
 


 

Abstract— A high number of IT organizations have 

problems when deploying their services, this alongside with the 

high number of services that organizations have daily, makes 

Incident Management (IM) process quite demanding. An 

effective IM system need to enable decision makers to detect 

problems easily otherwise the organizations can face 

unscheduled system downtime and/or unplanned costs. By 

predicting these problems, the decision makers can better 

allocate resources and mitigate costs. Therefore, this research 

aims to help predicting those problems by looking at the 

history of past deployments and incident ticket creation and 

relate them by using machine learning algorithms to predict 

the number of incidents of a certain deployment. This research 

aims to analyze the results with the most used algorithms 

found in the literature. 

 
Index Terms—Predictive Analysis, Incident Management, 

Software Deployment, Machine Learning 

 

I. INTRODUCTION 

HOUSANDS of IT organizations worldwide are 

struggling with the deployment of IT service 

management processes (ITSM) by having problems 

deploying the service into the daily IT operations [1] this 

alongside with a high number of services, different types of 

organization and a huge growth in IT make IT service 

managers be under pressure to reduce costs and quickly 

deliver cost effective services [2] and consequently makes 

Incident Management (IM) process quite demanding. 

Nowadays, many tickets are created each day [3], 

especially in large-scale enterprise systems [4], [5]. A recent 

study from [6] reported that about 12 billion lines of log 

messages are generated in their infrastructure each day for 

IM and most of these tickets are created with non-structured 

text [5] meaning that they can have numerous variations on 

the description of it and organizations are not able to extract 

value from such data. 
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An effective IM system needs to enable decision makers 

to detect anomalies and extract helpful knowledge to solve 

incidents [2]. These incidents can lead to unscheduled 

system downtime and/or unplanned costs [7] and cause a 

huge impact since the recovery process can require time and 

resources that were not considered [8]. Furthermore, if 

administrators can predict these incidents, they can better 

allocate their resources and services to mitigate the costs 

[7]. Accurate failure predictions can help in mitigating the 

impact of computer failures even when the failure is 

impossible to solve, because recovery and rescue can be 

taken way earlier [9] and allow managers to get a better 

response over system performance [7]. 

This is where Predictive Analysis can help predicting 

future incidents by using retrospective and current data [10]. 

In recent years, machine learning, as an evolving subfield of 

computer science has been widely used on the challenging 

problem of incidents and anomaly detection problems [11] 

and can nowadays provide information on the applications 

and the environments where the applications are deployed 

[12].  

As previously stated, there is a huge number of incidents 

reported each day, making it difficult for organizations to 

keep up with it and a possible solution would be using 

predictive analysis to predict some of those incidents and 

therefore reduce those incidents and the possible costs 

associated with them. 

Software deployments can have critical information to 

predict and therefore prevent incidents, like a feature that 

often causes many incidents when there is a deployment 

with it, and so this research aims to analyze several software 

deployments of the last few years and make a match with 

the incidents reported in the same period to build a 

predictive model capable of predicting and understand 

incidents based on the deployments to be made. 

II. RELATED WORK 

This section provides a critical analysis about what has 

been done that relates to this study. Although there are some 

studies using the source code and repository information, 

such as commits to predict incidents, there was nothing 

found using deployment information similar to what this 

research will use. Because of that, this section will gather 

some of those studies that study software fault predictions 

with code inspection and then gather the studies that use 

machine learning algorithms to predict incidents based on 

some sort of textual information. 

The authors from [13] did systematic literature review 

software fault prediction metrics of 106 studies to determine 

what are the software metrics that contribute the most to the 
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software failure. This research focused on code inspection, 

code history, context, software development lifecycle and 

person who develop the code. Another study that used code 

inspection to predict incidents was [14], that focus on using 

symbolic analysis on python code to predict possible 

failures. The authors from [15] studied the relation between 

system logs and code quality. 

A. Mukhopadhyay [16] researched 90 papers trough 1990 

to 2009, like the previous research all these papers used 

code inspection metrics to predict failures. The most used 

algorithms found here were Classification and Regression 

Trees (CART) (in the early years), logistic regression and 

Naïve Bayes. 

In [7] used Support Vector Machine (SVM) to encode the 

execution logs into features readable by it by using for 

example text mining since log messages are often in free-

format text. The authors then refer that the authors from 

[15], [17] divided static from dynamic information in logs 

and combined sequences by their dynamic information to 

standardize them. 

The authors from [18] the recall and file inspection ratio 

were used to validate the predictions and it was said that 

vulnerability predictions favour high recall. The classifiers 

were evaluated using Monte-Carlo simulations for different 

values of their internal parameters and simulation results are 

assessed with precision, recall, accuracy and f-measure. 

In the study from [19] the objective was to compare 

Neural Networks (NN), CART and non-linear regression 

algorithms using a dataset of smokers containing mostly 

categorical values by comparing the errors from the 

predictions where the predictor values are categorical, and 

the known variables are all continuous. They concluded that 

NN and CART clearly produced better results than non-

linear regression. It was reported that Decision Trees (DT) 

based models (like CART) can scale up to large problems 

and can handle smaller data sets better than NN. Despite 

that performed better on large data sets but with a low 

number of attributes. 

G. Tziroglou [11] research made a comparison between 

SVM, DT, logistic regression and Naïve Bayes to predict 

industrial incidents by using temperature and time attributes 

and by evaluating them in the end trough cross validation 

using 100 Monte-Carlo iterations (to reduce the bias) 

dividing 70% for training and 30% for testing and by 

applying Adaptive Boost in the SVM and DT algorithms. 

After analyzing the data, they decided to label the classes in 

two categories depending on the actual and desired 

temperature and a threshold for the difference of the two. In 

the end the authors concluded that SVM with adaptive boost 

had the best results with 98% accuracy and 97% F-measure. 

The cross-validation used by the authors was custom made, 

since the regular cross-validation divides the dataset into k 

parts, but here the author started by doing set split and then 

used Monte-Carlo to reduce bias like they state in the re-

search, but they do not say why they did not use the regular 

cross-validation technique that aims to also reduce the bias 

[20]. 

S. Kikuchi [4] research aimed to predict the workload of 

incident tickets, to do that the author made an analysis on 

incident tickets that might be useful to this research. The 

author said that the time that a ticket takes to be closed does 

not represent difficulty or amount of workload. The author 

ended up using status updates to replace the time. The 

difficulty was then categorized into easy and difficult 

incidents based on the number of updates. To predict and 

evaluate, it was used TF-IDF to relate the ticket descriptions 

categorizing each ticket in easy or difficult and then using 

Naïve Bayes for clustering. To validate the results the 

author split the dataset 75%-25% (training-test). 

Like it was said on the beginning of this chapter there 

was not any study using deployment information, so this 

research aims to fill that gap. 

 

III. WORK METHODOLOGY 

The research methodology used in this research will be 

the Cross Industry Standard Process for Data Mining 

(CRISP-DM). This methodology aims to create a precise 

process model for data mining projects [21]. 

This methodology has six different phases. These phases 

include [22]: 

• Business Understanding - the objective is to 

understand the requirements and objectives of a project and 

turn that into a data mining problem.  

• Data Understanding – This phase is a 

complementation of the previous one as to understand the 

data, one needs to understand the context in which they will 

be used and to understand the objective of the project, one 

must know what the type of data that will be used. 

• Data Preparation - After a good understand of the 

business and data, data preparation can start. This phase is 

the combination of all the necessary activities to build the 

final dataset which include attribute selection, data cleaning, 

construction of new attributes and data transformation.  

• Modelling - As this aims to apply different modelling 

techniques and parameter calibration, this phase must be 

done back and forth with the previous one. 

• Evaluation - After having one or two high quality 

models by using data analysis, it is needed to do an 

evaluation of the model to prove that it can achieve the 

objectives proposed. To do this, the model will be assessed 

by using the most used metrics in the literature such as 

precision, recall, accuracy and f-measure.   

• Deployment - the knowledge obtained in the model 

needs to be presented trough a report or presentation or 

both. 

IV. BUSINESS AND DATA UNDERSTANDING 

The data used for this research was from a company 

operating in the bank sector in Portugal (only information 

possible to reveal due to privacy agreement) and consisted 

in two excels, one with deployment tickets information and 

the other with incident tickets information, such as date of 

end and start of the ticket, description, who made the 

deployment, where was the deployment assigned, different 

categories of the application or software. 

Both have information from 1st January of 2015 to the 

28th September of 2018. The deployment file had initially 

281091 entries and 126 attributes and the incident file had 
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114146 entries and 161 attributes.  

Unfortunately, the dataset did not contain information 

that links an incident directly to a deployment. The 

description given in the incident tickets is not enough to 

know what may have been the deployment that caused it 

and so the only way to relate them is by the name of the 

application or software.  

Table I and Table II show the top value for each dataset 

in a specific attribute. 

 

The detailed description average length is 184 characters. 

The value of both Operational Categorization Tier 2 

attributes in both tables are not the real ones for privacy 

reasons. 

V. DATA PREPARATION 

To achieve better results and to remove not necessary 

entries and attributes, several transformations were made 

before having the final dataset. Fig. 1 shows the workflow 

of the transformations, which will then be further explained 

throughout this chapter. 

 
 
Fig. 1. Data preparation workflow 

TABLE I 

DEPLOYMENTS ANALYSIS 

Attribute Value Occurrences 

Operational 

Categorization Tier 2 
Application X 96189 

Operational 

Categorization Tier 1 

Software/Applications 

– Production 
175927 

Operational 

Categorization Tier 3 

Request for analysis / 

Clarification 
22329 

Completed Date 12th July 2017 406 

 

 
TABLE II 

INCIDENTS ANALYSIS 

Attribute Value Occurrences 

Operational 

Categorization Tier 2 
Application Y 14058 

Operational 

Categorization Tier 1 

Software/Applications 

– Production 
71786 

Operational 

Categorization Tier 3 
Anomaly 31372 

Reported Date 11th July 2016 634 
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A. Initial Attribute Cleaning 

After the first analysis it was taken out attributes that did 

not have any relevant information such as ticket ID and 

attributes that had repeated information of other attributes. 

11 attributes from deployments and 6 from incidents were 

removed in this process. 

B. Irrelevant attributes 

Then after checking with the company to validate the 

relevance of some attributes, it was decided to eliminate 

more attributes such as attributes that most of the entries 

were empty and others, such as email, phone number, 

breach reason, model/version and many others that both the 

company and the authors agreed that would not bring much 

information. 

After this the files went from 115 attributes to 23 in the 

deployment’s dataset and from 155 attributes to 26 in the 

incident’s dataset. In this process the start date of the 

deployments and the end date of the incidents were removed 

as they would not be needed because the intention is to 

relate when the deployment was made, and the incident was 

created.  

C. Irrelevant and duplicated entries 

After this, it was removed tickets entries with states other 

than closed to avoid having repeated tickets with only 

different states due to the dataset having different entries for 

the different states of the ticket and in the end the duplicates 

entries were removed.  

442 entries from deployments and 1040 from incidents 

were removed in this process, leaving the dataset with 

280649 entries in the deployment’s dataset and 113106 in 

the incident’s dataset.  

D. Efficiency Cleaning 

Then for efficiency purposes, it was removed the entries 

which didn’t have a match in the other excel making the 

deployment data going from 280649 entries to 199776 and 

the incident data from 113106 to 109652. The deployment 

dataset had deployments after the last incident date making 

them not useful, so these were removed, there were 274 

deployment in this situation leaving the final deployment’s 

dataset with 199502. After the first results the authors 

decided to remove more attributes to see if it would make 

the algorithm have better results and so ten more attributes 

were removed leaving the deployments dataset with 13 

attributes. 

E. Attribute Creation 

To make it possible to make a prediction it was needed to 

add an attribute that had the number of incidents of a 

deployment in the following days (for this research we used 

3, 7 and 10 days), leaving the deployment dataset with 14 

attributes.  

F. Data transformation 

The description attribute had all sort of information on it, 

so the authors decided to categorize it based on the size of 

the text by comparing them with the average field size. In 

the end, the attribute was divided in short, medium and long 

description and none. 

Fig. 2 shows the final set of attributes used from the 

deployment’s dataset. Fig. 3 shows the final set of attributes 

present in the incident’s dataset. 

 

 
Fig. 2. Final set of deployment attributes 

 

 
Fig. 3. Final set of incidents attributes 

 

For this research the only relevant attributes used from 

the incident dataset was the Reported Date and Operation 

Categorization Tier 2.  
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VI. MODELING 

Following what was done in the previous section, the 

authors decided to apply Naïve Bayes and SVM to measure 

the accuracy of the prediction. The algorithms were used 

with the library sklearn in python with a validation size of 

25% and 7 as seed. For the library to use the algorithm all 

data could not have any fields of type String or be empty, so 

the empty fields were filled with zeros and the strings were 

categorized by using a function from the same library. The 

algorithm was applied to the deployment file by trying to 

predict the number of incidents attributes that were created 

based on the comparison of the two datasets. 

 

VII. EVALUATION 

When the number of incidents were not categorized, the 

number of incidents had the following distribution, as 

showed in Table III. 

As it can be seen there is a big distribution of values, so 

the authors decided to make different types of predictions. 

 First, where the number of categories is zero 

meaning that the algorithm tries to predict 

exactly the number of incidents.  

 Second, where the number of incidents is 

categorized in “no accidents” and “accidents”. 

 Third in “no accidents”, “below average 

accidents” and “above average accidents”.  

 Finally, in “no accidents”, “residual accidents” 

(one or two), “below average accidents” and 

“above average accidents”. 

After applying the Naïve Bayes and SVM algorithms the 

results were the ones present in Table IV.  

To evaluate the results the authors used accuracy, 

precision, recall and f-measure. The precision recall and f-

measure are the weighted average of each category meaning 

it considers the number of samples of each category. 

 Accuracy - represents the ratio of correct 

predictions by the total number of predictions 

[23]. 

 Precision – Number of correct results divided by 

the number of guesses [23].  

 Recall – Number of values that were supposed to 

be guessed and were guessed [23]. 

 F-Measure – Relates precision with recall by 

doing a weighted harmonic mean between them 

[23].  

Both algorithms have similar results, although SVM has 

slightly better precision and slightly worse recall than Naïve 

Bayes. 

 

VIII. CONCLUSION 

As shown in the previous chapter, the best result came 

from Naïve Bayes with 82.7% when setting the number of 

incidents over 10 days and by categorizing them in no 

accidents and accidents. This does not allow to differentiate 

a deployment with 1 or 2 incidents from one with 100 

incidents but allows us to predict with confidence if a 

deployment will or will not have a deployment. 

In most cases the Naïve Bayes algorithm worked slightly 

better than SVM. The only time where this was not true was 

when there was not any categorization of the incidents. This 

might be due to the fact that SVM works better when there 

are few entries for a certain number of incidents, possibly 

relating the attributes better to each number of incidents, 

while Naïve Bayes goes more for a statistic approach, which 

ends up being worse if there are few examples for each 

category. 

There is only a small difference in accuracy between 7 

and 10 days, although with 10 days is slightly better. The 

prediction by using only 3 days of incidents had lower 

results, which can indicate that most of the incidents are not 

detected within this time, although this can be highly 

affected by the fact that weekends and holidays are not 

being considered.  

TABLE IV 

ALGORITHM RESULTS  

Number of 

categories 
Days 

Accuracy (%) Precision (%) Recall (%) F-Measure (%) 

Naïve Bayes SVM Naïve Bayes SVM Naïve Bayes SVM Naïve Bayes SVM 

0 

3 22.9 24.3 12 24 23 24 23 10 

7 15.4 15 6 22 15 15 8 4 

10 13.1 13 5 25 13 13 6 3 

2 

3 69.8 62.7 68 66 70 63 68 49 

7 80.5 79 79 82 81 79 79 70 

10 82.7 82.7 81 86 83 73 82 75 

3 

3 58.9 52.7 53 57 59 53 54 37 

7 62.3 60 57 69 62 60 57 45 

10 62.5 60.4 56 72 61 60 55 46 

4 

3 43.8 31.7 38 48 44 32 36 16 

7 56.1 49 51 63 56 49 51 33 

10 56.2 52.2 51 70 56 52 51 36 

 

 

TABLE III 

NUMBER OF INCIDENTS DISTRIBUTION 

Days Min Max Average Standard Deviation 

3 0 562 9.1 20.2 

7 0 648 19.9 37.3 

10 0 679 28.7 48.5 
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Overall and despite not having any way to associate an 

incident directly to a deployment and not having detailed 

information on what was changed in the deployments the 

results still allow us to predict if a certain type of 

deployment with certain types of attributes has a high or low 

probability of having incidents, by raising aware of the 

deployment team to be more careful when doing the 

deployment. Although it does not have a high accuracy on 

guessing the exact number of incidents, it does have a good 

accuracy when deciding if a certain deployment has or not a 

incident and even when predicting if it will have just a few 

or around the average incidents which allows once again the 

deployer to have a better trust when deploying the 

application or software. 

IX. FUTURE RESEARCH 

Despite the interesting results already achieved, the 

authors are currently evolving this investigation by applying 

more algorithms such as Random Forest and CART. Other 

attributes are also being correlated, like severity of the 

incident, holidays, different days for the number of incidents 

attribute and by grouping up deployments made on the same 

day 
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