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Abstract—Shout call options are exotic options that
give the investor the ability to ‘shout’ during the life
of the option, thus locking in a profit and resetting
the strike price to the prevailing spot price. We look
at two approaches to value such options. The first
approach makes use of canonical variables of the clas-
sical heat equation and results in a series solution. In
the second approach an integral formulation is used,
which can be more amenable to pricing when there is
more than one ‘shout’ allowed.
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1 Introduction

In general, a shout option allows the holder of the option
to ‘shout’ at one or more times during the life of the
option and so adjust certain aspects of the option such as
the strike price or time to maturity. In their original form
however (and possibly still the more well-known form, see
e.g.[2]), shout contracts permit the holder to ‘shout’, in
which case the strike price is reset to the then prevailing
spot price and a payment at expiry to the holder is locked-
in of max(St −X, 0), where St is the current asset price
and X the strike price. This is further to the usual payoff
from the option using the new strike price. Some shout
options offer the holder to shout more than once, and the
general rule is that if an n shout option is exercised early
at time t, the holder receives max(St − X, 0) for a call
(at expiry) along with a new at-the-money (n− 1) shout
option.

The shouting right of the holder necessarily gives rise
mathematically to a free boundary problem. Dai et al [1]
provide an exact representation for the price of a shout
floor (which is a special case of the strike reset put (see
Section 2) in which the initial strike price is set at zero),
and derived a (double) integral representation for a shout-
ing premium for a reset put option. However much of the
work done to date is numerical. For example, finite dif-
ference methods have successfully been applied to shouts
by Windcliff et al ([5]). In this paper we look at two ap-
proaches to formally derive valuations for shout options
and their optimal shout boundaries (OSB). In the first
approach the governing PDE is reduced to the classical
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heat equation and then we make use of the result that
for any linear partial differential equation (PDE) with a
Lie point symmetry, separation of variables is possible in
terms of canonical symmetry coordinates (see [3]). This
approach leads to a series solution for the option value. In
the second approach we use an integral equation formu-
lation. Both approaches have their advantages. While
the first method avoids the need to integrate and finds
the coefficients for the option value and OSB simultane-
ously, the second approach involves the decoupling of the
option valuation problem from finding the free bound-
ary and would be able to handle multiple free boundaries
corresponding to multiple shouts. Both methods result
in the same series form for the OSB.

2 Approach 1: Series Solution for Option
Value

To price shout call options we begin by focussing on the
mathematical model for the related strike reset put op-
tion. A strike reset put option allows the holder of the
put option to ‘shout’ during the life of the option, upon
which the strike of the option is reset to the stock price
at the time of the shout. Hence, if the holder does not
shout during the life of the option, the payoff at expiry
time T from the option is max(X − ST , 0), where X is
the original exercise or strike price; whereas if a shout is
made at time t, then the payoff at expiry time T is given
by max(St − ST , 0). Hence the holder will only shout if
St > X in order to increase the payoff value. We show
in Section 2.3 that the price of a shout call option can be
derived from the price of a strike reset put option so we
begin by pricing the strike reset put option.

We assume that the stock price S (= St) follows the usual
risk-neutral lognormal process i.e

dS/S = (r − q)dt+ σdZ (1)

where r, q and σ are the constant risk-free rate, divi-
dend yield and volatility respectively and Z is a Wiener
process under a risk-neutral measure. Upon expiry time
T , the holder of the strike reset put option receives
max(X−ST , 0) so that the holder will shout at time t < T
only if St > X. Upon shouting, the option becomes an at-
the-money put option, so that its value above the critical
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shouting boundary, Sf (t) becomes P (S, t) = Pe(S, t;S),
where Pe(S, t;X) is the Black-Scholes formula for the Eu-
ropean put option with strike X. In the continuation re-
gion, 0 ≤ S ≤ Sf (t) the value P (S, t) of the strike reset
put option can be shown to satisfy the Black-Scholes (BS)
equation

∂P

∂t
+

σ2S2

2

∂2P

∂2S
+ (r − q)S

∂P

∂S
− rP = 0 (2)

where q is the constant, continuous dividend yield. The
option price must necessarily satisfy the smooth-pasting
conditions so that across the optimal shouting boundary,
the value of the option and its derivative are continuous.
Equation (2) then needs to be solved subject to

P (S, T ) = max(X − S, 0), (3a)

P (0, t) = Xe−r(T−t) (3b)

and at Sf (t) > X

P (Sf (t), t) = Sf (t)[e
−r(T−t)N(−d2)−e−q(T−t)N(−d1)]

(3c)

PS(Sf (t), t) = e−r(T−t)N(−d2)− e−q(T−t)N(−d1) (3d)

where T is the expiry date, N(·) is the cumulative dis-
tribution function for the standard normal distribution,

d1 =
(r−q+σ2

2 )
√

(T−t)

σ and d2 = d1 − σ
√
T − t.

In the following subsection, an exact formal solution will
be given for the strike reset put option based on solving
(2) subject to (3a)-(3d). The following result will be used,
which was proven by Dai et al [1].

Result 2.1 The optimal shouting boundary for the strike
reset put option takes on the value X at expiry i.e
Sf (T ) = X.

2.1 Solution for the Strike Reset Put Option

Consider the value V (S, t) of a strike reset put option
P (S, t) plus a forward contract f(S, t) = Se−q(T−t) −
Xe−r(T−t). Because an investor will shout only if Sf (t) >
X, it is worthwhile to split the continuation domain into
the 2 regions 0 ≤ S < X and X ≤ S ≤ Sf (t). Note that
using Result 2.1, the region X ≤ S ≤ Sf (t) reduces to a
single point at t = T . In the continuation region of the
reset put option, V (S, t) satisfies Equation (2) which in

X ≤ S ≤ Sf (t) needs to be solved subject to

V (Sf (t), t) = Sf (t)[e
−r(T−t)N(−d2) + e−q(T−t)N(d1)]

−Xe−r(T−t) (4a)

VS(Sf (t), t) = e−r(T−t)N(−d2) + e−q(T−t)N(d1) (4b)

and in 0 ≤ S < X, subject to V (S, T ) = 0.

We also impose the smooth pasting conditions i.e conti-
nuity of the value of the option and its derivative across
the strike price i.e

lim
S→X−

V = lim
S→X+

V and lim
S→X−

VS = lim
S→X+

VS .

We make the following substitutions, the first two of
which are the standard substitutions that reduce the BS
equation to the classical heat equation:

(a) S = Xex, t = T − 2τ

σ2
, V = e−q(T−t)Xν(x, τ), (5)

and let G(τ) = ln
(

Sf (t)
X

)
where G(0) = 0.

(b) u(x, τ) = eAx+Bτν(x, τ) (6)

where A = k−1
2 , B = (k+1)2

4 , resulting in the governing
equation ut = uxx.

(c) y =
x√
τ
, τ = τ (7)

which are canonical coordinates of ut = uxx.

The problem then becomes

τuτ = uyy +
y

2
uy (8)

to be solved subject to u(y, 0) = 0 for y < 0 and for

0 ≤ y ≤ Ψ(τ), where Ψ(τ) = G(τ)√
τ

u(Ψ(τ), τ) = −eA
√
τΨ(τ)+Bτe−kτ

+e(A+1)
√
τΨ(τ)+Bτ

[
N(d1) + e−kτN(−d2)

]
(9a)

uy(Ψ(τ), τ) = −A
√
τeA

√
τΨ(τ)+Bτe−kτ

+
√
τ(A+1)e(A+1)

√
τΨ(τ)+Bτ [N(d1)+e−kτN(−d2)] (9b)

lim
y→0−

u = lim
y→0+

u and (9c)

lim
y→0−

uy = lim
y→0+

uy. (9d)

Equation (8) admits separable solutions of the form

u(y, τ) = e
−y2

4

∞∑
i=1

τ
i
2

[
CiM

(
1 + i

2
,
1

2
,
y2

4

)
+ DiU

(
1 + i

2
,
1

2
,
y2

4

)]
,

(10)

whereM and U are the Kummer-M and Kummer-U func-
tions respectively. The separation constant used in (10)
is λi = i

2 where i is a positive integer, as power series
in square root time have been found to be adequate in
solving other free boundary problems involving linear dif-
fusion equations (see e.g [4]). The above Equation (10)
describes solutions valid for 0 ≤ y ≤ Ψ(τ) for some non-
zero constants Ci, Di to be determined, while for y < 0,
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consideration of the initial condition implies solutions of
the form

u(y, τ) = e
−y2

4

∞∑
i=1

τ
i
2FiU

(
1 + i

2
,
1

2
,
y2

4

)
(11)

for constants Fi to be determined.

Determining the Solution Coefficients

In order to satisfy the limit conditions at y = 0 we re-
quire

Fi =
Γ(1 + i

2 )√
π

Ci +Di and (12a)

Fi = −Di (12b)

so that we set Ci =
−2

√
π

Γ(1+ i
2 )
Di.

Note that for continuity at x = 0 of the second deriva-
tives, we require

√
π

Γ(1 + i
2 )

iFi = iCi +

√
π

Γ(1 + i
2 )

iDi

but this follows automatically from (12a). Hence deriva-
tives of all orders are continuous at x = 0.

We let Ψ(τ) =
∑∞

i=0 siτ
i/2. This is motivated by the

classic work of Tao (see e.g. [4]) on Stefan problems in
general. Now apply (9a) and (9b) to determine the coef-
ficients si and Di, using the following steps:

(i) Using (10) expand both sides of Equation (9a) in a
power series of τ i/2. We call this Expansion A.

(ii) Similarly expand both sides of Equation (9b) in a
power series of τ i/2 and call this Expansion B.

Both expansions have no constant terms.

(iii) By equating coefficients of τ1/2 from both sides of
Expansion A and similarly from both sides of Expansion
B, yields 2 equations to solve for the unknowns D1 and
s0. The solution to this system (to 4 decimal places) is
s0 = 1.0304 and D1 = −0.3678.

Then, equating coefficients of powers of τ from Expan-
sions A and B yields 2 equations to solve for D2 and s1.
In general we can then continue equating coefficients of
τ

i
2 from Expansions A and B to get as many constantsDi

and si−1 as necessary. These coefficients will be in terms

of k
(
= 2(r−q)

σ2

)
. Then constants Fi can be determined

from (12b).

Undoing the change of variables (7), (6), (5) gives V (S, t).
Then subtracting the value of the forward contract gives
the solution for P (S, t). We thus have

Theorem 2.1: The following series formally satisfies the
free boundary problem (2)-(3) for the strike reset put
option in the continuation region 0 ≤ S ≤ Sf (t):

P (S, t) = g(S, t)

∞∑
i=1

[
σ2

2
(T − t)

]i/2

Di

{
U

(
1 + i

2
,
1

2
,
(ln(S/X))2

2σ2(T − t)

)

+
−2

√
π

Γ(1 + i
2 )

M

(
1 + i

2
,
1

2
,
(ln(S/X))2

2σ2(T − t)

)}
(13a)

−Se
−q(T−t)

+ Xe
−r(T−t)

for X ≤ S ≤ Sf (t)

= −g(S, t)

∞∑
i=1

[
σ2

2
(T − t)

]i/2

DiU

(
1 + i

2
,
1

2
,
(ln(S/X))2

2σ2(T − t)

)

−Se
−q(T−t)

+ Xe
−r(T−t)

for 0 ≤ S < X (13b)

where

g(S, t) = e−q(T−t)X
( S

X

) 1−k
2

e−
(k+1)2σ2(T−t)

8 e
− (ln( S

X
))2

2σ2(T−t) ,

(14)

k = 2(r−q)
σ2 , and the optimal shouting boundary is given

by

Sf (t) = X exp

⎛
⎝ ∞∑

i=0

si

[
σ2

2
(T − t)

] (i+1)
2

⎞
⎠ . (15)

The coefficients si and Di are determined from the
boundary conditions at Sf (t) as described above. The
first seven coefficients s0 − s6 for the optimal bound-
ary and the first seven coefficients for the option value
D1 −D7 are listed in the Appendix.

Plots showing a comparison of option values with differ-
ent times to expiry using (13a, 13b) with σ = 0.2, X =
1, r = 0.03, q = 0.02 are shown in Figure 1.

Figure 1: Comparison of strike reset put prices with dif-
ferent times to expiry. Parameters used were X = 1, r =
0.03, σ = 0.2 and q = 0.02.

As with vanilla put options, the longer-lived options are
more valuable except for small values of S. Each of the
price curves in Figure 1 touch tangentially the value of the
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at-the-money put option at the stock price corresponding
to the optimal shout boundary. A comparison of the
optimal shout boundaries for different q values and with
X = 1 and r = 0.03, σ = 0.2 is given in Figure 2.

Figure 2: Optimal shout boundaries with parameters
X = 1, r = 0.03 and σ = 0.2.

From this it can be seen that the larger the dividend yield,
then the smaller the optimal shout boundary. This is to
be expected as dividend yields have the effect of lowering
the growth rate in the stock price. Notably also, when
r < q the optimal shout boundary has a lower slope and
a greater curvature.

2.2 Examples and Comparisons

We compared results from the series truncated at seven
terms, with accurate solutions for a 5 year reset put op-
tion, obtained by using 50000 time steps in the Bino-
mial Model, as given by Dai [1] with parameter values
T − t = 5, S = 100, r = 0.06 and 0.03, q = 0.03 and
0.06, σ = 0.2 and 0.3. It was found that better accuracy
was achieved with fewer terms in our formal series solu-
tions when σ is larger and when r < q. However in all
cases, at last 4 significant figure accuracy was achieved
using seven terms.

In order to understand how many terms the series gener-
ally requires in order to attain good accuracy, we tried a
number of examples with T−t = 0.5, 1, 2, 3, q = 0.06, and
0.02, r = 0.03, X = 1 and found the number of terms
sn needed in Equation (15) and the number of terms Dn

needed in Equations (13a) or (13b) to achieve 4 decimal
place accuracy in Sf (t) and P (S, t) respectively. In each
case the ‘exact’ solution was taken as the value where the
relative differences between successive values using n and
n+ 1 terms was less than 10−4. In every case, the prac-
tical criterion for accuracy was satisfied with the number
of terms sn required ranging from 3 to 5 and the number
of terms Dn ranging from 2 to 5. In general, the larger
the time to expiry, the more terms were needed and when

r > q then more si and Di terms were sometimes needed
for the same accuracy in Sf and P . Hence for all cases
considered, the new series solutions provided fast and ac-
curate answers for times to expiry up to three years.

We now use the results from this section to value shout
call options.

2.3 Solution for the Shout Call Option

Theorem 2.2:

An exact formal solution for the shout call option V (S, t)
in the continuation region 0 ≤ S ≤ Sf (t) is

V (S, t) = g(S, t)
∞∑
i=1

[
σ2

2
(T − t)

]i/2 {
DiU

(
1 + i

2
,
1

2
,

ln(S/X)2

2σ2(T − t)

)

+
−2

√
πDi

Γ(1 + i
2 )

M

(
1 + i

2
,
1

2
,

ln(S/X)2

2σ2(T − t)

)}
(16a)

for X ≤ S ≤ Sf (t)

= −g(S, t)
∞∑
i=1

[
σ2

2
(T − t)

]i/2

DiU

(
1 + i

2
,
1

2
,

ln(S/X)2

2σ2(T − t)

)

for 0 ≤ S < X (16b)

where g(S, t) is given in (14), k = 2(r−q)
σ2 and the op-

timal shout boundary is given by (15). The constant
coefficients Di and si are again determined as described
in Section 2.1.

Note that in the region Sf (t) > X, the value of the shout
call option is simply Ce(S, t;S) + (S −X)e−r(T−t) where
Ce(S, t;X) is the Black-Scholes value of a European call
with strike price X.

Proof: The holder of a shout call option can ‘shout’ if
St > X, which resets the strike price to St and locks in a
payment they will receive at expiry of St − X. Thus,
the payoff from the shout call option is Csh(S, T ) =
max(ST − X,St − X, 0). As max(ST − X,St − X, 0) =
max(St − ST , 0) + (ST − X), then the shout call option
can be replicated using a strike reset put option and a
long position in a forward contract with the same strike.
Hence the value of the shout call option is simply V (S, t)
from Section 2.1 - i.e. the sum of the value of the strike
reset put option and a forward contract ie.

Csh(S, t) = V (S, t) = P (S, t) + Se−q(T−t) −Xe−r(T−t)

where P (S, t) is given in (13a, 13b). The optimal shout
boundary is then the same as for the strike reset put
option which is given in (15).##

Plots showing a comparison of shout call option values
with different times to expiry are given in Figure 3 with
parameter values X = 1, r = 0.03, q = 0.02, σ = 0.2.
As with European call options, the values increase with
time to expiry.
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Figure 3: Comparison of shout call option prices with
different times to expiry. Parameters used were X =
1, r = 0.03, q = 0.02, σ = 0.2.

3 Approach 2: An Integral Equation For-
mulation

With τ̃ = T − t, the BS equation can be written as

LV =

[
∂

∂τ̃
− σ2S2

2

∂2

∂S2
− (r − q)S

∂

∂S
+ r

]
V = 0,(17)

where we have defined the operator L for later use.

For American-style options with early exercise features,
it follows from an application of Green’s theorem that if
such an option obeys equation (17) where it is optimal
to hold the option, while that from immediate exercise is
P (S, τ̃), then we can write the value of the option as the
sum of the value of the corresponding European option
V (e)(S, τ̃) together with another term representing the
premium from early exercise,

V (S, τ̃) = V (e)(S, τ̃)

+

∫ τ̃

0

∫ ∞

0

F(Z, ζ)G(S,Z, τ̃ − ζ)dZdζ. (18)

where G is the Green’s function,

G(S,Z, τ̃) =
e−rτ̃

Zσ
√
2πτ̃

exp

(
− [ln(S/Z) + r2τ̃ ]

2

2σ2τ̃

)
(19)

and we have introduced the shorthand r2 = r− q−σ2/2.
In this equation, F(S, τ̃) is equal to 0 where it is op-
timal to hold the option while where exercise is optimal
F(S, τ̃) is the result of substituting the early exercise pay-
off P (S, τ̃) into BS partial differential equation,

F(S, τ̃) = LP, (20)

where the operator L was defined in (17). Similarly, shout
options satisfy LV = F(S, τ̃), where F = 0 when it is
not optimal to shout and otherwise F = LP where P is
the payoff from shouting. Hence for shout options, we
can use the formulae (18,20) recursively. We shall use
the notation V (n)(S, τ̃) for the value of a shout option
with n shouting opportunities and X(n) for the strike
price of an n shout option. If held until expiry, an n
shout call will pay max(S −X(n), 0) while a put will pay
max(X(n) − S, 0). At the first shout, which will occur

at the free boundary S
(n)
f (τ̃), we exchange this n shout

option for a lock-in payment at expiry of the difference
between the current stock price S and the strike price
X(n) together with a new at-the-money (n − 1) shout
option V (n−1)(S, τ̃) |X(n−1)=S . At-the-money in this con-
text means that the strike price X(n−1) of this new (n−1)
shout option is set equal to the stock price S at the time
of exercise. It follows that the payoff from exercise for an
n shout call is

P (n)(S, τ̃) = (S −X(n))e−rτ̃ + V (n−1)(S, τ̃) |X(n−1)=S(21)

[while for an n shout put it is

P (n)(S, τ̃) = (X(n) − S)e−rτ̃ + V (n−1)(S, τ̃) |X(n−1)=S ]

An option with zero shouts remaining is just a vanilla
European, V (0)(S, τ̃) = V (e)(S, τ̃). If we exercise a one
shout option, we will receive at expiry the difference be-
tween the stock price and the initial strike price and we
receive immediately a zero shout option which is simply
an at-the-money European option. So the payoff from
shouting for a one shout call, with r1 = r2 + σ2, is

P (1)(S, τ̃) = (S −X(1))e−rτ̃ + V (0)(S, τ̃) |X(0)=S ,

= (S −X(1))e−rτ̃ (22)

+
S

2

[
e−qτ̃erfc

(
− r1τ̃

σ
√
2τ̃

)
− e−rτ̃erfc

(
− r2τ̃

σ
√
2τ̃

)]
,

Using (20), the forcing term in the formula (18) for a one
shout call is

F (1)(S, τ̃) (23)

= −S

2
e−rτ̃

[
(r − q)erfc

(
r2τ̃

σ
√
2τ̃

)
− σ√

2πτ̃
exp

(
− r22 τ̃

2σ2

)]

Applying formula (18) to a shout call where it is optimal

to hold if S < S
(1)
f (τ̃) and exercise if S ≥ S

(1)
f (τ̃), we find
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the value of a one shout call,

V (1)(S, τ̃) = V (e)(S, τ̃)

+

∫ τ̃

0

∫ ∞

S
(1)
f (ζ)

[(−rZ

2
e−rζ +

qZ

2
e−rζ

)
erfc

(
r2ζ

σ
√
2ζ

)

+
Zσe−rζ

2
√
2πζ

exp

(
− r22ζ

2σ2

)]
G(S,Z, τ̃ − ζ)dZdζ

=
Se−qτ̃

2
erfc

(
− ln(S/X(1)) + r1τ̃

σ
√
2τ̃

)

−Xe−rτ̃

2
erfc

(
− ln(S/X(1)) + r2τ̃

σ
√
2τ̃

)

+

∫ τ̃

0

[ −(r − q)

2σ
√
2π

√
τ̃ − ζ

e−rτ̃erfc

(
r2
√
ζ

σ
√
2

)

+
e−rτ̃

4π
√
ζ
√
τ̃ − ζ

exp

(
− r22ζ

2σ2

) ]

×σS
√
π(τ̃ − ζ)√
2

e(r−q)(τ̃−ζ)

×erfc

(
ln(Sf (ζ))− ln(S)− r1(τ̃ − ζ)

σ
√
2(τ̃ − ζ)

)
dζ. (24)

3.1 Integral Equations For One Shout Op-
tions

To obtain integral equations for the location of the free

boundary S = S
(1)
f (τ̃) for a one shout option we sub-

stitute the expressions for the one shout call (24) into
the conditions at the free boundary. To simplify the

analysis, we will write S
(1)
f (τ̃) = X(1) exp

(
x
(1)
f (τ̃)

)
, not-

ing as in Section 2 that the free boundary starts from

S
(1)
f (0) = X(1) or equivalently x

(1)
f (0) = 0 at expiry.

The conditions at the free boundary are that the option
price and the delta of the option are continuous there,
so that V (1) = P (1) and (∂V (1)/∂S) = (∂P (1)/∂S) at

S = S
(1)
f (τ̃). This is equivalent to (4a) and (4b).

Using (24,22) in the condition that V (1) = P (1) at the free

boundary S = S
(1)
f (τ̃) yields the first equation, say Equa-

tion X while the condition that (∂V (1)/∂S) = (∂P (1)/∂S)
gives the second which we call Equation Y.

These resultant two equations constitute a pair of integral

equations for the location of the free boundary x
(1)
f (τ̃) =

ln(S
(1)
f (τ̃)/X(1)) for a one shout call. To solve the integral

equations X and Y we assume as in Section 2, a solution
of the form

x
(1)
f (τ̃) ∼

∞∑
n=1

x(1)
n τ̃n/2. (25)

We substitute the series (25) for x
(1)
f (τ̃) into Equations

X and Y and expand, collect and equate powers of τ̃ .

To evaluate the integrals, we make the change of variable
ζ = τ̃ η, which enables us to pull the τ̃ dependence outside
of the integrals when we expand. From Equation X, at
O (

τ̃1/2
)
we find

x
(1)
1

2
erfc

(
x
(1)
1√
2σ

)
+

σ√
2π

(
1− exp

(
−x

(1)2
1

2σ2

))

=
σ

4
√
2π

∫ 1

0

1√
η
erfc

(
−x

(1)
1

(
1−√

η
)

σ
√
2 (1− η)

)
dη, (26)

while from Equation Y, at O (
τ̃0
)
we find

1

2
erfc

(
x
(1)
1√
2σ

)
(27)

=
1

4π

∫ 1

0

1√
η(1− η)

exp

(
−x

(1)2
1

(
1−√

η
)2

2σ2 (1− η)

)
dη.

These two equations (26,27) have a numerical root x
(1)
1 =

0.728600109σ, which agrees with the coefficient of (T −
t)1/2 in (15), namely s0σ√

2
.

Continuing with our expansion, at the next order, from
Equation X at O (τ̃) and from Equation Y at O (

τ̃1/2
)

we find the resulting equations have a numerical root of

x
(1)
2 = 0.5516261057(r− q)+ 0.04898978883σ2. Similarly

the next term is found to be x
(1)
3 = 0.413244516 (r−q)2

σ +
0.218773888σ(r − q) + 0.00303954446σ3. These terms
agree with those found in Section 2.

3.2 Two Shout Options - Outline

Although a detailed study of multiple shout options is
beyond the scope of this study, we will touch on the free
boundary for a two shout option. As we noted earlier, for

a two shout option the payoff at the free boundary S
(2)
f (τ̃)

is the present value of the difference between the stock
price and the strike price together with an at-the-money
one shout option.

Using the general expression (21),

P (2)(S, τ̃) = (S −X(2))e−rτ̃ + V (1)(S, τ̃) |X(1)=S

= (S −X(2))e−rτ̃

+
Se−qτ̃

2
erfc

(
− r1τ̃

σ
√
2τ̃

)
− Se−rτ̃

2
erfc

(
− r2τ̃

σ
√
2τ̃

)

+

∫ τ̃

0

[ −(r − q)

2σ
√
2π

√
τ̃ − ζ

e−rτ̃erfc

(
r2
√
ζ

σ
√
2

)
(28)

+
e−rτ̃

4π
√
ζ
√
τ̃ − ζ

exp

(
− r22ζ

2σ2

)]

×σS
√
π(τ̃ − ζ)√
2

e(r−q)(τ̃−ζ)erfc

(
x
(1)
f (ζ)− r1(τ̃ − ζ)

σ
√
2(τ̃ − ζ)

)
dζ.
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Using this payoff (28) in the formula (18,20), we can ar-

rive at a set of integral equations which involve S
(1)
f (τ̃)

(which in principle is now known), as well as S
(2)
f (τ̃). As

with the one shout option, we will solve these equations
to find expressions for the location of the free boundary

x
(2)
f (τ̃) = ln(S

(2)
f (τ̃)/X(2)) in the limit τ̃ → 0. In doing

so, we use the series we found x
(1)
f (τ̃) earlier. This again

is an example of how the pricing of shout options is a

recursive problem: to find the free boundary S
(n)
f (τ̃) for

an n shout option, we first need to know S
(1)
f (τ̃), S

(2)
f (τ̃),

· · · , S(n−1)
f (τ̃).

We again assume that x
(1)
f (τ̃) has the form (25), with the

coefficients found earlier, and that x
(2)
f (τ̃) has the form

x
(2)
f (τ̃) ∼

∞∑
n=1

x(2)
n τ̃n/2. (29)

At leading order, we find a pair of equations which have

a numerical root x
(2)
1 = 0.478602511σ. Continuing with

our expansion, at the next order, we find a pair of equa-

tions which solve to give x
(2)
2 = 0.3691038999(r − q) +

0.04142004125σ2.

4 Discussion

In this paper we have demonstrated how exact formal
solutions to shout call options (and also strike reset put
options) can be found. We used both a PDE approach
1) utilising canonical coordinates and resulting in series
solutions (16a, 16b) and 2) using an integral equation
approach (24). Both methods necessarily resulted in the
same series solution for the OSB.

Once the coefficients in the solutions of the OSB (and
the option value for the first approach) have been deter-

mined in terms of k
(
= 2(r−q)

σ2

)
, (and this need only be

done once) then the solutions can provide fast, accurate
valuations for times to expiry that are not impractically
large.

In addition to the solution for the one shout calls, we
showed how it is possible to use the formulae (18, 20)
recursively to price n shout options for which the early
exercise payoff is the difference between the current stock
price and the strike price (paid at expiry), together with
a new at-the-money (n− 1) shout option.

These solutions can potentially not only be very useful to
practitioners, but they can provide insight and be valu-
able benchmarks against which numerical schemes can be
tested.

5 Appendix

This appendix lists the first seven coefficients si for Equa-
tion (15) and the first seven coefficients Di for equations

(13a)-(13b) and (16a)-(16b) in terms of k = 2(r−q)
σ2 .

s0 = 1.030396

s1 = 0.0979796 + 0.551626k

s2 = 0.00859713 + 0.309393k + 0.292208k2

s3 = 0.00045512 + 0.125178k + 0.357924k2 + 0.20398k3

s4 = −1.7188× 10−5 + 0.04264k + 0.270601k2

+ 0.38222k3 + 0.1639k4

s5 = −6.53893× 10−6 + 0.0129311k + 0.157956k2

+ 0.420397k3 + 0.415477k4 + 0.140830k5

s6 = −5.0169× 10−7 + 0.0035923k + 0.0775674k2

+ 0.346227k3 + 0.596232k4 + 0.453015k5 + 0.127271k6

D1 = −0.367849

D2 = −0.0586993− 0.266876k

D3 = −0.103131 + 0.0201712k − 0.229123k2

D4 = −0.0170184− 0.123276k − 0.0307579k2

− 0.137031k3

D5 = −0.0263029 + 0.0131288k − 0.211362k2

+ 0.00824740k3 − 0.0929249k4

D6 = −0.00437383− 0.0440872k − 0.0329975k2

− 0.166962k3 − 0.0144274k4 − 0.0524000k5

D7 = −0.00660354 + 0.00556156k − 0.120486k2

+ 0.00669872k3 − 0.181079k4 − 0.000111471k5

− 0.0326374k6
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