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Abstract—We study the isotropy groups of CNF for-
mulas regarding the flipping operation. Specifically
we present an algorithm for computing the isotropy
groups of fibre-formulas. Further, we investigate the
lifting process to the general case, and consider the
behaviour of several subclasses of CNF with respect
to the flipping operation.
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1 Introduction

The genuine and one of the most important NP-complete
problems in mathematics is the propositional satisfiabil-
ity problem (SAT) for conjunctive normal form (CNF)
formulas [4]. Specifically one is interested in classes for
which SAT can be solved in polynomial time. There are
known several classes, for which SAT can be tested ef-
ficiently, such as quadratic formulas, (extended and q-
)Horn formulas, matching formulas, nested and co-nested
formulas etc. [1, 2, 3, 6, 8, 9, 10, 7, 17, 19]. On basis of
the flipping operation on CNF formulas, here we inves-
tigate the isotropy groups of formulas. The motivation
behind this research is the fact that formulas with large
isotropy groups have small orbits. On the other hand
the generator sets of isotropy groups are of polynomial
size. This might enable one to compute class invariants
more efficiently, specifically those that are connected to
the satisfiability of formulas like the monotonicity index.
The hope here is to identify new subclasses of CNF which
behave efficient regarding SAT-decision as well as to gain
new structural insight into CNF-SAT in general. After
discussing some basic concepts and results we investigate
the isotropy group of fibre-formulas and present an algo-
rithm for its determination. Further we discuss to some
extent the lifting process to the total case and investi-
gate the isotropy group for members of several explicit
subclasses of CNF such as the linear formulas [14, 16].
Methodically the fibre view on clause sets [11] is exploited
again for this study.

2 Notation and Preliminaries

A Boolean or propositional variable x taking values from
{0, 1} can appear as a positive literal which is x or as
a negative literal which is the negated variable x. To
flip or complement a literal always means to negate the
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underlying variable. Setting a literal to 1 means to set
the corresponding variable accordingly. A clause c is a
finite non-empty disjunction of different literals and it
is represented as a set c = {l1, . . . , lk}. If all literals
in c are complemented one gets cγ . A clause contain-
ing no negative literal is called positive. A clause con-
taining only negated variables is called negative. A unit
clause contains exactly one literal. A conjunctive normal
form formula C, for short formula, is a finite conjunction
of different clauses and is considered as a set of these
clauses C = {c1, . . . , cm}. Cγ is the formula obtained
from C by transfering c → cγ for all c ∈ C. A formula
can also be empty which is denoted as ∅. Let CNF be
the collection of all formulas. For a formula C (clause
c), by V (C) (V (c)) denote the set of variables occur-
ring in C (c). Let CNF+ (CNF−) denote that part of
CNF containing only positive (negative) clauses. A for-
mula C ∈ CNF is called linear if each pair ci, cj ∈ C,
i 6= j, satisfies |V (ci) ∩ V (cj)| ≤ 1. By LCNF the
class of linear formulas is denoted. Given C ∈ CNF, let
A(C) := {c ∈ C : cγ 6∈ C} and S(C) := {c ∈ C : cγ ∈ C}
defining the classes A := {C ∈ CNF : C = A(C)} of anti-
symmetric and S := {C ∈ CNF : C = Cγ} of symmetric
formulas [15]. Note that A ∩ S = {∅}, and that for ev-
ery non-empty C ∈ CNF one has C = A(C) ∪ S(C) as
disjoint union. However, clearly S ∪A is a proper subset
of CNF. Let S± ⊆ S contain all formulas C = C ∪ Cγ ,
where ∅ 6= C ∈ CNF+. For a finite set M , let 2M de-
note its powerset. As usual for a positive integer n, let
[n] := {1, . . . , n}, and for convenience we set [0] := ∅.
Throughout log means the logarithm function with re-
spect to base 2; and groups always are assumed to be
finite. Given a group G, recall that the order of any sub-
group of G is a divisor of its cardinality |G| according
to a central theorem of Lagrange. Let Gn(G) denote a
set of generators of G. Let < g >≤ G denote the cyclic
subgroup generated by g ∈ G. Further recall that every
abelian group can be written as a direct product of cyclic
subgroups. Given C ∈ CNF, SAT asks whether there is a
truth assignment t : V (C)→ {0, 1} such that there is no
c ∈ C all literals of which are set to 0. If such an assign-
ment exists it is called a model of C. Let SAT ⊆ CNF
denote the collection of all formulas for which there is a
model. Clauses containing a complemented pair of liter-
als are always satisfied. Hence, it is assumed through-
out that clauses only contain literals over different vari-
ables. Also unit clauses must be satisfied therefore it is
no loss of generality to assume for convenience that unit
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clauses do not occur in formulas. As usual iff means if and
only if. The hyperedge set B(C) of the base hypergraph
H(C) = (V (C), B(C)) assigned to a formula C ∈ CNF
is defined as B(C) := {V (c) : c ∈ C} ∈ CNF+. As in-
troduced in [11] the collection of all clauses c such that
V (c) = b, for a fixed b ∈ B(C), is the fibre formula Cb of C
over b yielding the fibre-decomposition C =

⋃
b∈B(C) Cb

of C. Conversely, a hypergraph H = (V,B) can be re-
garded as a base hypergraph if its vertex set V is a
non-empty finite set of Boolean variables such that for
every x ∈ V there is some b ∈ B containing x. By
Wb := {c : V (c) = b} denote the collection of all possible
clauses over a fixed b ∈ B. The intersection graph I(H)
of H = (V,B) gets a vertex for each b ∈ B and there
is exactly one edge joining a pair of vertices b 6= b′ iff
b∩ b′ 6= ∅. A hypergraph H is called connected iff I(H) is
connected in the usual sense. The set of all clauses over
H is KH :=

⋃
b∈B Wb. A H-based formula is a subset

C ⊆ KH such that Cb := C ∩Wb 6= ∅, for every b ∈ B.
For a H-based C ⊆ KH, let C̄ := KH \ C be its com-
plement formula. According to [11], a fibre-transversal of
KH is aH-based formula F ⊂ KH such that |F∩Wb| = 1,
for every b ∈ B. By F(KH) denote the set of all fibre-
transversals of KH. For a base-hypergraph H and a class
C ⊆ CNF let C(H) := {C ∈ C : H(C) = H}, denote the
H-based fraction of C.

3 Basic Concepts and Results

For a fixed finite and non-empty set of propositional
variables V , let Bt = 2V and Ht = (V,Bt). Denote
by CNF := 2KHt the set of all CNF formulas with
V (C) ⊆ V , B(C) =: B ⊆ Bt. Let cX be the clause
obtained from c ∈ KHt

by complementing all variables
in X ∩ V (c), where X is an arbitrary subset of V , for
short we set cγ := cV (c), and further c∅ := c. This
flipping operation ϕ(c,X) := cX acting on KHt

induces
an action on CNF by observing that {c} ∈ CNF: For
C = {c1, . . . , cm} ∈ CNF and X ∈ 2V let ϕ : CNF×2V →
CNF, such that ϕ(C,X) := {cX

1 , . . . , cX
m} =: CX ∈ CNF.

Again set Cγ := CV (C) in case that all variables in C are
flipped, and C∅ := C. Thus formally we obtain the GV -
action of the abelian group GV := (2V ,⊕) with neutral
element ∅ on CNF. Indeed, first flipping C by X ∈ GV

then by Y ∈ GV obviously yields (CX)Y = CX⊕Y , where
∅X := ∅ ∈ CNF, for every X ∈ GV . In case V (C)  V ,
the relevant subgroup of GV is GV (C) = (2V (C),⊕).
We shall use the abbreviation E := {∅} ≤ GV for the
trivial group. By O(C) := {CX : X ∈ GV (C)} =
{CX : X ∈ GV } denote the (GV -)orbit of C in CNF
yielding the classes of an equivalence relation on CNF.
This quotient space CNF/GV therefore usually is called
the orbit space. Recall that a group acts transitively on
its orbits. Let GV (C)(C) := {X ∈ GV (C) : CX = C} de-
note the isotropy group also called stabilizer of C ∈ CNF.
For a fibre-subformula Cb ⊆ C, there are different kinds
of isotropy groups, namely, GV (C)(Cb) := {X ∈ GV (C) :

CX
b = Cb} and Gb(Cb) := {X ∈ Gb : CX

b = Cb}, where
Gb := (2b,⊕), V (Cb) = b; thus Gb(Cb) ≤ GV (C)(Cb).

Lemma 1 Given H = (V,B), G ≤ GV and H ≤ Gb

then |Gn(G)| ≤ |V | and |Gn(H)| ≤ |b|, b ∈ B.

Proof. Clearly Gn(GV ) = V thus |Gn(G)| ≤
|Gn(GV )| = |V |. Also Gn(Gb) = b hence |Gn(H)| ≤ |b|,
b ∈ B. 2

Lemma 2 Let C ∈ CNF with H(C) =: (V,B).
(i) X ∈ GV (C) is equivalent with c ∈ C ⇔ cX ∈ C.
(ii) X ∈ GV (C) iff X ∈ GV (Cb), for all b ∈ B.

Proof. X ∈ GV (C) means CX = C and (i) follows
directly. Addressing (ii) observe that for distinct b, b′ ∈ B
there is no X ∈ GV such that CX

b = Cb′ . Thus X ∈
GV (C) iff CX =

⋃
b∈B CX

b = C =
⋃

b∈B Cb iff CX
b = Cb,

b ∈ B, iff X ∈ GV (Cb), b ∈ B. 2

More generally, GV (C) := {X ∈ GV : C ∈ C ⇒ CX ∈ C}
denotes the isotropy group of the class C ⊆ CNF. In-
deed this is a group, as for X, Y ∈ GV (C) and C ∈ C
assume CX =: C ′ ∈ C then CX⊕Y −1

= CX⊕Y = C ′Y ∈ C
hence X ⊕Y −1 ∈ GV (C). Further note that according to
the theorem of Lagrange every subgroup G ≤ GV here
is of order 2e(G) with the integer e(G) := log |G| ≥ 0. A
mapping g : CNF → CNF is GV -equivariant, by defini-
tion, if g(CX) = [g(C)]X , for every X ∈ GV and every
C ∈ CNF. As shown in [13] one has:

Lemma 3 GV (C)(C ′) = GV (C)(C) for all C ′ ∈ O(C).

As usual a fixed point of an operation [18] is the unique
member of an 1-point invariant (also called stable) sub-
space, so by definition its isotropy group equals the whole
group. According to Theorem 4 proven in [12] one has:

Lemma 4 ∅ 6= C ∈ CNF is a fixed point of the GV -
action iff Cb = Wb, for all b ∈ B(C).

As a direct consequence of Lemmata 2 and 4 one obtains:

Corollary 1 Let C ∈ CNF, H(C) = H(C̄) =: H =
(V,B) then GV (C) = GV (C̄).

Proof. If X ∈ GV (C) then KH = C ∪ C̄ = KX
H =

CX ∪ C̄X = C ∪ C̄X hence X ∈ GV (C̄). The reverse
inclusion follows by exchanging the roles of C, C̄. 2

Lemma 5 For C,C ′ ∈ CNF with V (C) = V (C ′) =: V ,
assume GV (C) = GV (C ′) then |O(C)| = |O(C ′)|.
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Proof. Let G := GV (C), then G ≤ GV is a normal
subgroup so that the left coset space GV /G is the group
of cosets Y G := {Y ⊕ X : X ∈ G}, for every Y ∈ GV .
Clearly, |Y G| = |G| and CY ′

= CY , for all Y ′ ∈ Y G,
implying |O(C)| = |GV /G| = |O(C ′)| by assumption. 2

Recall that for C ∈ CNF the value µ(C) :=
min{min{|C ′

+|, |C ′
−|} : C ′ ∈ O(C)} is the monotonicity

index [12] of C. Hence µ is a class invariant having the
same value for all orbit members. Moreover, as shown in
[12] one has C ∈ SAT iff µ(C) = 0. Recall that fixed-
parameter tractability (FPT) w.r.t. parameter k means a
worst case upper bound for the computational time com-
plexity of the form O(p(n, k)g(k)), for instances of size n,
where p is a polynomial and g is an arbitrary function of
the parameter k only, cf. e.g. [5].

Theorem 1 For a constant positive integer k, let C :=
C(k) ⊆ CNF be such that log |Gn(GV (C)(C))| ≥ |V (C)|−
k, and such that Gn(GV (C)(C)) can be computed in poly-
nomial time, for every C ∈ C, then SAT is FPT w.r.t. k,
for instances from C.

Proof. For C ∈ C, let G := GV (C) and let H :=
GV (C)(C) be the isotropy group of C. The factor group
G/H may be identified with a set of representatives of
its cosets. We claim that Gn(G/H) = Gn(G) \ Gn(H).
Indeed, first assume that there is any X ∈ Gn(H) which
is also in Gn(G/H) then X ∈ H and also X ∈ G/H
implying X = ∅ ∈ G/H but ∅ 6∈ Gn(H) providing a con-
tradiction. Next let Y ∈ Gn(G) \ Gn(H) then clearly
∅ 6= H ∈ G/H therefore Y ∈ Gn(G/H). So, by assump-
tion one has |Gn(G/H)| = |Gn(G)| − |Gn(H)| ≤ k, and

according to the proof of Lemma 5, O(C) = {C
⊕

Y∈Z
Y :

Z ⊆ Gn(G/H)}. Thus |O(C)| ≤ 2k meaning that µ(C)
can be computed in FPT time O(p(|C|, |V (C)|)2k) where
p is an appropriate polynomial. 2

For H = (V,B), a subgroup G ≤ GV , and c ∈ KH let
OG(c) := OG({c}) = {cX : X ∈ G} denote the G-orbit
of c. If G = GV we also write O(c) instead of OG(c).
Clearly the orbit of a clause yields a formula whereas the
orbit of a formula yields a subclass of CNF.

Lemma 6 For H = (V,B), b ∈ B, and c ∈ Wb one has
Wb = O(c). Specifically, Wb is bijective to Gb, b ∈ B.

Proof. As Wb = {c ∈ KH : V (c) = b} one has for given
c ∈ Wb and any X ∈ GV that V (cX) = V (cX∩b) = V (c)
hence O(c) ⊆Wb and as |O(c)| = |GV ∩2b| = |2b| = |Wb|
we have O(c) = Wb and |Wb| = |Gb|. 2

Definition 1 For H = (V,B), b ∈ B, G ≤ GV , and
H ≤ Gb, let Rb(G) := {X ∩ b : X ∈ G} be the (b)-
restriction of G, and let Lb(H) := {X ∈ GV : X∩b ∈ H}
be the (GV )-lift of H.

One clearly has Lb(Gb) = GV (C)(Cb) and Rb(E) = E, for
every b ∈ B. More generally:

Lemma 7 For H = (V,B), b ∈ B, and any sub-
groups G ≤ GV , H ≤ Gb, one has (i) Rb(G) ≤ Gb,
e(Rb(G)) ≤ min{e(G), b}, H ≤ Lb(H) ≤ GV , and (ii)
G ≤ Lb(Rb(G)), H = Rb(Lb(H)).

Proof. Recall that |G| = 2e, where e := e(G) ≥ 0, as a
subgroup of GV . As b ∈ GV , one has {X ∩ b : X ∈ G} ⊆
GV ∩ Gb hence |Rb(G)| ≤ Gb, and also |Rb(G)| ≤ 2e.
Moreover, Rb(G) is a subgroup of Gb. Indeed for any
X, Y −1 = Y ∈ G, let Xb := X ∩ b, Yb := Y ∩ b ∈ Rb(G)
then one has

Xb ⊕ Yb = (Xb ∪ Yb) \ (Xb ∩ Yb)
= (X ∪ Y ) ∩ b \ (X ∩ Y ) ∩ b

= (X ⊕ Y ) ∩ b

which can be verified easily. Thus Xb⊕Yb ∈ Rb(G) being
a subgroup. Hence there is eb := e(Rb(G)) ≥ 0 such that
eb ≤ min{b, e} and |Rb(G)| = 2eb . Next, choose arbitrary
X, Y ∈ GV such that as previously defined Xb, Yb ∈ H.
Then reversing the sequence of equations above one di-
rectly obtains (X ⊕ Y ) ∩ b = Xb ⊕ Yb ∈ H implying
X ⊕ Y ∈ Lb(H) thus being a subgroup of GV . Further,
H ⊆ Gb ⊆ GV therefore H ⊆ Lb(H) thus H ≤ Lb(H),
hence (i) is verified. Finally, both assertions in (ii) are
obvious. 2

4 Isotropy Groups of Fibre Formulas

Throughout this section, let C be a non-empty fibre-
formula meaning C ⊆ Wb where b := V (C), and let
E 6= H ≤ Gb be a proper subgroup of the flipping group.
Further let G := Gb(C) be the isotropy group of C on
the fibre level. Given c, c′ ∈ Wb then due to Lemma 6
there exists, by transitivity, a unique transition member
Y (c, c′) := V (c⊕ c′) ∈ Gb with c′ = cY (c,c′) , where c⊕ c′

is regarded as a set of literals.

Lemma 8 (1) For two distinct H-orbits, O :=
OH(c),O′ := OH(c′), c, c′ ∈ Wb, there is exactly one
X ∈ Gb \H which is composed of generators in Gn(Gb) \
Gn(H) only, such that OX = O′. This unique X is
called the primitive (orbit) transition element. (2) Let
C =

⋃
i∈[s]Oi be the union of s ≥ 1 disjoint H-orbits:

Oi := OH(ci), where ci ∈ C ⊆ Wb. Then every
X ∈ G \ H provides a non-trivial 2-regular permutation
πX of [s] such that OX

i = OπX(i), i ∈ [s].

Proof. Let c ∈ O, c′ ∈ O′, where the orbits are assumed
to be distinct. Then Y (c, c′) ∈ Gb \ H. By transitivity
for every ci ∈ O there is a unique Xi ∈ H such that
cXi = ci yielding the unique member c

Y (c,c′)
i = c′Xi ∈ O′.
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Thus Y (c, c′) provides a bijection from O to O′ meaning
OY (c,c′) = O′. As Y (c, c′) ⊆ b and Gn(H) ⊆ 2b we have
X := Y (c, c′)\

⋃
Y ∈Gn(H) Y ⊆ b. Clearly, also X ∈ Gb\H

and so OX = O′ as above. Moreover X is unique: Let
c̃ ∈ O, c̃′ ∈ O′ be another pair of clauses then there are
unique Ỹ , Ỹ ′ ∈ H with c̃Ỹ = c, c̃′Ỹ

′
= c′. It follows that

Y (c̃, c̃′) = Ỹ ⊕Y (c, c′)⊕Ỹ ′ implying Y (c̃, c̃′)\
⋃

Y ∈Gn(H) Y

= Y (c, c′) \
⋃

Y ∈Gn(H) Y = X. For proving (2), let X ∈
G \ H. According to (1), the H-orbits OX

i , i ∈ [s], are
pairwise different, and their union must yield C as X ∈ G.
Thus X induces a bijection πX on [s] such that OX

i =
OπX(i) ⊆ C, i ∈ [s]. As < X > is cyclic of order 2,
this permutation decomposes into disjoint transpositions,
i.e., 2-cycles, namely πX = (i1, πX(i1)) · · · (ir, πX(ir)),
for r = s/2, ij = min([s] \ {ik, π(ik) : k ∈ [j − 1]}), for
every j ∈ [r], implying (2). 2

Observe that under the assumptions in Lemma 8 one has
H ≤ G, so the previous proof directly implies:

Corollary 2 Let C be the union of s ≥ 1 disjoint H-
orbits, for an integer s. If there is X ∈ G \H, then s is
even.

Theorem 2 The isotropy group G of a fibre-formula
C ⊆ Wb can be computed in time O(|b|2 · |C|2 · log2 |C|)
as a direct product of cyclic subgroups.

Proof. If C = ∅ we have G = Gb. Otherwise com-
pute G by iteratively enlarging the number of factors in
the current direct product of cyclic groups H, as long
as there is a new generator X ∈ Gn(G) yielding the
next factor < X >. Initially setting H := E, C can
be regarded as the union of s := |C| ≥ 1 pairwise dis-
joint H-orbits Oi := {ci}, i ∈ [s]. If s = 1 mod 2
the procedure stops with G := H according to Corol-
lary 2. Otherwise, one has to check in the current iter-
ation whether there is X ∈ G \ H. To that end, let ci

be an arbitrary member of the orbit Oi, i ∈ [s]. Con-
sidering these clauses as the vertices of a complete graph
Ks, we label every edge ci − cj by its unique primitive
orbit transition member Xi,j := Y (ci, cj) \

⋃
Y ∈Gn(H) Y ,

i, j ∈ [s], i < j, where Gn(H) is the generator set in
the current iteration. Then due to Lemma 8 our prob-
lem is equivalent to identify a perfect matching in Ks

such that all its members carry an equal label X which
therefore belongs to G, as it provides a bijection of the
current set of orbits. One might implement a clever ver-
sion of a minimum weight perfect matching algorithm,
which however for dense graphs is rather slow. On the
other hand we do not need a matching, only a suitable
label which can be determined faster as follows: By the
lexicographic order, based on a pre-ordering of the vari-
ables in b, sort all primitive orbit transition elements Xi,j

in a sequence T . Now equal labels are grouped together.

Finally linearly went through T searching for a first con-
secutive subsequence t = (Xi1,j1 , . . . , Xir,jr

) of T having
the properties: (i) |t| = s/2 =: r, (ii) all its elements are
equal to an X, and (iii)

∑r
k=1(ik + jk) = s(s+1)/2. Ob-

serve that these conditions ensure that the corresponding
edges cik

− cjk
, k ∈ [r], form a perfect matching in Ks of

equal label X. The lexicographic sorting of O(s2) labels
can be executed in time O(|b|2 · s2 · log s) dominating the
time amount for computing the primitive transition ele-
ments relying on Lemma 1, as well as the time amount
for the subsequence search. If there is a subsequence as
required yielding label X, then set H ← H× < X >
and join each pair Oi, OπX(i) of the current orbits to
the new H-orbit Oi ∪ OπX(i) according to Lemma 8 (2).
Then s ← s/2 is the new number of orbits. Otherwise,
the procedure stops with G := H. The joining opera-
tion clearly is dominated by the sorting bound as stated
above. As every newly added cyclic group factor corre-
sponds to exactly one generator of the isotropy group we
have at most |b| such iterations due to Lemma 1. On
the other hand the number of iterations is bounded by
log |C| ≤ |b| because of the repeated joining process. So
the overall upper bound for the time complexity amounts
to O(|b|2 · |C|2 · log2 |C|). 2

5 Lifting to the Total Case

For C ∈ CNF with H(C) =: (V,B) recall that Gb(Cb) ≤
Gb is the isotropy group of Cb over V (Cb) = b, b ∈ B.

Lemma 9 For H = (V,B), a subgroup G ≤ GV , and
b ∈ B, let C = Cb be the union of s > 0 G-orbits. Then
for fixed c′ ∈ C and ME :=

⋃
c∈Cb

Y (c′, c) one has

GV (C) =

{
Lb(2ME ), if log s = |ME | − e(Rb(G)) ≥ 0
Lb(Rb(G)), if s is odd

Proof. Let e := e(Rb(G)) ≥ 0 hence |OG(c)| =
|ORb(G)(c)| = 2e, for every c ∈ Cb thus |C| = s ·2e. If s is
odd, by contraposing Corollary 2 one has Gb(C) = Rb(G)
directly implying GV (C) = Lb(Rb(G)). Next, assume
log s = |ME | − e ≥ 0 where ME :=

⋃
c∈Cb

Y (c′, c) ∈ Gb

and define G′ := {Y (c′, c) : c ∈ Cb} ⊂ Gb for any
fixed c′ ∈ Cb. Then obviously Cb = {c′X : X ∈ G′}.
Hence Cb equals exactly one G′-orbit, respectively, one
Lb(G′)-orbit iff G′ ≤ Gb ⇔ Lb(G′) ≤ GV , which is
claimed to be true. Therefore Lb(Rb(G′)) = Lb(G′) is
the isotropy group of C according to the result previously
proven. To establish the claim, observe that all Y (c′, c)
are pairwise distinct therefore |G′| = |Cb| = s2e implying
log |G′| = log s + e = |ME |. Hence |G′| = |2ME | and, as
every member in G′ is a subset of ME , it follows that
G′ = 2ME ≤ Gb. Here one has G′ = Rb(G) if log s = 0
which means an odd s, finishing the proof. 2

Given X ∈ Gb(Cb) and setting τ(X) := {X ∪ U : U ∈
2V \b}, Πb :=

⋃
X∈Gb(Cb)

τ(X) one obtains:
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Theorem 3 GV (C) =
⋂

b∈B Lb(Gb(Cb)), for a H-based
formula C with H = (V,B). Moreover Lb(Gb(Cb)) =
Πb ≤ GV , b ∈ B.

Proof. Clearly GV (Cb) = {X ∈ GV : CX
b = Cb} =

{X ∈ GV : X ∩ b ∈ Gb(Cb)} = Lb(Gb(Cb)) =: Lb ≤ GV ,
for every b ∈ B, according to Lemma 7 (i). Therefore
GV (C) =

⋂
b∈B Lb immediately follows on the set level

relying on Lemma 2 (ii). Further one has
⋂

b∈B Lb ≤ GV

and the first statement is settled. Addressing the last
assertion let Y ∈ Πb ⊆ 2V then there is a unique X ∈
Gb(Cb) such that Y ∈ τ(X). Hence there is U ∈ 2V \b :
Y = X ∪ U implying Y ∩ b = X ∩ b = X ∈ Gb(Cb)
as U ∩ b = ∅. So Y ∈ Lb. Reversely, let Y ∈ Lb then
there is X ∈ Gb(Cb) : Y ∩ b = X implying X ⊆ Y and
U := Y \X ∈ 2V \b hence Y = X ∪ U ∈ τ(b) establishing
Lb = Πb, b ∈ B. Hence also Πb ≤ 2V is true. 2

One obtains the following sufficient condition for the triv-
ial isotropy group E.

Corollary 3 Let C ∈ CNF such that |Cb| is odd, for all
b ∈ B(C) then GV (C)(C) = E.

Proof. Set H(C) =: (V,B). Relying on Lemma 9 the
assumption implies GV (Cb) = Lb(E) = 2V \b, for every
b ∈ B, using Theorem 3. Thus GV (C) =

⋂
b∈B 2V \b =

2V \
⋃

b∈B
b = 2∅ = E. 2

Theorem 4 For every C ∈ LCNF∪CNF+ ∪CNF− one
has GV (C)(C) = E.

Proof. As by assumption members of CNF are consid-
ered to be free of unit clauses it follows for any linear or
monotone formula C that |Cb| = 1 for every b ∈ B(C).
Thus the assertion is implied by Corollary 3. 2

In terms of the intersection graph one has for S±:

Lemma 10 For C ∈ S± with H(C) =: H = (V,B), let
{I1, . . . , Ik} be the set of connected components of the in-
tersection graph I(H) of H. Then Gn(GV (C)) = {Xi :=⋃

b∈V (Ii)
b : i ∈ [k]}.

Proof. Assume C ∈ S± then C = B ∪ Bγ =⋃
b∈B{b, bγ}, where B ∈ CNF+. Hence OGb(Cb)(b) = Cb

where Gb(Cb) = {∅, b} ≤ Gb meaning that GV (Cb) =
Lb(Gb(Cb)), for every b ∈ B, according to Lemma 9,
because Rb(Gb(Cb)) = Gb(Cb). Let M := {Xi :=⋃

b∈V (Ii)
b : i ∈ [k]}. To verify the assertion, we first show

by induction that for any integer n ≥ 1 and members
Xij
∈M , j ∈ [n], one has

⊕n
j=1 Xij

∈ GV (C). So, given
Xi ∈M and any b ∈ B then either Xi∩b = ∅ iff b 6∈ V (Ii).
Or Xi ∩ b = b iff b ∈ V (Ii) hence Xi ∈ Lb(Gb(Cb)) for
every b ∈ B meaning M ⊆ GV (C) according to Theo-
rem 3. Next let Xij

∈ M , ij ∈ [k], j ∈ [n] and assume

the assertion holds true for up to n − 1 members of M ,
n ≥ 2. Hence, there either is l ∈ [n− 1] such that il = in
hence Xil

= Xin
then

⊕
j∈[n] Xij

=
⊕

j∈[n]\{l,n} Xij
∈

GV (C). Or all Xij
, j ∈ [n], have pairwise distinct in-

dices, hence are pairwise disjoint by construction mean-
ing

⊕
j∈[n] Xij

=
⋃

j∈[n] Xij
=

⋃
j∈[n]

⋃
b∈V (Iij

) b. Thus
given any b′ ∈ B it either follows

⊕
j∈[n] Xij

∩ b′ = b′

iff b′ ∈
⋃

j∈[n] V (Iij
), or this intersection is empty imply-

ing
⊕

j∈[n] Xij
∈ GV (C) according to Theorem 3. So,

everything that can be generated by members of M be-
longs to GV (C). Reversely, any X ∈ GV (C) induces
a bipartition B′(X) ∪ B(X) = B = V (I(H)) of the
vertex set of I(H) defined through X ∩ b = ∅, for all
b ∈ B′(X), and X ∩ b = b 6= ∅, for all b ∈ B(X).
Further this bipartition equals an empty cut in I(H),
indeed, otherwise there were b′ ∈ B′ and b ∈ B such
that ∅ 6= b′ ∩ b = (b′ ∩ X) ∩ b implying X ∩ b′ 6= ∅
hence a contradiction. Therefore given i ∈ [k] one either
has V (Ii) ⊆ B′(X), then set i ∈ [k]′(X). Or one has
V (Ii) ⊆ B(X), then set i ∈ [k](X), yielding a bipar-
tition of the index set [k] =: [k]′(X) ∪ [k](X) implying
X =

⊕
i∈[k](X) Xi. Hence every member of GV (C) can

be generated by elements in M finishing the proof. 2

The next result is stated in [13] here it is proven:

Theorem 5 For H = (V,B) one has: (i) There is
an GV -equivariant bijection σ : A(H) → S(H). (ii)
Given C ∈ A(H) then Gn(GV (σ(C))) = Gn(GV (C)) ∪
Gn(GV (B ∪ Bγ)). Moreover for input Gn(GV (C)),
Gn(GV (σ(C))) can be computed in polynomial time.

Proof. Given C ∈ A(H) then set σ(C) := C ∪ Cγ ∈
S(H) which is uniquely determined by C. Conversely,
given S ∈ S(H) then there is the unique subformula
A(S) ∈ A(H) such that A(S) ∪ [A(S)]γ = S = σ(A(S))
hence A(S) = σ−1(S). Now let X ∈ GV , C ∈ A(H) then
[σ(C)]X = [C ∪ Cγ ]X = CX ∪ (CX)γ = σ(CX), and also
σ−1(SX) = [σ−1(S)]X hence σ, and σ−1 are equivariant
implying (i). Regarding (ii) one has GV (C) = GV (Cγ)
because Cγ ∈ O(C) relying on Lemma 3. Moreover the
equivariance of σ directly implies GV (C) ≤ GV (σ(C)).
Hence, GV (σ(C)) \ GV (C) can only consist of such ele-
ments X ∈ GV bijectively mapping the clauses in C to
the clauses in Cγ . Since c ∈ C ⇔ cγ ∈ Cγ these elements
are provided by GV (B ∪ Bγ), where B ∪ Bγ ∈ S±(H).
Finally, the assertion regarding the computational com-
plexity therefore is implied by Lemma 10. 2

6 Open Problems

Observe that given H = (V,B) and any F ∈ F(KH),
then Lemma 4 together with Corollary 3 and Corollary 1
imply that the isotropy group jumps from all to trivial,
i.e., from GV (C) to E if one switches from C := KH to
C ′ := KH \ F , i.e., when exactly one arbitrary clause
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is removed from Wb, for all b ∈ B. These properties of
formulas shall be studied more intensive. To decrease
the upper bound for the time complexity in Theorem 2
is a further research task. Also the computation of the
liftings of the fibre groups to the total space has to be
investigated further. Finally, the FPT-classes have to be
identified more concretely.
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