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Abstract—In the sport of table tennis, the overall success
of any given player is significantly correlated to the points
gained on serves. Perfection of the serve is therefore an essential
component of the training regime of all professional players.
The Ma Lin ghost serve is a particular type of backspin short
serve which is quite advantageous. In this paper, we propose
a simple two-dimensional mathematical model to describe the
behaviour of the ball during this short serve from initial toss
to the third board bounce. For this purpose, we subdivide
the entire serve into eight phases: four of which were points
of contact between the ball and the racket or board, and
four airborne trajectories. The first airborne phase is the toss
which leads to the backspin serve which is the first contact
phase. We account for the Magnus Lift generated by the spin
throughout the next three airborne trajectories, and the effect of
air resistance. We also consider velocity and rotational changes
due to the respective coefficients of restitution and surface grip
on the spinning ball as it bounces on both sides of the board to
fulfill the requirements of a legal short serve and develop into
a ghost serve.

Index Terms—Ma Lin, backspin serve, table tennis, mathe-
matical model.

I. INTRODUCTION

THE sport of table tennis has become increasingly
competitive in recent years. While undergoing intense

training regimes to hone their reflexes, professional players
seek to expand their arsenal of attacking shots while simulta-
neously boosting their defensive plays. The psyche of a given
competitor fluctuates according to the evolution of the match
or the response of a given opponent. Individual levels of
dexterity and the tendency or preference for various strokes
contribute towards making every table tennis player unique.
The success rate of the tactics employed by a player is
dependent on the efficient implementation of different strokes
with subtle variations in incident racket-ball angles, velocities
and points of contact.

The overall performance of a player is significantly cor-
related to the points gained from serves [1]. The serve is
initiated when the ball is tossed vertically upwards from rest
in the open palm of the server’s hand (without imparting
spin). The ball rises at least 16cm and then falls without
making contact with anything, before being struck by the
racket for the serve. This neutral beginning quickly morphs
into a battle of wit, skill and technique. The initial strategy
of attack – aimed at immediately or ultimately securing the
point – should therefore commence at this stage. Our aim
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is to develop a mathematical model for a particular type of
serve that, when executed well, would severely hamper an
aggressive return by the receiver. For a given service to be
legal, the ball must bounce once on the server’s court and
subsequently at least once on the opponent’s side. A serve is
said to be short when a legal serve then bounces for a third
time on the board.

The backspin serve attributed to the Olympic and four-time
World champion Ma Lin is a short service that is commonly
referred to as the Ghost Serve. It is produced by imparting a
heavy (high revolution) backspin imparted on the ball with
minimal translational velocity. This allows the ball to have
a much lower height when clearing the net in comparison
to a serve with no backspin and to bounce twice on the
receiver’s side of the table unless it is returned in time. When
enough backspin is imparted, after bouncing for the first time
on the opponent’s end, the ball may reverse direction and
spin towards the net, away from the opponent. This complex
behaviour of the ball severely restricts the choice of possible
returns from the opponent, which is to the server’s advantage.

Our two-dimensional mathematical model for the Ma Lin
ghost serve utilizes the well-known kinematic equations of
motion. We also incorporate linear and angular momentum
conservation principles. In what follows, we present a step
by step trajectory analysis for a given incident racket velocity
and angle. We consider the effect of quadratic backspin,
air resistance (drag) and Magnus lift on the ball. We also
incorporate horizontal and vertical coefficients of restitution
with a surface grip analysis for board-ball contact. We utilize
finite difference techniques to solve the resulting equations
numerically at each stage of motion in order to generate ball
trajectories that resemble the Ma Lin ghost serve.

II. THE MATHEMATICAL MODEL

The Ma Lin ghost serve for a table tennis ball is analysed
up to the third board-ball collision point. Assuming that there
is no sideways motion, we investigate the two-dimensional
trajectory of the ball by partitioning the serve into separate
phases [2]. This subdivision divides the serve into four
airborne and four contact phases, as depicted in Figure 1.

The serve is initiated when the ball is tossed (without
spin) vertically upwards from the open palm of one hand.
The ball reaches a maximum height, which we refer to as
point A. Our analysis of the serve begins when the ball falls
from rest at the maximum height A. The first airborne phase
therefore represents the vertical drop from the maximum
height at A to the point B as indicated in Figure 1. The
first contact phase takes place at B when the server hits
the ball with the racket to impart the necessary backspin.
The second airborne phase BC is the trajectory of the ball
after impact with the racket at B until the ball lands for the
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Fig. 1. A basic short serve with four airborne phases and four contact
phases

first time on the board at point C. The collision between
the ball and the board at C is referred to as the second
contact phase. It should be noted that for the serve to be
legal, point C must be located on the server’s side of the
board. The ball subsequently rebounds from C and travels
until it lands for a second time on the receiver’s board at
point E. The serve is said to be illegal if the second bounce
at E does not take place on the receiver’s end of the board.
The third contact phase of the serve considers the impact that
the bounce at position E has on the subsequent motion of
the ball. During the third airborne phase CE, the ball must
have cleared the table tennis net. The position of the ball
when it is directly above the net is indicated by the point D.
Phase EF investigates the rebound of the ball from E until
it lands again at F .

The position of F is instrumental in rating the success of
the serve. Point F must be located on the table tennis board
for the serve to be classified as short. The Ma Lin ghost
serve is a short serve where the spin on the ball reverses
the direction of its trajectory after the second board-ball
contact at E. It follows that if point F is located closer to the
server than point E, the ball would have effectively reversed
direction.

The individual style of each player is unique, and this is
taken into account in our investigation. Key factors that may
vary from player to player include the height of the ball toss,
the serve position and the spin on the ball. The system also
has fixed standards for regulated table tennis equipment. The
radius of the ball k is 0.02m, the upper surface of the board
must be 0.76m above the ground, the length of half of the
board b is 1.37m, the height of the net is 0.1525m and the
width of the board is 1.525m [3].

We adopt a two-dimensional Cartesian coordinate system
for our analysis. The horizontal axis originates in the line
of the ball toss AB and proceeds in a positive direction
towards the receiver’s end. The vertical axis commences one
ball radius above the board’s surface and takes the positive
direction as vertically upwards. The values of velocities
and displacements with respect to time are investigated via
perpendicular horizontal and vertical axes. In generating
the results of each phase, the final values of velocity and
displacement in one phase are the initial values of the
consecutive phase. The corresponding ball trajectories are
calculated and displayed graphically.

TABLE I
NOMENCLATURE

Symbol Units Description

vr ms−1 velocity of serve

θ degrees angle of elevation to horizontal

NBC revs per sec backspin imparted by the racket

W N weight of the ball

AR N force due to air resistance

M N force due to Magnus Lift

SP - spin parameter

CD, CL - coeff of drag, lift

eHC
, eVC

- coeff of horizontal, vertical restitution

K m radius of the ball

ω1BC , ω2BC rad. per sec initial, final angular velocity BC

uhBC
, uvBC ms−1 initial horizontal, vertical velocity BC

vhBC
, vvBC ms−1 final horizontal, vertical velocity BC

FHC
N horizontal force at C

FRC
N frictional force at C

RC N reaction force at C

G ms−2 acceleration due to gravity

hb m height of ball toss above board at A

hr m height of serve above board at B

mb, mr kg mass of ball, racket

Re - Reynold’s number

ρa kgm−3 density of air

qd Nm−2s2 proportional coeff of drag

qm Nm−2s2 proportional coeff of Magnus lift

A. Phase AB

We assume that the the ball is dropped vertically down-
wards from the maximum height A, to the point of contact
with the racket B. Since the ball has no spin from the initial
toss, no Magnus effect is considered during this phase of
motion. We also assume that energy is conserved throughout
this period. This allows us to calculate the horizontal and
vertical components of velocity prior to impact with the
racket in equations 1 and 2.

B. Phase B

In the racket-ball collision phase, the racket moves from
left to right with a velocity vr . The racket strikes the ball at
position B with an angle of elevation θ to the horizontal in
a counter-clockwise direction. The impact is at the base of
the ball and this results in changes in its vertical, horizontal
and rotational motions. For simplicity, we assume that the
racket and ball coalesce, and that momentum is conserved.
The initial velocities of phase B are the final velocities of
the previous phase. Horizontal and vertical components of
velocity are calculated directly after impact with the racket
via equations 3 and 4. We assume the ball leaves the racket
with a backspin of NBC revolutions per second.

C. Phase BC

The ball is considered to be a light spherical weight W
in flight which loses a significant percentage of its energy
due to air resistance AR [4]. This air resistance or drag
force acts on the airborne trajectory phases BC, CE and
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Fig. 2. Magnus lift of table tennis ball

EF . As the Reynolds number is proportional to velocity, it
follows that different serve velocities will correspond to a
range of possible Reynolds numbers. The drag coefficient is
approximately constant for the range of Reynolds numbers
that we consider [5]. We may therefore conclude that the
drag force is proportional to the square of the velocity, and
this is reflected in equation 5.

The Ma-Lin serve requires a significant amount of back-
spin on the ball. This produces a variation of speed and
pressure difference between the lower and upper surfaces of
the ball. The effect of backspin is taken into account during
the airborne phases BC, CE and EF . The pressure differ-
ence (Bernouilli’s effect) generates a perpendicular force to
motion usually referred to as the Magnus Lift - denoted by
M - as seen in Figure 2.

Rotation produces a factor known as the spin parameter
SP which is defined as the ratio of the velocity of a
peripheral point of the ball to the velocity of the centre
of gravity of the ball [6]. We assume for this system that
the spin parameter SP is 3.0 and that the racket imparts an
angular velocity ωiBC

on the ball. For this spin parameter, the
coefficient of drag CD is 0.73 and the coefficient of lift CL is
0.35 [7]. The numerical analysis generates displacement and
speed values from equations 7 to 13, with similar analyses
for motion in phases CE and EF . The terminal velocity is
also calculated to ascertain any effects it has on the velocity.

D. Phase C

The main factors that affect the board-ball contact phases
are the change in bounce and grip. The vertical energy
loss parameter (i.e. coefficient of vertical restitution) is only
considered at the first two points of board-ball contact at C
and E. There is an established standard for regulated table
tennis boards to generate a fixed rebound from a particular
height [3]. We use this standard to establish the coefficient
of vertical restitution for our analysis. This parameter is
represented by eC and eE at points C and E respectively,
where eC = eE .

As the spinning ball grips the surface at C and E, changes
in velocity and spin occur at these points [8]. This is
illustrated in Figure 3, where a ball of radius k is incident at
an angle on a horizontal surface (board) with angular velocity
ω2BC

, vertical velocity vvBC
and horizontal velocity vhBC

.
The ball rebounds off the surface with angular velocity ω1CE

,
vertical velocity uvCE

and horizontal velocity uhCE
.

The ball bends, grips and deforms upon impact with the
surface, which affects the coefficient of horizontal restitution
[8]. This coefficient is defined as the negated ratio of the
horizontal speed of a point on the bottom of the ball with
respect to the board after impact to the horizontal speed of

Fig. 3. Table tennis ball grips the surface at C

a point on the bottom of the ball with respect to the board
before impact. The coefficient of horizontal restitution has
values ranging from −1 to 1, and can lead to the ball slowing
down or even reversing direction. We assume that the net
reaction force RC acts through the centre of the ball and thus
did not affect the torque. It should however be pointed out
that a torque is created when the frictional force FRC

acts in
a positive horizontal direction at the base of the ball. We also
assume conservation of angular momentum about the point of
contact between the ball and surface of the board. The ball
is considered to be a thin hollow sphere when calculating
its moment of inertia. Based on these assumptions for the
rotating ball, equations 17 to 20 are generated. A similar
analysis is done for phase E, which is the other board-ball
contact point.

E. Phase F

The displacement at point F at the end of the serve is
instrumental in determining whether the serve is short, long,
or qualified as a Ghost serve.

III. RESULTS AND CALCULATIONS

We consider vertical motion (↑) as positive and horizontal
motion to the right (→) as positive.

A. Phase AB

The assumption of no losses in this phase allows the use
of the Principle of Conservation of Energy. The final vertical
velocity is

vvAB
= −

√
2ghb (1)

where acceleration due to gravity is taken to be g =
9.81ms−1. The toss was completely vertical, so the final
horizontal velocity of the ball during this phase of motion is

vhAB
= 0 (2)

B. Phase B

We assume that the racket and ball coalesce and that
momentum is conserved, with the racket striking the ball
at a tangent. The equations for the horizontal and vertical
motion of the ball in this phase are

uhBC
=

mr

(mr +mb)
vr cos θ (3)

uvBC
=

mr

(mr +mb)
vr sin θ +

mb

(mr +mb)
vvAB

(4)

where mass of a racket is taken as mr = 90g and the mass
of the ball is given as mb = 2.7g.
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C. Analysis of the Airborne Phases

We assume that there is no rotational decrease during each
airborne phase of motion, so that ωi = ωf . We also utilize
2 ≤ vr ≤ 12ms−1, which is a realistic range of velocities
for a legal serve with no spin. The corresponding range for
Reynolds number is 5478 ≤ Re ≤ 32868. This is well within
the Newton region which ranges from 103 ≤ Re ≤ 2.5×105,
which in turn suggests that the drag coefficient in this region
is approximately constant [5] at CD = 0.4. It follows that
air drag is

AR =
1

2
CDρaπk

2v2 = qdv
2 (5)

The spinning ball (with angular velocity of 90 rads−1) has
a force acting on it due to the Magnus lift defined as

M =
1

2
CLρaπk

2v2 = qmv
2 (6)

since CL is constant.
We assume that there is no rotational decrease during each

airborne phase of motion, so that ωi = ωf . In our numerical
approach, the initial values of horizontal distance sh0

and
velocity ṡh0

are known. Using Forward Euler and Central
Differences to discretize the equations, we get

sh1
= sh0

+ ṡh0
∆t (7)

shi+1
= s̈hi

(∆t)
2

+ 2shi
− shi−1

(8)

ṡhi =
shi+1

− shi

∆t
(9)

where s̈hi
is the discretized horizontal acceleration.

For the horizontal motion in Phase BC, the total horizontal
force is given by

FhBC
= −MhBC

−ARhBC

hence
mbahBC

= −qMv2vBC
− qDv2hBC

s̈hi =
−qM ṡ2vi

− qD ṡ2hi

mb
(10)

and using (10) in (8)

shi+1
=

(
−qM ṡ2vi

− qD ṡ2hi

mb

)
(∆t)

2
+ 2shi

− shi−1
(11)

For the vertical motion in Phase BC

FvBC
= MvBC

−ARvBC
−W

hence
mbavBC

= qmv
2
hBC
− qv2vBC

−mbg

and we obtain the discretized equations

s̈vi =
qmv

2
hBC
− qv2vBC

−mbg

mb

svi+1
=

(
−qmṡ2hi

− qdṡ2vi
−mbg

mb

)
(∆t)

2
+ 2svi

− svi−1

(12)
ṡvi

=
svi+1 − svi

∆t
(13)

Without loss of generality, the same procedures are re-
peated for the other two airborne phases with spin: Phases
CE and EF .

D. Consideration of Terminal Velocity

Terminal velocity is calculated only with regards to the
downward vertical motion from Newton’s Second Law. Re-
call

FvBC
= ARvBC

−W = qdv
2
vBC
−mbg

Since avBC
= 0 at terminal velocity, it follows that v2tBC

=
mbg
qd

= 2.96ms−1. From the numerical solution generated,
the velocity of the Ma Lin ghost serve does not approach the
terminal velocity. As such, this does not affect the solution.

E. Ball-Board Contact Analysis

Energy is lost vertically at the point of ball-board contacts
at C and E [6]. The coefficient of vertical restitution [3] is
evC

= evE
= 0.77. We also know that

|uvCE
| = |evC

vvBC
| (14)

hence C and E

uvCE
= −evC

vvBC
(15)

uvEF
= −evB

vvCE
(16)

The ball deforms (slightly) and grips the surface at C and
E, with the coefficient of horizontal restitution

ehC
= −uhCE−kω1CE

vhBC−kωiBC

, − 1 < ehC
< 1 (17)

We assume that there is no rotational decrease during each
airborne phase of motion, and ωiBC

= 2πNBC . We also
assume conservation of angular momentum about the point
of contact with the ball and surface, hence

Iω1 +mbkvhBC
= Iω2 +mbkuhCE

(18)

where I = αmbk
2 and α = 2

3 for a thin spherical sphere.
We also assume that the frictional force FRC

= −mb
dvh
dt

and FRC
k = −I dω

dt . Taking k to be constant in the bounce
phase,∫

Fdt = mb (vhBC
− uhCE

) = mbαk (ω1CE
− ω2BC

)

These equations for spin are solved to obtain at C

uhCE

vhBC

=
1− αehC

1 + α
+
α (1 + ehC

)

1 + α

kω2BC

vhBC

(19)

ω1CE

ω2BC

=
α− ehC

1 + α
+

1 + ehC

1 + α

vhBC

kω2BC

(20)

Without loss of generality, there are similar equations
generated at E. We consider the system for

ehC
= ehg

= 0.6

Thus, using the initial velocities and rotational speed at the
beginning of each ball-board contact phase, the final values
are generated.
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Fig. 4. Numerical solution of ball trajectory A1 depicting a Ma Lin Ghost
Serve. Trajectory is measured in metres (m)

IV. DISCUSSION

Modern table tennis rackets are constructed with individual
variations in adhesives, weight and surface textures which all
have an impact on the ball trajectory. For our purposes, we
considered an ideal case where the principle of conservation
of momentum could be used to determine the velocity after
the racket-ball collision. We also assumed that the ball
obtained a fixed rotational speed after impact with the surface
of the racket.

In the first airborne phase BC, and we incorporated the
effect of air resistance and Magnus lift. The coefficients of
drag and lift for these effects are held constant since the spin
of the ball is assumed to be constant throughout this phase.
The air resistance is proportional to the square of the velocity
while the Magnus lift term is proportional to the square of the
perpendicular velocity. Finite difference methods we utilized
to generate numerical values for the ball displacement and
velocity. This procedure was repeated for phases CE and
EF .

The ball deforms (slightly) at both board-ball contact
points at C and E. The resulting vertical and horizontal
losses are incorporated into the analysis accordingly. The
torque created upon impact of the ball with the board surface
(as it grips the moving ball) converts some of the ball’s
translational energy into rotational energy. This significantly
decreases the horizontal velocity of the ball, while simul-
taneously increasing the magnitude of the backspin at each
of the board-ball contact points at C and E. These effects
are cumulative, and may decrease the velocity of the ball to
the point of reversing its trajectory at the second board-ball
contact point E. In such cases, the Ma Lin short ghost serve
is observed.

As players have individual playing techniques and styles
of delivery, it is possible to generate Ma Lin ghost serves
with widely ranging characteristics. We utilized our model
to illustrate this by calculating the ball trajectories of four
possible Ma Lin ghost serves by having one manipulated
variable while keeping the backspin constant (as a controlled
variable). The four resulting ball trajectories are illustrated
in Figures 4-7.

The Ma Lin ghost serve labelled A1 is representative of
the original analysis done in the previous sections of this
paper. Serve A2 was generated by reducing the serve angle
(manipulated variable) previously adopted for serve A1. In
order for the Ma Lin serve to be achieved with this variation,

Fig. 5. Numerical solution of ball trajectory A2 depicting a Ma Lin Ghost
Serve. Trajectory is measured in metres (m)

Fig. 6. Numerical solution of ball trajectory A3 depicting a Ma Lin Ghost
Serve. Trajectory is measured in metres (m)

Fig. 7. Numerical solution of ball trajectory A4 depicting a Ma Lin Ghost
Serve. Trajectory is measured in metres (m)

the height of toss, the height of contact and the distance of
serve from the board were modified (responding variables).
Serve A3 has a higher initial serve velocity (manipulated
variable) than serve A1. In order to obtain the characteristics
of a Ma Lin ghost serve for A3, alterations (responding
variables) were made for the serve angle, height of racket
contact and distance of serve from the board. Serve A4 varies
from serve A1 by an increase in the height of the ball toss
manipulated variable). The correction made to still generate
a Ma Lin serve was an alteration in the serve position
(responding variables). Table II summarizes the values of
the parameters utilized to calculate the ball trajectories for
serves A1 to A4.

V. CONCLUSION

We successfully formulated a two-dimensional mathe-
matical model for the Ma Lin ghost serve. We utilized
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TABLE II
PARAMETERS USED FOR BALL TRAJECTORIES IN FIGURES 4-7.

Serve A1 Serve A2 Serve A3 Serve A4

vr 5.5 5.5 6 5.5
θ 20 8 0 20
hb 0.16 0.64 0.16 1.0
hr 0.24 0.3 0.4 0.24
d −0.82 −0.42 −0.45 −0.78

the kinematic equations of motion with linear and angular
momentum conservation principles. A step by step trajectory
analysis was performed for varying incident racket velocity’s
and angles. The effect of quadratic backspin, air resistance
(drag) and Magnus lift were successfully incorporated. We
also included horizontal and vertical coefficients of restitu-
tion and a basic surface grip analysis for board-ball con-
tact. Finite difference techniques were adopted to solve the
equations numerically at each stage of motion, and graphical
illustrations of the ball trajectories for the Ma Lin ghost serve
were generated.

This paper represents a first attempt in the creation of a
mathematical model for a relatively complicated backspin
serve that is commonly employed by professional players
in the sport of table tennis. The authors acknowledge that it
would be greatly beneficial if experimental work was done in
support of the model. This would allow us to obtain accurate
values for all the required parameters. In the absence of
this, we have estimated the necessary parameter values using
established theoretical reference sources that have been duly
cited in the body of the paper. It should be noted however
that the existence of a theoretical mathematical model is
still of great value, as it represents an important first step
in the development of a holistic model to accurately trace
the trajectory of ball during a Ma Lin ghost serve.
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