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Abstract—For the Wiener degradation failure products, the 

effects of life test and degradation test on product reliability 

evaluation are studied and compared respectively. Firstly, in the 

cases of no measurement error, measurement error and 

different number of measurement in the degradation test, the 

asymptotic variance of the estimated p-percentile of the 

product’s lifetime distribution is given, and we research the 

influence of measurement error on evaluation accuracy. 

Furthermore, under the constraint that the total experimental 

cost does not exceed a predetermined budget, we set the 

asymptotic variance of the estimated p-percentile of the 

product’s lifetime distribution as reliability evaluation accuracy 

index. In the same evaluation accuracy, we compare the optimal 

design problem in time censored life test with that in 

degradation test in different situations. Researches have shown 

that compared with the life test, the degradation test has obvious 

advantages for improving the accuracy of product reliability 

evaluation, which can significantly reduce the sample size and 

fully use the advantages of test time. The research in this paper 

can provide reference value for the optimization of long-life 

product reliability evaluation. 

 
Index Terms—Wiener process; life test; degradation test; 

Fisher information; optimal design. 

 

I. INTRODUCTION 

n order to clarify the life distribution of the product, 

estimate the reliability indicators of the product, study the 

failure mechanism of the product, we often conduct reliability 

tests. Traditional reliability test evaluations use life tests to 

estimate parameter distributions from life data. However, 

with the continuous extension of product life, the general life 

test cannot obtain enough life information under the limited 

time and constraints of cost. Then people propose a 

degradation-based reliability technology. Degradation-based 

reliability technology provides a new technical approach to 
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solve the problem of long-life product reliability assessment. 

Through the degradation test, from studying the product 

failure mechanism, we analyze the product failure correlation 

and degradation failure law to obtain performance 

information. There are some studies on life test and 

degradation test. A detailed discussion of the maximum 

likelihood estimation of the failure time data is given by 

Lawless[1]. Lu and Meeker[2] discuss the method of using 

degraded data to estimate the failure time distribution. Lu and 

Meeker[3] define the relative efficiencies to compare the 

asymptotic efficiency of degradation analysis with that of 

traditional failure time in life analysis. 

We generally consider that, compared with the life test, the 

test data can be fully utilized by degradation test and the 

degradation process modeling, and high reliability evaluation 

accuracy can be obtained. However, the current conclusions 

are mainly qualitative judgments and lack of quantitative 

comparative studies. In this paper, the asymptotic variance of 

product’s reliable life (the percentile of the product’s lifetime) 

is used as the accuracy index. The quantitative comparison 

study is carried out, based on the role of life test and 

degradation test in the modeling and evaluation of long-life 

product reliability. Firstly, in the cases of no measurement 

error, measurement error and different number of 

measurement in the degradation test, we give limit form of 

asymptotic variance of reliable life of products based on 

degradation test data. Then we study the optimal design 

problems for degradation tests and life tests. The optimal 

variables are sample size and censored time. With constraint 

of total experimental cost, the optimal settings of these 

variables are obtained by minimizing reliable life assessment 

accuracy. Finally, we compare the result in time censored life 

test with that in degradation test under different number of 

measurement. 

II. WIENER DEGRADATION PRODUCT RELIABILITY MODEL 

We know that the lifetime of classical Wiener degradation 

failure product obeys inverse Gaussian (IG) [4], and its 

distribution function and density function are respectively 
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p  is 100 thp  percentile of the product’s lifetime distribution, 

and 1ˆ ( )p F p  . By using the  -method, the asymptotic 

variance of  100 thp  percentile of the product’s lifetime 

distribution ˆAver( )p  is 
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I

which is Fisher information matrix. 

III. RELIABILITY MODELING BASED ON LIFE TEST DATA 

Considering the case of the timing censored life test, 

supposing the sample size is n , the censored time is T , and 

the failure time data is 
1 2 DX X X T    , D  is the 

number of failed sample. Denoted X  as the sample data, the 

likelihood function is [5] 
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Calculate the second order partial derivative of the 

log-likelihood function for the parameter   and 2 , we get 
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Where     is the density function of the standard normal 

distribution, ( )   is the standard normal distribution 

function, in addition, 
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Then, in the time censored life test, the variance-covariance 

matrix of the model parameters’ maximum likelihood 

estimation is 
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Substituting the H and I matrices into the formula (2.3), 

the asymptotic variance of ˆ
p  can be calculated. 
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IV. RELIABILITY MODELING BASED ON DEGRADATION TEST 

DATA 

Suppose the sample size is n , the test duration is T , the 

number of measurement for sample i  is 
im , the observation 

interval is 
ijt  and the observed data is 

ijx , which is the 

performance change of sample i  between two adjacent 

measuring times.  

A. Case 1: without measurement error 

When there is no measurement error, the likelihood 

function of the degradation test data is as the following, 

according to the independent increment property of Wiener 

process:  
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B. Case 2: with measurement error 

For the convenience of description, only consider equal 

measurement interval. That is to say, for each sample i  and 

measurement time j , observation interval 
ijt   . The 

number of measurements is the same for each sample, which 

is m  and the observation interval = /T m . Let the 

measurement error (standard error) is 
R . For each sample i , 

the degradation test data is written as  ,1 ,, ,
T

i i i mx x   X , then 

the likelihood function of parameters  , 2 , 2

R  is [6] 
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Set the measurement accuracy index 
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We can get the H matrix as 
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By substituting the H and I matrices into the formula (2.3), 

the asymptotic variance of the ˆ
p  under the degradation test 

can be calculated. When the numbers of measurement are 1, 2 

and 3 respectively, limit form of measurement accuracy of 

degradation test and the asymptotic variance of the ˆ
p  is 

shown in the following. 

When the number of measurement is 1 

 For each sample is only measured once, that is m=1, there 

is 
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When measurement accuracy 0, the Fisher information 

matrix can be written as 
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We can find that the equation is a singular matrix. This 

means when the number of measurements is 1 and every 

sample is measured at the same time, we cannot use the test 

data to distinguish between the diffusion parameters and the 

measurement error. Therefore, in the case of measurement 

errors, different measurement times are required for different 

samples. 

When the number of measurement is 2 

Each sample is measured twice, i.e. 2m  , and we can get 
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We can obtain that when the measurement accuracy 0 (that 

is, the measurement error is particularly small relative to the 

diffusion coefficient), the Fisher information matrix is 
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The limit of estimation accuracy is 
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From the Fisher information matrix under the measurement 

accuracy 0, when there is no measurement error, if the 

reliability model parameters are estimated in a way with 

measurement errors, the accuracy of the estimation will be 

lower than the actual result without measurement errors. 

 When the number of measurement is 3 

Each sample is measured three times, that is 3m  , and the 

expectation value is 
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When the measurement accuracy 0, the Fisher information 

matrix and limit of estimation accuracy are shown as follows 
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V. CASE STUDY 

In order to compare the effectiveness of degradation and 

life test, the life test data and the parameter estimation based 

on the degradation test data are represented by subscripts T  

and D , respectively. As can be seen from the fourth section, 

when the number of measurements is 1, the Fisher information 

amount is a singular matrix, so the following is only studied 

when the number of measurements is 2 or 3. We study the 

effect of measurement error on reliability assessment and 

compare the effects of time censored life tests with 

degradation tests on reliability assessment. Without loss of 

generality, in the following study, we set the drift parameter 

=1 , diffusion parameter =1 , and product failure threshold 

1l   for the Wiener degradation model.  

A. Effect of measurement error 2

R  on degradation 

process modeling 

When test duration =1T , the number of sample size =1Dn , 

figure 1 and 2 show the relationship between measurement 

error and the drift parameter as well as diffusion parameter 

estimation accuracy of in degradation test. rom the figure, we 

find that when the measurement error increases, the 

estimation accuracy of the drift parameter increases linearly, 

which is proportional to the measurement error, while the 

estimation accuracy of the diffusion parameter increases 

nonlinearly and the acceleration speed increases, which in 

proportion to the second of the measurement error. Fixed 

measurement error, the higher the number of measurements, 

the higher the accuracy of parameter estimation. Ideally, cut 

back the measurement error and raise the number of 

measurements can obtain higher accuracy.  

However, under practical engineering practice, due to cost 

and instrument limitations, measurement errors cannot be 

reduced indefinitely or the number of measurements cannot 

be increased indefinitely. Further we discuss the effect of 

measurement error on the asymptotic variance. The figure 3 

shows the measurement error and the asymptotic variance 

(reliable life) estimation accuracy curve, we take that the 

number of measurements is 2 and 3, and p is 0.5 and 0.9 

respectively. We can see from the curve in the figure that 

when the number of measurements is constant, the smaller the 

p value, the higher the precision; when the parameter p is 

constant, the more the number of measurements, the higher 

the accuracy is. 

 
Fig. 1  Effect of measurement error on ˆvar( )  

 

Fig. 2  Effect of measurement error on 
2ˆvar( )  

 

Fig. 3  Effect of measurement error on ˆAver( )p  

B. Degradation test plan optimization 

In the actual test process, the test design is often subject to 

realistic conditions, such as test costs. The main factors 

affecting the cost of the test are the sample size, test time and 

number of measurements. Assuming that the costs incurred 

for the individual measurement and the batch measurement 

are the same, the test cost mainly includes three parts: the cost 

of the sample size, the labor and public resources cost caused 

by the test time, and the data measurement cost caused by 

multiple measurements. 
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Suppose the price of a single sample is 
0c , the labor and 

public resource cost per unit time is 
pc , the cost of each 

measurement is 
mc . If there are n  samples to be tested, each 

sample is measured m  times, and the test duration is T , then 

the total cost of degradation test is 

0( , , ) p mTC n t m c n c m t c mn      

Generally, in degradation test, the cost of each 

measurement 
mc  is not fixed, but is related to the 

measurement error 
R  of the test. Usually, the smaller the 

measurement error is, the higher the measurement accuracy is, 

and the higher the cost per measurement. Here we assume that 

mc  and 
R  are inversely proportional, that is 

m Rc w  . In 

reference [7], assuming the price of a single sample 
0 80c  , 

the human and public resource costs per unit time 

0.07pc  , 1w  , so the total cost in the degradation test is 

1
( , , ) 80 0.07D D D D D

R

TC n m T n T m n


    

From this, when there is one sample in the degradation test 

at a fixed censoring time 1T  , the relationship between the 

measurement error and the measurement cost is as follows: 

 

Fig. 4  Relationship between R  and total cost 

In the reliability test, under the given cost constraint, the 

higher the accuracy of the reliability index is, the better the 

model is. The asymptotic variance of the product can be used 

as the optimization target, and the test cost is used as the 

constraint. Consider taking degradation test on the same batch 

of products and taking the parameters 0.9p  , censored time 

1T   and the number of measurements 3m  . The total test 

cost is required to not exceed 4000, and we use genetic 

algorithm [9][10] to get the degradation test optimal scheme: 

measurement error 2 0.0388R  ,  

sample size 42Dn  , 

At this time, asymptotic variance reaches the minimum and  

Aver( )=0.1710p  

We can see that in short censored time, if we need to achieve 

better evaluation accuracy, you need higher measurement 

accuracy. 

If there is no restriction on the test time, when censoring 

time is 1089T  , the sample size is 48Dn   and measurement 

error is 2 2.9563R  , the asymptotic variance of ˆ
p  reaches 

minimum and Aver( )=0.075p . We can see that even if the 

measurement error is large, the influence can be compensated 

by a long test time, and a high evaluation accuracy is obtained. 

C. Comparison on degradation test and time censored life 

test 

A large number of theoretical studies and practices have 

shown that degradation testing can make full use of 

experimental information and improve reliability modeling 

and evaluation accuracy compared with life test. In order to 

quantitatively compare the pros and cons of degradation test 

and life test in reliability modeling and evaluation, based on 

reference [7], we set the cost of each measurement for the life 

test 10mc  , so the total cost in the life test is 

( , ) 90 0.07L LTC n T n T   

When the censored time is 1, we find that to achieve the 

same asymptotic variance as degradation test, figure 4 shows 

the relationship between the asymptotic variance and the 

sample size. The life test sample amount required is 92Ln  , 

when its accuracy reach the same asymptotic variance 

Aver( )=0.1710p . And its experimental cost is 8280.07, 

which exceeds the predetermined budge. 

 

Figure 5 Relationship between 
Ln  and ˆAver( )p  

For life test, without the limitation of test time, under the 

total experimental cost constraint, enumeration method [8] is 

used to get the relationship between optimal test plan and 

reliability evaluation accuracy (asymptotic variance of ˆ
p ), as 

shown in Table I.  

We can see from the table that increasing the censoring 

time and reducing the sample size cannot improve the 

asymptotic variance of the estimated p-percentile of the 

product’s lifetime distribution. This is because the accuracy 

of the parameter estimation under the life test is determined 

by the effective test time, which depends on the test end time 

of each sample. In the timing censored life test, it depends on 

the minimum value of the test censoring time and the sample 

failure time. When the test censoring time is large (as shown 

in Table I), the effective test time of the life test depends on 

the failure time of each sample, and is no longer affected by 

cut-off time. In fact, the life test does not require such a long 

test time as shown in Table I, because all test samples have 
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failed before the test deadline is reached and the test does not 

need to continue. At this time, increasing the sample size and 

reducing the test time appropriately can obtain higher 

estimation accuracy. 

Table I the asymptotic variance of ˆ
p  in life test 

Ln  
44 43 42 41 40 

LT  
571 1857  3142 4428 5714 

ˆAvar( )p
 

0.1491  0.1522  0.1562  0.1590  0.1633  

Ln  
39 38 37 36 35 

LT  
7000 8285 9571 10857 12142 

ˆAvar( )p
 

0.1686  0.1719  0.1775  0.1827  0.1873  

Ln  
34 33 32 31 30 

LT  
13428 14714 16000 17285 18571 

ˆAvar( )p
 

0.1920  0.1987  0.2043  0.2108  0.2177  

Ln  
29 28 27 26 25 

LT  
19857 21142 22428 23714 25000 

ˆAvar( )p
 

0.2250  0.2330  0.2425  0.2517  0.2624  

Ln  
24 23 22 21 20 

LT  
26285 27571 28857 30142 31428 

ˆAvar( )p
 

0.2719  0.2848  0.2975  0.3120  0.3268  

Ln  
19 18 17 16 15 

LT  
32714 34000 35285 36571 37857 

ˆAvar( )p
 

0.3438  0.3632 0.3848  0.4100  0.4340  

Ln  
14 13 12 11 10 

LT  
39142 40428 41714 43000 44285 

ˆAvar( )p
 

0.4667  0.5010  0.5484  0.5984  0.6532  

Ln  
9 8 7 6 5 

LT  
45571 46857 48142 49428 50714 

ˆAvar( )p
 

0.7274  0.8186  0.9326  1.0987  1.3154  

Ln  
4 3 2 1  

LT  
52000 53285 54571 55857  

ˆAvar( )p
 

1.6395  2.1732  3.2953  6.5302   

VI. CONCLUSION 

In this paper, for the Wiener degenerate failure products 

and two cases which are without and with measurement error 

in the degradation test, the reliability modeling methods with 

different number of measurement have been studied 

respectively. And we compare the effectiveness of life test 

and degradation test on reliability assessment. The research 

shows that:  

(1) For the reliability evaluation based on the degradation 

test, it is necessary to make a reasonable analysis and 

determination of the factors affecting the test. For example, if 

there is no measurement error in the test, using the evaluation 

method for measurement error case will reduce accuracy. If 

the destructive measurement is used or each sample only 

measure once, different measurement times are required for 

each sample so as to identify the measurement error and the 

diffusion parameter.  

(2) For the optimization of degradation test, the effects of 

measurement errors must be considered. Specifically, the 

measurement error has different influence on the accuracy of 

different model parameter. For example, the standard error of 

MLE of drift parameter increases linearly with the 

measurement error, while the estimation accuracy of the 

diffusion parameter decreases nonlinearly when the 

measurement error increases.  

(3) Degradation tests have significant advantages for 

reliability assessment compared to life tests. As far as we 

know, this paper is the first to quantitatively compare the 

degradation test and the life test. The results can be of 

practical significance for the study of reliability evaluation 

test optimization. 
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