconcelos, and I. Bianchi, “An

Overlapless Incident Management Maturity Model for Multi-

Framework Assessment (ITIL, COBIT, CMMI-SVC),” Interdiscip.

J. Inf. Knowl. Manag., vol. 13, pp. 137–163, 2018.

[3] T. D. F. de Mello and E. C. Lopes, “Using case-based reasoning

into a decision support methodology for the incident resolution

control in IT,” in 2015 10th Iberian Conference on Information

Systems and Technologies (CISTI), 2015, pp. 1–6.

[4] S. Kikuchi, “Prediction of Workloads in Incident Management

Based on Incident Ticket Updating History,” p. 8, 2015.

[5] D. Lin, R. Raghu, V. Ramamurthy, J. Yu, R. Radhakrishnan, and J.

Fernandez, “Unveiling clusters of events for alert and incident

management in large-scale enterprise it,” in Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery

and data mining - KDD ’14, New York, New York, USA, 2014, pp.

1630–1639.

[6] J.-G. Lou, Q. Lin, R. Ding, Q. Fu, D. Zhang, and T. Xie,

“Experience report on applying software analytics in incident

management of online service,” Autom. Softw. Eng., vol. 24, no. 4,

pp. 905–941, Dec. 2017.

[7] B. Russo, G. Succi, and W. Pedrycz, “Mining system logs to learn

error predictors: a case study of a telemetry system,” Empir. Softw.

Eng., vol. 20, no. 4, pp. 879–927, Aug. 2015.

[8] E. W. Fulp, G. A. Fink, and J. N. Haack, “Predicting Computer

System Failures Using Support Vector Machines,” p. 8, 2008.

[9] I. Fronza, A. Sillitti, G. Succi, and J. Vlasenko, “Failure Prediction

based on Log Files Using the Cox Proportional Hazard Model.,” in

SEKE 2011 - Proceedings of the 23rd International Conference on

Software Engineering and Knowledge Engineering, 2011, pp. 456–

461.

[10] Y.-B. Kang, A. Zaslavsky, S. Krishnaswamy, and C. Bartolini, “A

knowledge-rich similarity measure for improving IT incident

resolution process,” 2010, p. 1781.

[11] G. Tziroglou, T. Vafeiadis, C. Ziogou, S. Krinidis, S. Voutetakis,

and D. Tzovaras, “Incident Detection in Industrial Processes

Utilizing Machine Learning Techniques,” in Intelligent Systems in

Production Engineering and Maintenance – ISPEM 2017, Cham,

2018, vol. 637, pp. 43–53.

[12] P. A. D. Oliveira, “Predictive Analysis of Cloud Systems,” 2017,

pp. 483–484.

[13] X. Zhang and H. Pham, “Software field failure rate prediction

before software deployment,” J. Syst. Softw., vol. 79, no. 3, pp.

291–300, Mar. 2006.

[14] Z. Xu, P. Liu, X. Zhang, and B. Xu, “Python predictive analysis for

bug detection,” 2016, pp. 121–132.

[15] W. Shang, M. Nagappan, and A. E. Hassan, “Studying the

relationship between logging characteristics and the code quality of

platform software,” Empir. Softw. Eng., vol. 20, no. 1, pp. 1–27,

Feb. 2015.

[16] A. Mukhopadhyay, “Incident Prediction and Response

Optimization,” p. 3, 2018.

[17] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An automated

approach for abstracting execution logs to execution events,” J.

Softw. Maint. Evol. Res. Pract., vol. 20, no. 4, pp. 249–267, Jul.

2008.

[18] A. Hovsepyan, R. Scandariato, and W. Joosen, “Is Newer Always

Better?: The Case of Vulnerability Prediction Models,” in

Proceedings of the 10th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement - ESEM ’16,

Ciudad Real, Spain, 2016, pp. 1–6.

[19] C. Kaul, A. Kaul, and S. Verma, “Comparitive study on healthcare

prediction systems using big data,” in 2015 International

Conference on Innovations in Information, Embedded and

Communication Systems (ICIIECS), Coimbatore, India, 2015, pp.

1–7.

[20] J. Brownlee, “Machine Learning Mastery With Python,” p. 179,

2016.

[21] P. Chapman et al., “Step-by-step data mining guide,” p. 76, 1999.

[22] R. Wirth and J. Hipp, “CRISP-DM: Towards a Standard Process

Model for Data Mining,” p. 11, 2000.

[23] C. Manning, P. Raghavan, and H. Schuetze, “Introduction to

Information Retrieval,” p. 581, 2009.

Proceedings of the World Congress on Engineering 2019
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019

