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Abstract—In this work we have taken into consideration a 

gearing mechanism which does rely upon a mechanical model 

which does own two torsional freedom degrees and which does 

represent a new modality of expression for the movement 

equations. When adopting certain hypotheses of work, we have 

studied the mathematical model of the movement. We have 

applied to the obtained mathematical models the unilateral 

Laplace transformation in respect to time. This method does 

present the advantage transform into algebra calculation the 

concerned problem and this fact simplify the resolving of some 

differential equations or of some systems of differential 

equations. 

 
Index Terms—gearbox, dynamic analysis, Laplace 

transform, differential equation. 

 

I. INTRODUCTION 

N the components made use of for the transmission of 

power  the gearing does appear as the main source of 

excitation. The instantaneous movements of each of the 

wheels are represented by six degrees of freedom (three 

translations and three rotations). The fluctuations which do 

occur in the rigidity of the gearing mechanism and in the 

transmission, error are the main causes of the excitations 

that are usually associated to them. For the transmission 

error it is particularly indispensable to make the accurate 

distinction between the effects which are due to elastic 

deformations and the kinematic effects which are associated 

to the gearing of some non-conjugated profiles [2]. There 

are several authors (see [3]) which do make use of these 

sizes in order to define the interface which is created 

through the gearing procedure. In the specialized literature 

are usually discussed about three distinct levels when it 

comes to the modeling of the gearing mechanisms. 

1.  Models made of multiple rigid bodies which do 

represent the gearbox as an aggregate of masses and of 

inertial behaviors which are connected among themselves 

through springs and cushions.  This type of models is 
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applied in the case of the epicyclical gearbox which do 

present a straight [4] or helicoidally [13] tooth structure. 

2. Models made of finite elements [8] who are allowing a 

highly realistic simulation of the respective physical 

behaviors. 

3. Models made of multiple flexible bodies [5]. They 

consist in the superposition of a model with finite elements 

above a classical model made of rigid bodies. In order to 

reduce the cost of the simulation which is rather important 

for the models made of finite elements the method of Craig 

& Bampton is proposed for the reduction of the model [4]. 

This method is described in [12] and it does consist in the 

total condensation of the models made of finite elements 

upon an assembly of degrees of freedom held by the 

interface to which come to be joined the modes of vibrations 

presented by the immobile interface. In [9] is presented – in 

a multidisciplinary approach – the simplified mechanical 

model made use of in order to study the vibratory and 

acoustic behavior of a gearing mechanism where its 

elements are considered as behaving like some solid and 

rigid bodies. The objective of this approach is constituted by 

the process of optimizing a mechatronics product.  

II. GEARING AS A SOURCE OF EXCITATION. CONTRIBUTION 

BROUGHT BY THE TRANSMISSION ERROR 

For reasons of simplicity the gearing mechanism below 

does rely upon a mechanical model with two torsional 

degrees of freedom - as in Fig. 1- a fact which does 

represent a new modality of illustrating the movement 

equations.  

 
Fig. 1. Model with two torsional degrees of freedom (a) and equivalent 

linear model (b). 

 

The rotation movement of every wheel is expressed 

through the angle:  

     
i i

d

i t t t   
, (1) 

where: 
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  
i it t   - the nominal component; 

  
i

d t  - the dynamic component; 

 i  -  the angular velocity of the cog wheels. 

 The nominal movements  
i it t   and 

 
j jt t    are related through a kinematic relationship 

which is defined by the movement of the cog wheels taken 

into consideration as rigid un-deformable bodies that is to 

say  

i ij jr  
, (2) 

where: 

j

ij

i

a
r

a
 

 (3) 

is the reduction ratio. 

 Should we take into consideration these kinematic 

relationships we could define the nominal movement of the 

system by starting from a unique parameter which we are 

going to denote: 

 t t  
 (4) 

and, furthermore, the dynamic component  
i

d t  could 

be written under the form: 

     
i i

d d de

i t t t   
. (5) 

 

The component  
i

d t  does express the effect of the 

shaping and position errors of the teeth structures upon the 

transmission of the movement while the  
i

de t  component 

is generated by the elastic deformations. The mechanical 

model from Fig. 2 could be reduced into a linear system 

which is equivalent to one only degree of freedom.  

 
Fig. 2. Gearbox mechanical model. 

 

 The mathematical model which does define the 

dynamic movement of the un-cushioned system could be 

written under the form of a second order differential 

equation such as the one below: 

       ijij ij ij ij ijM t K t t t F


       , (6) 

where: 

  d d

ij i i j jt a a    
 (7) 

represent the error of the dynamic transmission and  

  d d

ij i i j jt a a     
 (8) 

is the transmission error generated by the gearing of the 

non-conjugated profiles (the errors of shaping and of 

position). The last term is: 

i j

i j

ij 2 2

j i

I I
M

a I a I



 (9) 

is the equivalent mass where Ii and Ij are the polar inertial 

moment of the cog wheels i and j as well as simultaneously: 

i
ij

i

C
F

a


 (10) 

The above term defines the nominal effort which is 

associated to the static couple Ci. 

We have represented here only the sources of excitation 

which are associated with the gearing mechanism.  The 

other exterior actions such as the loading fluctuations have 

not been taken into consideration for reasons of simplicity. 

The terms  ij t  and  ijK t are dependent upon the 

conditions of contact and their produced effects are not 

separable one from the other. They could be written under 

the form: 

         ij ij ij ij ijt F t ,K t , t , t ,        

         ij ij ij ij ijK t K F t , t , t , t .       
 Should we be interested in the elastic deformations 

only of the teeth structure the above-mentioned 

mathematical model could be written as: 

       ijijij ij ij ij ijM t K t t F m t ,
 

       (11)                                

through the denotation: 

  de de

ij i i j jt a a    
. (12) 

 The contribution brought by the transmission error 

  d d

ij i i j jt a a       which is generated by the gearing 

of some non-conjugated profiles would be then associated 

with the introduction of an inertial term within the second 

member. Some authors have preferred this written form (see 

[11]). Yet even under these conditions it does require for the 

calculation of the second order derivative in respect to time 

of the function  ij t . Or this size is a priori unknown 

because it is discretely dependent upon the instantaneous 

circumstances of the made contact. Therefore, it is usually 

substituted by the transmission error which is obtained 

under a quasi-static regime which we have qualified as 

being the quasi-static uncharged transmission error. The 

calculation of the second order derivative would become 

easy to perform should we dispose of the respective analytic 

expression. Such is the case, for example, of the quasi-static 

uncharged transmission error associated with an eccentricity 

default. The models developed in the specialized literature 

(see [7]) do make mostly use of the expressions obtained 

under a quasi-static regime in order to define the functions 

 ij t  and  ijK t . Blankenship & Singh (in the work [1]) 

have described in a highly precise manner the intrinsic 
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hypotheses for each of these methods. To do so they have 

studied under a quasi-static regime the above presented 

equation (4.1): ij0, 0


 
    
 

. This regime is defined 

by the indices 0. Let us assume the fact that  0,ij t  and 

 0,ijK t  are separable. Then this equation should become:  

   

   

0,ij ij 0 0,ij ij 0

ij 0,ij ij 0 0,ij ij 0

K F , F ,

F K F , F ,

 

 

   

    
, (13) 

 a fact which would allow us to express the size 

 0,ij ij 0F ,    which does represent the quasi-static 

transmission error under charge under the form: 

 
 

 ij

0,ij ij 0 0,ij ij 0

0,ij ij 0

F
F , F , .

K F ,

 


     


 (14)                                     

 In the particular case where 
ijF 0 the resulted quasi-

static transmission error should be:  

   0,ij 0 0,ij ij 0F 0, .


      
 (15) 

 For the quality of the gearing mechanism this 

expression is an adequate indicator. For the whole of this 

context the quasi-static transmission error under charge is 

expressed through the relationship: 

 
 

 0,ij

ij

0,ij ij 0 0

0,ij ij 0

F
F , .

K F ,


 


     


  

Should we make use of (14) and (15). Almost all of the 

dynamic modeling presented in the specialized literature do 

make use of  0,ij ij 0F ,    or  0,ij 0


   and  0,ij ij 0K F ,   

as primary sources of excitation. These sizes do present the 

advantage of being accessible through the simulation of a 

quasi-static behavior or through measurements. The 

specialized literature does impart to Kubo & col. (see [6]) as 

well as to Umezawa & col. (see [10]) the first ever modeling 

attempts which do make use of  ij 0,ij ijK t K F ,      

and    0,ijij 0t


    . 

III. MATHEMATICAL MODELS 

For the model obtained in the works [6] and [10] the 

equivalent model and the dynamic equation are presented in 

figure 3.  

 

         0,ijijij 0,ij ij 0 ij ij 0,ij ij 0 0M t K F , t F K F ,
 

            

Fig. 3. Dynamic model. 

Should we regroup the terms from the second member 

and should we make use of  0,ij ij 0F ,   we would be led 

towards the second type of modeling which is generally 

attributed to the first ever works written about the dynamics 

of gearing mechanisms. The corresponding model and the 

equation associated to it are presented in figure 4. 

 

         ijij 0,ij ij 0 ij 0,ij ij 0 0,ij ij 0M t K F , t K F , F ,


           

Fig. 4. Dynamic model. 

 

In the work [7] the obtained results have been very much 

alike to the ones obtained for the two previous modeling’s 

when  0,ij ij 0K F ,   has been substituted by 0,ij ijK F    

(Fig. 4). Then the excitation effects which are associated to 

the variations occurring into the rigidity of the gearing 

mechanism are introduced only through the fluctuations of 

the quasi-static transmission error which does occur under 

the charge  0,ij ij 0F ,   . The main advantage of this latter 

method is the one of being described through a 

mathematical model which corresponds to a differential 

equation with constant coefficients which is submitted to a 

deterministic excitation. Under these circumstances let us at 

first consider the loading   0,ij ij 0F ,    as constant.  Or this 

last equation could be integrated through the applying of the 

integral Laplace transformation. Due to this fact the problem 

does become algebraic. 

 

         ijij 0,ij ij ij 0,ij ij 0,ij ij 0M t K F t K F F ,


       

Fig. 5. Dynamic model. 

 

IV. DETERMINING OF THE DYNAMIC ANSWER 

We have integrated the mathematical models we are 

working with by making use of the unilateral Laplace 

transformation in respect to time. This method does provide 

to us the advantage of rendering algebraic the problem and 

this fact does simplify a lot the solving of some differential 

equations or the one of some systems of differential 
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equations.    

Let us look again at the last equation (the one which does 

define the Fig. 5): 

     

   

ijij 0,ij ij ij

0,ij ij 0,ij ij 0

M t K F t

K F F ,





   

  

, (16) 

written under the form: 

 
 

 
   0,ij ij 0,ij ij 00,ij ij

ij ij

ij ij

K F F ,K F
t t

M M


  
   

, (17)                      

to which we are applying the unilateral Laplace 

transformation in respect to time. So does result the 

algebraic equation bearing the unknown  ij s : 

     
 

 

   

0,ij ij2

ijij ij ij

ij

0,ij ij 0,ij ij 0

ij

K F
s s s 0 0 s

M

K F F , 1

M s





      

 


, (18) 

with the solution: 

 

 
   

 
   

 
0,ij ij 0,ij ij 0ijij

ij

0,ij ij 0,ij ij2 2

ij

ij ij

K F F ,s 0 0
s .

K F K F
s s s M

M M


   

  
   

    
        (19)                                

 Should we apply to the relationship (19) the reversed 

Laplace transformation we would obtain the solution of the 

equation (18) under the form:  

   

   
 

 

 

 

ij 0,ij ij 0

0,ij ij

ij 0,ij ij 0

ij

0,ij ijij

ij
0,ij ij

ij

t F ,

K F
0 F , cos t

M

K F0
sin t .

MK F

M







    

  
        

    
  

     
  
  

 (20) 

 From Fig. 6 and taking into consideration the 

geometric features of the gearing mechanism as we have 

established them above - is provided the representation of 

the function (20). From it we can see that the studied 

movement does own the feature of being harmonic.   

 
Fig. 6. the representation of the function (20) 

 

Let us look now at the loading in respect to time:  

   0,ij ij 0 0,ijF , t   
. 

When substituted in the equation (17) it should lead us to 

the differential equation: 

 
 

 
 

 
0,ij ij 0,ij ij

ij ij 0,ij

ij ij

K F K F
t t t .

M M



    

 (21) 

 Should we apply to the equation (21) the unilateral 

Laplace transformation in respect to time we would come to 

the algebraic equation bearing the unknown  ij s : 

     
 

 

 
 

0,ij ij2

ijij ij ij

ij

0,ij ij

0,ij

ij

K F
s s s 0 0 s

M

K F
s

M



      

 

 (22) 

with the solution: 

            

 

   

 
 

 
 

ij

0,ij ijijij

0,ij

ij0,ij ij 0,ij ij2 2

ij ij

s

K Fs 0 0 1
s .

MK F K F
s s

M M



 

  
  

 
  

     (23) 

 Should we apply to the relationship (23) the reversed 

Laplace transformation and taking as well into consideration 

the convolution theorem we would obtain the solution of the 

equation (22) under the form: 

 
 

 

 

 
 

 

 
 

 
 

0,ij

0,ij ijij

ij

ij
0,ij ij

ij

0,ij ij

ij

ij

t
0,ij ij 0,ij ij

ij00,ij ij

ij

ij

K F0
t sin t

MK F

M

K F
0 cos t

M

K F K F
sin t d .

MK F
M

M

        
  
  

  
   
  
  

 
      
 
 



 (24) 

 Let us consider a sinusoidal load bearing the form:  

   0,ij 0 et sin t   
, 

where 0  is the amplitude of the load (of the excitation) 

while e is its respective pulse the solution (24) does 

acquire the form: 
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 
 

 

 

 
 

 

 
 

 
 

0,ij ijij

ij

ij
0,ij ij

ij

0,ij ij

ij

ij

t
0 0,ij ij 0,ij ij

e

ij00,ij ij

ij

ij

K F0
t sin t

MK F

M

K F
0 cos t

M

K F K F
sin sin t d ,

MK F
M

M

        
  
  

  
   
  
  

 
      
 
 



 (25) 

It all does become reduced to the solving of the integral: 

 
 

 
t

0,ij ij

e

ij0

K F
I sin sin t d

M

 
      
 
 


, (26) 

For three cases such as: 

1. should its own pulse: 

 0,ij ij

n

ij

K F

M
 

  

be a lot different from 
e  the pulse of the excitation; 

2. n e    ; 

3. n e     

Case 1.  

Its own pulse n being a lot different from 
e   the 

pulse of the excitation.  

Should we perform the integral (26) and substitute the 

result of the integration within the equation (25) we would 

be led to the dynamic answer of the system expressed under 

the form of the time function: 

 

 
 

 

 
 

 

 

 
 

   
 

 

0,ij ij 0,ij ijij

ij ij

ij ij
0,ij ij

ij

0 0,ij ij e 0,ij ij 0 0,ij ij
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 (27)  

or should we group the terms in respect to:  

 nsin t  ,  ncos t  and  esin t  , 
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
 

 
 (28)  

 The former two terms of the function (28) do represent 

a vibratory movement of the elastic system with its own 

pulse n while the last term does define some sustained 

vibrations bearing the pulse e . This fact does show us the 

fact that the resultant movement is composed of a 

superposition of vibrations that is to say a vibration of its 

own of pulse n  as well as a forced vibration of pulse e . 

Since the values of these two pulses are much different one 

from the other it results that the resultant movement is a 

non-harmonic vibration which is represented in Fig. 7. 

 

 
Fig. 7. Resultant movement, in [mm] versus time 

  

Should we suppose the initial conditions to be 

homogeneous, that is to say with  ij 0 0


   and 

 ij 0 0  the function (28) would acquire the particular 

form: 
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The representation of which is provided in Fig. 8. 

 
Fig. 8. Resultant movement, in [mm] versus time 

 

Case 2. The intrinsic pulse n e.   

 The performing of the integral (26) where the pulse 

e  is substituted by the natural (intrinsic) pulse n  and the 

result of the integration is substituted in the equation (24) 

should lead us to the dynamic answer of the system 

expressed under the form of the time function: 
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 (30)  

  Should we suppose the initial conditions to be 

homogeneous that is to say with:  

 ij 0 0


   and  ij 0 0  , 

the function (30) would acquire the particular form: 
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 (31) 

 The time function which does define the forced 

vibration is: 

 
 

 
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 (32) 

and it does define a quasi-harmonic vibration with a 

modulation in amplitude for which the function: 

 
 

 
0 0,ij ij

e

0,ij ij

ij

ij

K F
A t t

K F
2M

M


 

, (33) 

is the function which does modulate the amplitude. This 

is how the equation (30) does represent three harmonic 

movements of constant amplitudes and a fourth quasi-

harmonic movement the amplitude of which is linearly 

increasing in respect to time as we can see from the 

relationship (33).  Its graphical representation within the 

system of coordinates (t, 
ij ) is provided in Fig. 9.  

 
Fig. 9. Amplitude of the vibration. 

 

The movement expressed through the equation (32) is an 

unstable one and its amplitude is increasing infinitely (the 

phenomenon of resonance) as it is demonstrated by its 

representation within the system of coordinates (t, 
ij,e ) 

from Fig. 10. 

 

Fig. 10. Increasing amplitude 
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 The representative curve  ij,e ij,e t    is tangent to 

the straight lines: 
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0 0,ij ij
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0,ij ij

ij
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K F
A t t

K F
2M

M


 

, (34) 

which do represent the wrapper of the concerned curve. 

In order to avoid the destruction of the gearing mechanism 

the phenomenon of resonance ought to be prevented. The 

period of the movement is: 

e

e

2
T .





 (35) 

Case 3. The intrinsic pulse n e.   

 Should the vibration be situated nearby the vicinity of 

the resonance frequency and should we substitute: 

n

e

1





, n e    , n e 2    , 

ε being a positive and small enough number the 

expression (29) would lead us to the time function 

modulated through amplitude:  
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 In the equation (36) amplitude is the time function:  

 
 0 0,ij ij

ij e

K F t
A t sin
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       (37) 

and it does represent the wrapper of the curve expressed 

through the equation (36). Such a movement is usually 

designated as a beat that is to say a vibration of pulse e the 

amplitude of which does own the pulse 
2


. The period of 

the beats is: 

b

n e

2
T .



 

 (38) 

 One last type of approximation could be the one where 

the effects of the fluctuation which usually does occur in the 

rigidity of the gearing mechanism should not be taken into 

consideration. It does consist in making use of a Fourier 

series development in order to represent the sizes:  

 0,ij ij 0K F ,   ,
 

 0,ij ij 0F ,     and  0,ij 0


   . 

 The modeling’s we have described above do rely upon 

the main hypothesis of the choice to make use for the 

nominal load destined to be the primary source of excitation 

of some sizes which would be obtained under the quasi-

static regime. Yet in the respective cases of some alignment 

defaults or of some important shaping errors this latter point 

of view might be considered as highly doubtful. In such a 

context the rigidity of the gearing mechanism is largely 

dependent upon the instantaneous load which might come to 

be applied upon the teeth structure. This latter phenomenon 

could be taken into consideration through the movement 

equation: 

     

   0,ij

ijij ij ij ij

ij ij ij 0

M t K F , t

F K F ,





 

    

    
, (39) 

where 
ijF  is the dynamic instantaneous load which might 

come to be applied upon the teeth structure. 

V. CONCLUSION 

The fluctuations undergone by both the transmission error 

and the intrinsic rigidity of the gearing mechanism are the 

main causes of the excitations which are associated with 

them. For the transmission error it is particularly 

indispensable to distinguish the effects due to elastic 

deformations from the cinematic effects associated to the 

gearing of some non-conjugated profiles. There are several 

scientific schools (see [3]) which do make use of these size 

units in order to describe the interface created through the 

gearing mechanism.  Nowadays the research activities do 

focus upon the development of some multidisciplinary 

experimental, theoretical and numerical competencies which 

would have to be relied upon when the structures and 

elements of the machines – or more extensively the 

mechanical systems – should be conceived. The purposes of 

present researches are the ones of improving our knowledge 

of the behavior shown by materials and structures, of 

developing some models and instruments that could be 

useful in the designing process which does concern 

structures and machines as well as of searching to take 

advantage from an already existing technical culture insofar 

the methodologies of analysis, conception and fabrication 

could be concerned. These researches are relying upon 

domains such as the science of materials, the branches of 

non-linear mechanics which do respectively involve solid 

bodies, fluids and coupled systems, acoustics, some 

techniques made use of in the forming and processing 

technical procedures, some experimental measurement 

methods and numerical modeling. 
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