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Abstract—This paper presents a multi-step delayed input and
state estimation (MSDISE) for a class of nonlinear systems by
using the newly proposed state-dependent coefficient (SDC)-
based system reformation approach, where a time-distribution
unknown input filtering (TUIF) technique is used to facilitate
the design. It is shown that the addressed nonlinear UIF
problem can be easily solved by using the corresponding
linear algorithm via this new system reformation approach. A
practical illustrative example is given to show the superiority
of the proposed method.

Index Terms—nonlinear state estimation, multi-step delayed
input and state estimation, time-distributed input estimation,
SDC-based system reformation

I. INTRODUCTION

THE model-free unknown input filtering (MUIF) prob-
lem, where the system dynamics of the unknown inputs

is completely unknown, has received many researchers’
attention due to its vast applications in different research
areas (see [1] and the references therein for details). Most
recently, the research work on the MUIF problem has focused
on solving more general multi-step delayed input and state
estimation (MSDISE) problem [1]-[5]. It is noticed that,
the MSDISE problem can be easily solved by making
use of some noncausal unknown input reconstruction mod-
els, through which yields the delayed unbiased minimum-
variance input and state estimation. In this paper, we give
a rigorous and detailed derivation of the MSDISE solution,
where no unknown input reconstruction models are used.

There are basically two approaches for solving the MS-
DISE problem. One is the measurement-augmented filtering
approach [2], [4], [5] and the other is the time-distributed
system reformation filtering approach [1], [3]. Although the
measurement-augmented filtering method is straightforward
to be applied, its computational complexity may be too com-
plex to implement due to that augmented measurements are
used. On the other hand, the system reformation technique
does not need to augment the measurements in order to
solve the problem. The basic idea behind this method is to
transform the original system into one which can reflect all
time-delayed estimable inputs associated with the unknown
inputs on the measurement equation. Thus, by using a time-
distributed unknown input filtering (TUIF) approach the
complete input estimation is ready to be achieved via the
existing designs [6], [7]. However, it is noted that, this
method is effective only if the rank of the feedthrough matrix
of the unknown inputs to the output is equivalent to the
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dimension of the unknown input vector [1]. Unfortunately,
the above rank condition may not always be satisfied (see [8]
for an illustration). If this happens, suitable modifications are
needed to recover the original degraded performance to its
optimal one. A heuristic but restricted approach to achieve
this can be found in [8]. In this paper, we give a more
accurate and general result.

Nonlinear filtering problems arise in many practical ap-
plications, e.g., financial estimation, biological and indus-
trial processes, target localization and tracking, robots and
robotic manipulators, and traffic state estimation (see [5]
and the references therein for details). As is well known,
a common approach to solve these problems is generalizing
the Kalman filter paradigm for nonlinear systems, e.g., the
extended Kalman filter, and representing state uncertainty
with a different ensemble set of state vectors [9]-[14]. It
should be stressed that all the above methods may yield
some approximation errors due to that some nonlinear terms
have been truncated. To alleviate this problem, the state
dependent coefficient (SDC) factorization method [15]-[17]
serves as an effective method to preserve the nonlinear
function without any transformation errors. The basic idea
embedded this method is to treat nonlinear systems as linear
ones. Thus, the dedicated nonlinear filtering problem is recast
into the well-known linear UIF problem. This may greatly
simplify the nonlinear filter design. Recently, an SDC-based
measurement-augmented filtering method has been proposed
to successfully solve the MSDISE problem of a nonlinear
two-link manipulator system [5]. Nevertheless, it is still un-
clear how to apply the system reformation filtering approach
to solve this SDC-based nonlinear MSDISE problem.

The main aim of this paper is to extend the previous
work [1] and continue the research line in investigating
the application of the time-distributed system reformation
filtering approach for nonlinear systems. In the sequel, a
complete and refined MSDISE design, without using a prede-
fined unknown input reconstruction model and with degraded
performance recovery, for a class of nonlinear systems by
using the newly proposed SDC-based time-distributed system
reformation approach is developed.

The paper is organized as follows. In Section II, the
statement of the problem is addressed. In Section III, the
proposed SDC and input-reconstruction based system refor-
mation method is presented. Specifically, in Section III.A
the SDC form of the nonlinear system is derived, in Section
III.B the system reformation through the TUIF technique is
revisited, and in Section III.C the refined unknown input
reconstruction procedure is proposed. Section IV provides
the dedicated optimal multi-step delayed input and state esti-
mation design. In Section V, a practical illustrative example
is given to show the superiority of the proposed method.
Section VI has the conclusions.

Proceedings of the World Congress on Engineering 2019 
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019



II. PROBLEM FORMULATION

In the paper, we consider the following discrete-time
nonlinear time-varying system with unknown inputs:

xk+1 = fk(xk) +Gx
kdk + wk, (1)

yk = gk(xk) +Hx
k dk + vk, (2)

where xk ∈ Rn, dk ∈ Rm, yk ∈ Rp, wk ∈ Rn, and
vk ∈ Rp are the state, unknown input, output, process
noise, and measurement noise, respectively. Matrices Gx

k and
Hx

k are dependant on the system state xk. Noises wk and
vk are uncorrelated white signals with covariance matrices
Qk = E[wkw

T
k ] ≥ 0 and Rk = E[vkv

T
k ] > 0, respectively.

It is assumed that (fk, gk) is observable and that x0 is
independent of wk and vk for all k; furthermore, we assume
that an unbiased estimate of the initial state x0 is available
with covariance matrix P x

0 . The problem of interest in the
paper is to determine the smoothed state estimate x̂k−s+1|k
and unknown input estimate d̂k−s|k, where s is a positive
integer and named as filter delay, based on the measurements
{y0, y1, . . . , yk} and without any information on dk.

A straightforward method to solve the above simultaneous
input and nonlinear state estimation problem is through a
measurement-augmented unknown input filtering approach
[5], where one intends to use the following aggregated
measurement equation to obtain the optimal state and input
estimates of system (1), (2):

T s
k

 yk
...

yk+α

 = T s
k

 gk(xk) +Hx
k dk

...
gk+α(xk+α) +Hx

k+αdk+α


+T s

k

[
vTk · · · vTk+α

]T
,

= ğsk(xk) + H̆s
kdk + v̆sk, (3)

where α = s − 1, T s
k is a specific matrix to delete

the unknown inputs dk+1, · · ·, dk+α from the augmented
measurements and to make dk be estimable, and ğsk, H̆s

k and
v̆sk are suitable matrices of appropriate dimensions. Then, the
estimation problem is recast to find the optimal estimates
x̂k−s+1|k and d̂k−s|k for system (1), (3). It is noticed that
the above measurement-augmented filtering approach may
not be practical to implement due to the need of finding a
suitable matrix T s

k and the forbidden computational complex-
ity involved in the calculations of ğsk and v̆sk. Furthermore,
the obtained augmented measurement noise v̆sk may correlate
with the process noise wk. All these considerations may
complicate the estimation algorithm design.

In this paper, a nonlinear UIF method which has no need
of augmenting the measurement equation in solving the
addressed problem is proposed. This new approach serves
as an extension of the TUIF in [1] for nonlinear systems.

III. SDC AND INPUT-RECONSTRUCTION BASED SYSTEM
REFORMATION

The main aim of this section is to reform the nonlinear
system (1), (2) into a linear-like system in which the un-
known inputs can be directly estimated by using the existing
estimation methods, e.g. [6], [7].

A. System Reformation Using SDC Form

We note that a nonlinear function f(x) can be represented
as the following specific form: f(x) = Axx, where Ax is
the SDC matrix and its general solution is given as follows:

Ax = f(x)x+ + Z(I − xx+), (4)

in which Z is an arbitrary matrix of appropriate dimension.
Thus, based on (4) the nonlinear system dynamics (1) and
the measurement (2) can be rewritten in the following SDC
forms:

xk+1 = Ax
kxk +Gx

kdk + wk, (5)
yk = Cx

kxk +Hx
k dk + vk, (6)

where

Ax
k = fk(xk)x

+
k + ZA

k (I − xkx
+
k ), (7)

Cx
k = gk(xk)x

+
k + ZC

k (I − xkx
+
k ). (8)

B. TUIF-Based System Reformation Revisited

First, we define the online estimable unknown input vector
d̃0k, associated with dk, to satisfy the following relationship:

Hx
k d̃

0
k = Hx

k dk. (9)

Solving (9) for d̃0k yields

d̃0k =
(
(Ω0

k)
+Ω0

k

)
dk, Ω0

k = Hx
k . (10)

Using (9)-(10), the system (5), (6) is rewritten as follows:

xk+1 = Ax
kxk +Gx

kd̃
0
k +Gx

kΠ
1
kdk + wk, (11)

yk = Cx
kxk +Ω0

kd̃
0
k + vk, (12)

where

Π1
k = I − (Ω0

k)
+Ω0

k. (13)

Second, using (11) in (12) yields:

yk = Cx
k (A

x
k−1xk−1 +Gx

k−1d̃
0
k−1 + wk−1)

+Cx
kG

x
k−1Π

1
k−1dk−1 +Ω0

kd̃
0
k + vk. (14)

Then, we can define the online estimable unknown input
vector d̃1k−1, associated with dk−1, to satisfy the following
relationship:

Cx
kG

x
k−1Π

1
k−1d̃

1
k−1 = Cx

kG
x
k−1Π

1
k−1dk−1. (15)

Solving (15) for d̃1k−1 yields

d̃1k−1 =
(
(Cx

kG
x
k−1Π

1
k−1)

+Cx
kG

x
k−1Π

1
k−1

)
dk−1. (16)

To promise that unknown input vectors d̃0k and d̃1k−1 can be
accurately estimated, the nonzero columns of matrices Ω0

k

and Ω1
k should be linear independent (see [8] for details). If

this is the case, we set Π̄1
k = Π1

k. Otherwise, we modify the
input reconstruction matrix Π1

k as follows:

Π1
k = Π̄1

k +∆1
k, (17)

where the nonzero columns of matrices Ω0
k and

Cx
kG

x
k−1Π̄

1
k−1 are linear independent. Thus, we have

d̃1k−1 =
(
(Ω1

k)
+Ω1

k

)
dk−1, Ω1

k = Cx
kG

x
k−1Π̄

1
k−1. (18)
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and hence system (11), (14) can be rewritten as follows:

xk+1 = Ax
kxk +Gx

k d̃
0
k +Gx

kΠ̄
1
kd̃

1
k +Gx

kΠ
2
kdk + wk, (19)

yk = Cx
k (A

x
k−1xk−1 +Gx

k−1d̃
0
k−1 + wk−1) + Ω1

kd̃
1
k−1

+Ω0
kd̃

0
k + Cx

kG
x
k−1∆

1
k−1dk−1 + vk, (20)

where

Π2
k = Π̄1

k

(
I − (Ω1

k+1)
+Ω1

k+1

)
+∆1

k. (21)

Third, following the same procedures to obtain (19) and
(20) one can obtain the following alternative system:

xk+1 = Ax
kxk +Gx

k

s∑
i=0

Π̄i
kd̃

i
k +Gx

kΠ
s+1
k dk + wk,(22)

yk = Cx
k

(
(Ax

k−1)
sxk−s +

s∑
i=1

(Ax
k−1)

i−1wk−i

+
s∑

i=1

i−1∑
j=0

(Ax
k−1)

i−1Gx
k−iΠ̄

j
k−id̃

j
k−i


+

s∑
i=0

Ωi
kd̃

i
k−i + ď∗k + vk, (23)

where

d̃ik =
(
(Ωi

k+i)
+Ωi

k+i

)
dk, (24)

Ai
k = Ak × · · · ×Ak−i+1, (25)

Ωi
k = Cx

k (A
x
k−1)

i−1Gx
k−iΠ̄

i
k−i, (26)

Π̄i
k = Πi

k −∆i
k, Π0

k = Im, ∆0
k = 0, (27)

Πi+1
k = Π̄i

k

(
I − (Ωi

k+i)
+Ωi

k+i

)
+∆i

k, (28)

ď∗k =
s−1∑
i=1

Cx
k (A

x
k−1)

i−1Gx
k−i∆

i
k−idk−i. (29)

Note that, from (22) it is clear that the unknown inputs dk
can be completely estimated if the following unknown input
reconstruction condition holds:

Πs+1
k = 0. (30)

Now, we are in the position to simplify measurement (23)
by defining the following reformed state:

x̄s
k = xk −

s∑
i=1

s∑
j=i

(Ax
k−1)

i−1Gx
k−iΠ̄

j
k−id̃

j
k−i. (31)

In showing this, we have the following relationship due to
(22) and (30):

xk = (Ax
k−1)

sxk−s +
s∑

i=1

s∑
j=0

(Ax
k−1)

i−1Gx
k−iΠ̄

j
k−id̃

j
k−i

+
s∑

i=1

(Ax
k−1)

i−1wk−i. (32)

Using (32) in (31) yields

x̄s
k = (Ax

k−1)
sxk−s +

s∑
i=1

i−1∑
j=0

(Ax
k−1)

i−1Gx
k−iΠ̄

j
k−id̃

j
k−i

+

s∑
i=1

(Ax
k−1)

i−1wk−i, (33)

by which measurement (23) is rewritten as follows:

yk = Cx
k x̄

s
k + Ȟx

k ď
s
k + ď∗k + vk, (34)

where

Ȟx
k =

[
Ω0

k Ω1
k · · · Ωs

k

]
, (35)

ďsk =
[
(d̃0k)

T (d̃1k−1)
T · · · (d̃sk−s)

T
]T

. (36)

Note that the effect of the above unknown signal ď∗k will
corrupt the estimation of ďsk, and hence the measurement
(34) can be rewritten as follows:

yk = Cx
k x̄

s
k + Ȟx

k ď
s∗
k + vk, (37)

where

ďs∗k = ďsk + (Ȟx
k )

+ď∗k, (38)

due to that the nonzero columns of matrix Ȟx
k are indepen-

dent.
Finally, the problem remains to simplify the system dy-

namics (22). Using (31) in (22) yields:

x̄s
k+1 = Ax

kx̄
s
k + Ǧx

k ď
s
k + wk, (39)

where

Ǧx
k =

[
Gx

k Ξ1
k · · · Ξs

k

]
, Ξi

k = (Ax
k)

iGx
k−iΠ̄

i
k−i. (40)

Note that, owing to the contamination of vector ďsk in the
measurement equation (37) the above system dynamics can
be equivalently expressed as follows in the sense of filtering:

x̄s
k+1 = Ax

kx̄
s
k + Ǧx

k ď
s∗
k + wk. (41)

C. Input Reconstruction

Thanks to (30) and comparing (5) with (22), we can obtain
the following unknown input reconstruction model:

dk =

s∑
i=0

Π̄i
kd̃

i
k, Π̄0

k = Im, (42)

which can be expressed more properly as the following s-
delay form:

dk−s =
s∑

i=0

Π̄i
k−sd̃

i
k−s, (43)

due to the facts that d̃jk−i can only be estimated at time
k− i+ j and the current measurement is yk. Using (36), the
input reconstruction model (43) can be rewritten as follows:

dk−s =
s∑

i=0

Π̄i
k−s(T̃

iďsk−s+i), (44)

where matrix T̃ i satisfies the following relationship: d̃ik =
T̃ iďsk+i. However, for system (37), (41) only the contam-
inated time-distributed unknown input vector ďs∗k can be
estimated. Thus, the problem remains to recover ďsk from
ďs∗k and ď∗k. This is addressed as below.

Define the following notation:

(T̃ iďs∗k )∗ ≡ (T̃ iďsk) = (T̃ iďs∗k )− T̃ i(Ȟx
k )

+ď∗k. (45)

Thus, the input reconstruction model (44) can be more
conveniently represented as follows:

dk−s =
s∑

i=0

Π̄i
k−s(T̃

iďs∗k−s+i)
∗

=
s∑

i=0

Π̄i
k−s

(
(T̃ iďs∗k−s+i)− T̃ i(Ȟx

k−s+i)
+ď∗k−s+i

)
. (46)
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Using (29), (44), and the following facts:

∆j
kΠ̄

l
k = 0, 0 ≤ l ≤ j, (47)

we can express ď∗k−s+i as follows:

ď∗k−s+i =
s−1∑
j=1

s∑
l=j+1

Ω̃jl
k−s+i(T̃

lďs∗k−s+i−j+l), (48)

where

Ω̃jl
k = Cx

k (A
x
k−1)

j−1Gx
k−j∆

j
k−jΠ̄

l
k−j . (49)

Note that, in (48) we assume the unknown input subvector
(T̃ lďs∗k−s+i−j+l), i.e. d̃lk−s+i−j , is not contaminated.

From (46) and (48), it is clear that if the following
conditions hold:

ďs∗k−s+i−j+l = 0 (i− j + l > s), (50)

which means that the correction will not use future measure-
ments {yk+1, . . . , yk+α}, the recovery of the contaminated
estimates in dk−s can be achieved through a delayed elim-
ination technique. In illustrating this, we consider the same
numerical example in [8], which has the following system
matrices:

Ax
k =


0.5 0.4 0 0
0.4 0.5 0.4 0
0 0.4 0.5 0.4
0 0 0.4 0.5

 , Gx
k =


0 1 0
0 0 0
0 0 0
0 0 1

 ,

Cx
k =


1 0 0 0
0 0 0 0.1
0 1 0 0
0 0 1 0

 , Hx
k =


0 0 0
1 0 0
0 0 0
0 0 0

 .

Applying the input reconstruction procedures to the above
system, we have the following design parameter matrices
associated with the input reconstruction model:

Π̄1
k =

 0 0 0
0 1 0
0 0 0

 , Π̄2
k =

 0 0 0
0 0 0
0 0 1

 ,

∆1
k =

 0 0 0
0 0 0
0 0 1

 , ∆2
k = 03, Π3

k = 03. (51)

From (51), it is clear that the unknown inputs can be
estimated with two-step delayed input estimation, i.e., s = 2.
Moreover, from (48) one has

ď∗k = Ω̃12
k (T̃ 2ďs∗k+1), Ω̃12

k =


0 0 0
0 0 0.1
0 0 0
0 0 0

 . (52)

Using (26), (35), (51), and (52), we can obtain the following

relationship:

Ȟx
k ď

s
k + ď∗k

=


0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0.05
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.4

 ďsk

+


0 0 0
0 0 0.1
0 0 0
0 0 0

 (T̃ 2ďs∗k+1),

= Ȟx
k (ď

s
k + (Ȟx

k )
+Ω̃12

k (T̃ 2ďs∗k+1)) = Ȟx
k ď

s∗
k , (53)

which verifies (37) and (38). Examining (53), one can easily
verify that only the first element of T̃ 0ďsk(= d̃0k) is corrupted
by the third element of T̃ 2ďsk+1(= d̃2k−1) as follows:[

1 0 0
]
(T̃ 0ďs∗k )

=
[
1 0 0

]
(T̃ 0ďsk) +

[
0 0 0.1

]
(T̃ 2ďsk+1)

=
[
1 0 0

]
(T̃ 0ďsk) +

[
0 0 0.1

]
(T̃ 2ďs∗k+1), (54)

where the last equality holds because the vector d̃2k−1 is not
contaminated. Using (54) in (46) yields the following true
input reconstruction model:

dk−2 = Π̄0
k−2(T̃

0ďs∗k−2)− Ω̆0
k−2(T̃

2ďs∗k−1)

+
2∑

i=1

(
Π̄i

k−2(T̃
iďs∗k−2+i)− Ω̆i

k−2(T̃
iďs∗k−2+i)

)
.

where

Ω̆0
k−2 =

 0 0 0.1
0 0 0
0 0 0

 , Ω̆1
k−2 = Ω̆2

k−2 = 03.

The effectiveness of the above recovery process can be found
in [8].

IV. OPTIMAL MULTI-STEP-DELAY INPUT AND STATE
ESTIMATION DESIGN

A. SDC-Based RSF Filter Design

Now, we are in the position to present the optimal es-
timation results of the reformed system (37), (41); this is
achieved by using the recently developed RTSKF (robust
two-stage Kalman filter) in [1]. For easy reference, the
obtained reformed state filter (RSF) is given as follows:

ˆ̄x
s
k|k = ˆ̄xk|k + V x̄

k ďs∗k|k, (55)

P x̄s

k|k = P x̄
k|k + V x̄

k P ďs∗

k|k (V
x̄
k )T , (56)

where the input-free filter ˆ̄xk|k is given by:

ˆ̄xk|k−1 = Ax
k−1

ˆ̄xk−1|k−1 + Uk−1ď
s∗
k−1|k−1, (57)

ˆ̄xk|k = ˆ̄xk|k−1 +K x̄
k (yk − Cx

k
ˆ̄xk|k−1), (58)

P x̄
k|k−1 = Ax

k−1P
x̄
k−1|k−1(A

x
k−1)

T

+Uk−1P
ďs∗

k−1|k−1U
T
k−1 +Qk−1, (59)

K x̄
k = P x̄

k|k−1(C
x
k )

T R̃−1
k , (60)

P x̄
k|k = (I −K x̄

kC
x
k )P

x̄
k|k−1, (61)

where

R̃k = Cx
kP

x̄
k|k−1(C

x
k )

T +Rk, (62)
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the unknown input filter ďs∗k|k is given by:

ďs∗k|k = K ďs∗

k (yk − Cx
k
ˆ̄xk|k−1), (63)

K ďs∗

k = P ďs∗

k|k (Ȟ
x
k )

T R̃−1
k , (64)

P ďs∗

k|k =
(
(Ȟx

k )
T R̃−1

k Ȟx
k

)+
, (65)

and the blending matrices V x̄
k and Uk are given by:

V x̄
k = −K x̄

k Ȟ
x
k , Uk = Ax

kV
x̄
k + Ǧx

k. (66)

However, owing to that the SDC matrix Ax
k is implemented

as Ax
k = Ax

k(ˆ̄x
s
k|k), one can more conveniently modify (57)

as follows:

ˆ̄xk|k−1 = Ax
k−1

ˆ̄x
s
k−1|k−1 + Ǧx

k−1ď
s∗
k−1|k−1. (67)

Note that the existence condition of the above RSF is given
as follows:

rank[Ȟx
k ] = m. (68)

B. Optimal Input and State Estimates Construction

In this subsection, we show how to optimally reconstruct
the input and state estimates of the original system (5), (6)
via the globally optimal RSF designed in Section IV.A.

First, based on the input reconstruction model (44) and the
time-distribution unknown input vector recovery (46), we can
obtain the optimal multi-step delayed input estimate and its
error covariance matrix at time t, where t = k−s, as follows:

d̂t|k =
s∑

i=0

Π̄i
t(T̃

iďs∗t+i|t+i)
∗, (69)

P d
t|k =

s∑
i=0

s∑
j=0

Π̄j
t T̃

j{•}j,it (Π̄i
tT̃

i)T , (70)

where {•}j,it is defined as follows:

{•}j,it =


(
{•}i,jt

)T
, j < i

P ďs∗

t+i|t+i, j = i

E
[
d̃s∗t+j(d̃

s∗
t+j)

T
]
, j > i

, (71)

in which d̃s∗k = ďs∗k − ďs∗k|k. Following the derivations in [1],
we can obtain the estimation error covariance matrix {•}j,it ,
where j > i, as follows:

{•}j,it = −K ďs∗

t+jC
x
t+j{⋆}

j,i
t , (72)

where {⋆}j,it is given as follows:

{⋆}j,it = (Ax
t+l −Ax

t+lK
x̄
t+lC

x
t+l − Ut+lK

ďs∗

t+lC
x
t+l){⋆}

l,i
t ,

in which l = j − 1, with the initial condition: {⋆}i,it =
Ut+iP

ďs∗

t+i|t+i.
Next, we consider the original state reconstruction. From

(31), we can obtain the original state estimate at time t̄, where
t̄ = k − s+ 1, as follows:

x̂t̄|k = ˆ̄x
s
t̄|t̄ +

s−1∑
i=0

s−i∑
j=1

(Ax
t̄−1)

j−1Gx
t̄−jΠ̄

i+j
t̄−j

×(T̃ i+j ďs∗t̄+i|t̄+i)
∗. (73)

Finally, we evaluate the error covariance matrix of the state
estimation. Defining the following notation:

Bi
t̄ =

s−i∑
j=1

(Ax
t̄−1)

j−1Gx
t̄−jΠ̄

i+j
t̄−j T̃

i+j , (74)

we can obtain the error covariance matrix at time t̄ as follows
(see [1] for details):

P x
t̄|k = P x̄s

t̄|t̄ +

s−1∑
i=0

(
Bi

t̄P
ďs∗x̄s

t̄+i,t̄ + (Bi
t̄P

ďs∗x̄s

t̄+i,t̄ )T
)

+
s−1∑
i=0

s−1∑
j=0

Bj
t̄ {•}

j,i
t̄ (Bi

t̄)
T , (75)

where

P ďs∗x̄s

t̄,t̄ = P ďs∗

t̄,t̄ (V x̄
t̄ )T , P ďs∗x̄s

t̄+i,t̄ = −K ďs∗

t̄+iC
x
t̄+i{∗}

i
t̄, (76)

in which {∗}it̄ is updated as follows:

{∗}i+1
t̄ = Ax

t̄+i(I −K x̄
t̄+iC

x
t̄+i){∗}

i
t̄ + Ut̄+iP

ďs∗x̄s

t̄+i,t̄ , (77)

with the initial condition {∗}1t̄ = Ax
t̄ P

x̄s

t̄,t̄ + Ǧx
t̄ P

ďs∗x̄s

t̄,t̄ .

V. PERFORMANCE EVALUATION

In order to illustrate the superiority of the proposed
method, we consider a special case of the discrete-time
two-link manipulator model in [5] that ignores the external
disturbance. Thus, the considered system is given as follows:

xk+1 = fk(xk) +Gx
k(uk + dk) + wk, (78)

yk = Ckxk + vk, Ck =

[
1 0 0 0
0 0 1 0

]
, (79)

where uk is the control input, dk represents the friction forces
acting at the joints of the system,

fk(xk) =
[
f1
k f2

k f3
k f4

k

]T
, (80)

Gx
k =

[
0 (G2

k)
T 0 (G4

k)
T
]T

, (81)

in which

f1
k = x1

k + Tsx
2
k, (82)

f2
k =

(
1− Tsθ

1
k

m12m21

2m22
sin(2(x1

k − x3
k))x

2
k

)
x2
k

+Tsθ
1
kk11sin(x

1
k)− Tsθ

1
km21sin(x

1
k − x3

k)(x
4
k)

2

−Tsθ
1
k

m12k12
m22

cos(x1
k − x3

k)sin(x
3
k), (83)

f3
k = x3

k + Tsx
4
k, (84)

f4
k =

(
1 + Tsθ

2
k

m2
21

2m11
sin(2(x1

k − x3
k))x

4
k

)
x4
k

+Tsθ
2
kk12sin(x

3
k)− Tsθ

2
km21sin(x

1
k − x3

k)(x
2
k)

2

−Tsθ
2
k

m21k11
m11

cos(x1
k − x3

k)sin(x
1
k), (85)

G2
k =

[
Tsθ

1
k −Tsθ

1
k
m12

m22
cos(x1

k − x3
k)
]
, (86)

G4
k =

[
Tsθ

2
k
m21

m11
cos(x1

k − x3
k) Tsθ

2
k

]
, (87)

θ1k =
m22

m11m22 −m12m21 cos2(x1
k − x3

k)
, (88)

θ2k =
m11

m11m22 −m12m21 cos2(x1
k − x3

k)
. (89)
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Here, x1
k and x2

k represent the position angle and its velocity,
respectively, of joint 1 and x3

k and x4
k represent those of joint

2.
To facilitate filter design, it is necessary to obtain the SDC

matrix of the nonlinear functions fk(xk). In this study, we
give an analytical approach to implement the SDC form (7).
Thus, the SDC matrix of fk(xk) can be obtained as follows:

Ax
k =


1 Ts 0 0

Ax
21,k Ax

22,k Ax
23,k Ax

24,k

0 0 1 Ts

Ax
41,k Ax

42,k Ax
43,k Ax

44,k

 , (90)

where

Ax
21,k = Tsθ

1
kk11

sin(x1
k)

x1
k

,

Ax
22,k =

(
1− Tsθ

1
k

m12m21

2m22
sin(2(x1

k − x3
k))x

2
k

)
,

Ax
23,k = −Tsθ

1
k

m12k12
m22

cos(x1
k − x3

k)
sin(x3

k)

x3
k

,

Ax
24,k = −Tsθ

1
km21sin(x

1
k − x3

k)x
4
k,

Ax
41,k = −Tsθ

2
k

m21k11
m11

cos(x1
k − x3

k)
sin(x1

k)

x1
k

,

Ax
42,k = −Tsθ

2
km21sin(x

1
k − x3

k)x
2
k,

Ax
43,k = Tsθ

2
kk12

sin(x3
k)

x3
k

,

Ax
44,k =

(
1 + Tsθ

2
k

m2
21

2m11
sin(2(x1

k − x3
k))x

4
k

)
.

In the simulation, the system model used in the proposed
method is implemented as follows:

x̄s
k+1 = Ax

kx̄
s
k +Gx

kuk + Ǧx
k d̃

2
k−2 + wk, (91)

yk = Ckx̄
s
k + C̆kG

x
k−2d̃

2
k−2 + vk, (92)

where

Ǧx
k = Ax

kA
x
k−1G

x
k−2, (93)

C̆k = CkA
x
k−1 =

[
1 Ts 0 0
0 0 1 Ts

]
. (94)

On the other hand, the system model used in the
measurement-augmented filtering approach, e.g. [5], is given
as follows:

xk+1 = Ax
kxk +Gx

kuk +Gx
kdk + wk, (95)[

yk
yk+1

]
=

[
Ck

C̆k+1

]
xk +

[
0

Ck+1

]
wk

+

[
vk

vk+1

]
. (96)

From the simulation results and comparing (91)-(94) with
(95)-(96), we have the following remarks:

(1) The process noise and the augmented measurement
noise are correlated, which will complicate the filter design.

(2) There is a need to accumulate the past measurements
in the measurement-augmented filtering approach; this does
not conform to the usual filter algorithm design. Furthermore,
the computational complex of implementing the filter will
increase.

(3) Simulation results show that the state estimates of
both algorithms are the same; however, the unknown input

estimates of the measurement-augmented filtering approach
are slightly worse than those of the proposed approach. One
possible explanation to this is that we ignored the correlation
effect in the former for the sake of easy implementation. Note
that the effectiveness of the measurement-augmented filtering
approach can be found in the recent work [5].

(4) There are some overhead in implementing the system
reformation, i.e. calculating the matrix Ǧx

k in (93), and
acquiring the original state estimates as in (73). Thus, how to
reduce the computational cost of the above overhead become
a practical issue in applying the proposed method, which will
be a research topic in the future.

VI. CONCLUSION

In the paper, a multi-step delayed input and state estima-
tion for a class of nonlinear systems using SDC factorization
technique is developed. Specifically, the recently developed
TUIF method is revisited and refined. Moreover, a possible
filtering degradation problem existed in the TUIF has also
been completely solved. The effectiveness of the proposed
method is verified by considering a two-link manipulator
system.
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