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Abstract—The usual complex integral is defined in terms of
complex numbers in Cartesian form but transcomplex numbers
are defined in polar form and almost all transcomplex numbers,
with infinite magnitude, have no Cartesian form. However,
there are eight infinite, transcomplex numbers which do have a
Cartesian form and these can be used to define the transcomplex
integral as the limit of sums of these eight numbers. Thus we
introduce the transcomplex integral.

Index Terms—transcomplex integral, transcomplex deriva-
tive, transcomplex number, transmathematics.

I. INTRODUCTION

THE transreal numbers [2] [10] totalise the real numbers
by allowing division by zero in terms of three definite,

non-finite numbers: negative infinity, −∞ = −1/0; positive
infinity, ∞ = 1/0; and nullity, Φ = 0/0. In earlier work,
real elementary functions and real limits were extended to
transreal form [1] [6], as were both real differential and in-
tegral calculus [5] [7]. This extends real analysis to transreal
analysis. Further to this work, a new transreal integral is
being developed, but so far we have it only for the extended-
real numbers [3].

We are now in the process of extending complex analysis
to transcomplex analysis. Starting with the transcomplex
numbers [4] the transcomplex topology, elementary functions
and limits were developed [8] [9]. In the present paper we
develop the transcomplex integral and just as much of the
transcomplex derivative as we need. This leaves a totalisation
of the transcomplex derivative for future work, which will
then extend complex analysis to transcomplex analysis. Thus
the present paper can be seen as the penultimate step in
extending complex analysis.

In order to understand this present paper, we advise the
reader to review the transreal integral [7] and to review
transcomplex numbers, their arithmetic, how their topology
works, and how the elementary functions are defined on them
[9].

The natural numbers have two different definitions, either
including or excluding zero. The former definition is popular
in Computer Science, the latter in Mathematics. Here we
follow the mathematical convention N = {1, 2, 3, . . . }.

II. INITIAL CONSIDERATIONS

In the complex domain, the integral along a curve is
defined as follows. If f : [a, b] → C is a function then,
taking u : [a, b] → R and v : [a, b] → R such that
f = u + iv, f is integrable in [a, b] if and only if u and
v are integrable in [a, b] and the integral of f in [a, b] is
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defined as
∫ b
a
f(t) dt :=

∫ b
a
u(t) dt+ i

∫ b
a
v(t) dt. A smooth

path is a differentiable function γ : [a, b] → C such that
γ′ is continuous. Given a smooth path γ : [a, b] → C and
f : γ ([a, b])→ C, f is integrable on γ if and only if (f◦γ)γ′

is integrable in [a, b] and the integral of f on γ is defined as∫
γ
f(z) dz :=

∫ b
a
f(γ(t))γ′(t) dt.

Notice that the definition of the complex integral is closely
linked to the Cartesian form of complex numbers, a + ib
where a, b ∈ R and i is the imaginary unit. So we have a big
problem to define the integral in the transcomplex domain.
Since almost all infinite transcomplex number cannot be
written as a + ib with a, b ∈ RT , not all transcomplex
functions can be represented by u + iv with u and v being
transreal functions.

Observe that only eight infinite transcomplex numbers can
be written as a+ ib with a, b ∈ RT , namely, 1

0 , −10 , i
0 , −i0 ,

1+i
0 , −1+i0 , −1−i0 and 1−i

0 , which are: ∞ + i0, −∞ + i0,
0+ i∞, 0+ i(−∞), ∞+ i∞, −∞+ i∞, −∞+ i(−∞) and
∞ + i(−∞), respectively. Adding these eight numbers we
can get an infinite number of infinite transcomplex numbers
which, although they do not have Cartesian form, they
are a sum of numbers which have Cartesian form. Note
also these eight numbers are, in exponential form: ∞ei0,
∞eiπ , ∞eiπ2 , ∞e−iπ2 , ∞eiπ4 , ∞ei 3π4 , ∞e−i 3π4 , ∞e−iπ4 ,
respectively. Summing numbers from these eight, we get
numbers of the form∞ei lπ2n with l, n ∈ {0}∪N. Now notice
that l

2n , called dyadic rational numbers, are dense in R.
Therefore few infinite transcomplex numbers have Cartesian
form but every infinite transcomplex number is the limit of
a sequence of numbers which are sums of numbers which
have Cartesian form.

The transcomplex integral, which we define here, is closely
grounded in the above fact. For each transcomplex function
f we take (fn)n∈N such that limn→∞ fn = f and fn can be
written as

∑m
k=1 (uk + ivk) for some m ∈ N where uk and

vk are transreal functions.

III. THE INTEGRAL ON TRANSCOMPLEX NUMBERS

A series of complex numbers is defined as the sequence
(sn)n∈N where sn :=

∑n
i=1 zi = z1 + · · · + zn and

(zn)n∈N ⊂ C. We define transreal series in the same way
[6]. But we need to be careful when defining series of
transcomplex numbers because transcomplex addition is not
associative. For example, z1 + z2 + z3 is not well defined
since (z1 + z2) + z3 can be different from z1 + (z2 + z3).

Definition 1: Let (zn)n∈N ⊂ CT . We define
∑1
k=1 zk :=

z1 and, for each n ≥ 2,
∑n
k=1 zk :=

(∑n−1
k=1 zk

)
+ zn. For

each n ∈ N denote sn :=
∑n
k=1 zk. The sequence (sn)n∈N

is called a series of transcomplex numbers and is denoted
by
∑
zn, each sn is called a partial sum of

∑
zn and zn is

called the n-th term of
∑
zn. We say that

∑
zn converges

or is convergent if and only if there is the limn→∞ sn.
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Otherwise,
∑
zn diverges or is divergent. When

∑
zn is

convergent we denote
∑∞
k=1 zk := limn→∞

∑n
k=1 zk.

Definition 2: We denote

A := C ∪ {Φ} ∪
{
∞ei lπ2n ; l, n ∈ {0} ∪ N

}
and for each z ∈ A we define

∑
(ak + bki), named the

Cartesian form of z, in the following way:
I) If z ∈ C then take a, b ∈ R such that z = a + bi and

define

a1 := a and ak := 0 for all k ≥ 2 and
b1 := b and bk := 0 for all k ≥ 2.

II) If z = Φ then define

a1 := Φ and ak := 0 for all k ≥ 2 and
bk := 0 for all k ∈ N.

III) If z =∞ then define

a1 :=∞ and ak := 0 for all k ≥ 2 and
bk := 0 for all k ∈ N.

IV) If z ∈
{
∞ei lπ2n ; l, n ∈ {0} ∪ N

}
\ {∞} then take n ∈

{0}∪N and l odd with l ∈ {1, . . . , 2n+1} such that z =

∞ei lπ2n and define ak := a
(n, l)
k and bk := b

(n, l)
k where(

a
(n, l)
k

)
k∈N

and
(
b
(n, l)
k

)
k∈N

are defined inductively
in the following way:

For n = 0:

a
(0,1)
1 := −∞ and a

(0,1)
k := 0 for all k ≥ 2,

b
(0,1)
k := 0 for all k ∈ N.

For n = 1:

a
(1,1)
1 := 0 for all k ∈ N and

b
(1,1)
1 :=∞ and b

(1,1)
k := 0 for all k ≥ 2

and

a
(1,3)
1 := 0 for all k ∈ N and

b
(1,3)
1 := −∞ and b

(1,3)
k := 0 for all k ≥ 2.

For n ≥ 2: for all k ≥ 2,

i) if 0× 2n−2 < l ≤ 1× 2n−2 then

a
(n, l)
1 :=∞ and a

(n, l)
k := a

(n−1, l)
k−1

b
(n, l)
1 := 0 and b

(n, l)
k := b

(n−1, l)
k−1

ii) if 1× 2n−2 < l ≤ 2× 2n−2 then

a
(n, l)
1 := 0 and a

(n, l)
k := a

(n−1, l−2n−2)
k−1

b
(n, l)
1 :=∞ and b

(n, l)
k := b

(n−1, l−2n−2)
k−1

iii) if 2× 2n−2 < l ≤ 3× 2n−2 then

a
(n, l)
1 := 0 and a

(n, l)
k := a

(n−1, l−2n−2)
k−1

b
(n, l)
1 :=∞ and b

(n, l)
k := b

(n−1, l−2n−2)
k−1

iv) if 3× 2n−2 < l ≤ 4× 2n−2 then

a
(n, l)
1 := −∞ and a

(n, l)
k := a

(n−1, l−2×2n−2)
k−1

b
(n, l)
1 := 0 and b

(n, l)
k := b

(n−1, l−2×2n−2)
k−1

v) if 4× 2n−2 < l ≤ 5× 2n−2 then

a
(n, l)
1 := −∞ and a

(n, l)
k := a

(n−1, l−2×2n−2)
k−1

b
(n, l)
1 := 0 and b

(n, l)
k := b

(n−1, l−2×2n−2)
k−1

vi) if 5× 2n−2 < l ≤ 6× 2n−2 then

a
(n, l)
1 := 0 and a

(n, l)
k := a

(n−1, l−3×2n−2)
k−1

b
(n, l)
1 := −∞ and b

(n, l)
k := b

(n−1, l−3×2n−2)
k−1

vii) if 6× 2n−2 < l ≤ 7× 2n−2 then

a
(n, l)
1 := 0 and a

(n, l)
k := a

(n−1, l−3×2n−2)
k−1

b
(n, l)
1 := −∞ and b

(n, l)
k := b

(n−1, l−3×2n−2)
k−1

viii) if 7× 2n−2 < l ≤ 8× 2n−2 then

a
(n, l)
1 :=∞ and a

(n, l)
k := a

(n−1, l−4×2n−2)
k−1

b
(n, l)
1 := 0 and b

(n, l)
k := b

(n−1, l−4×2n−2)
k−1 .

Remark 3: Notice that for all Cartesian form∑
(ak + bki), it follows that (ak)k∈N and (bk)k∈N

are sequences of transreal numbers which have just a
finite number of non-zero elements. Because of this,∑∞
k=1 (ak + bki) is nothing more than a finite sum. So that

we do not need to worry about convergence of series.

Proposition 4: Given z ∈ A and
∑

(ak + bki) its Carte-
sian form, it follows that

z =

∞∑
k=1

(ak + bki) .

Proof: The result holds immediately from Definition
2.

Definition 5: Let D ⊂ CT and f : D → CT such that
f(D) ⊂ A. For each w ∈ D, denote the Cartesian form of
f(w) as

∑
(ak(w) + bki(w)). For each k ∈ N, denote as uk

the function uk : D → RT where uk(w) = ak(w) for all
w ∈ D and as vk the function vk : D → RT where vk(w) =
bk(w) for all w ∈ D. Of course, f =

∑∞
k=1 (uk + vki). We

call
∑

(uk + vki) the Cartesian form of f .

Definition 6: For each z ∈ CT we define (zn)n∈N, named
the related sequence to z, in the following way: If z ∈ A
then define zn := z for all n ∈ N; if z /∈ A then take
θ ∈ (π, 3π] such that z = ∞eiθ and, for each n ∈ N, take
ln := max

{
t ∈ N; tπ

2n < θ
}

and define zn :=∞ei
lnπ
2n .

Proposition 7: For all z ∈ CT , the related sequence to z
converges to z.

Proof: Let z ∈ CT be arbitrary. If z ∈ A then the
result is immediate; if z /∈ A then take θ ∈ (π, 3π] such
that z =∞eiθ and take

(
∞ei

lnπ
2n

)
n∈N

, the related sequence
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to z. Notice that, by Definition 6, for all n ∈ N, lnπ
2n <

θ ≤ (ln+1)π
2n whence 0 < θ− lnπ

2n ≤
π
2n . Taking n tending to

infinity in the latter inequality, we have that limn→∞
lnπ
2n = θ

whence limn→∞∞ei
lnπ
2n =∞eiθ = z.

Definition 8: Let D ⊂ CT and f : D → CT be arbitrary.
We define (fn)n∈N, named the related sequence of functions
to f , in the following way: for each w ∈ D, take (zn)n∈N,
the related sequence to f(w). For each n ∈ N, define fn :
D → CT such that fn(w) = zn.

The metric d and the homeomorphism ϕ used henceforth
are defined in [9].

Proposition 9: Let D ⊂ CT be arbitrary. For all f :
D → CT , the related sequence of functions to f converges
uniformly to f .

Proof: Let D ⊂ CT , f : D → CT and (fn)n∈N be
the related sequence of functions to f . Let positive ε ∈ R
be arbitrary. For each w ∈ D with f(w) /∈ A, denote
f(w) = ∞eiθ(w), where θ(w) ∈ (π, 3π], and denote the re-
lated sequence to f(w) as

(
∞ei

ln(w)π
2n

)
n∈N

. As the function

g : R → C, where g(x) = eix for all x ∈ R, is uniformly
continuous in [0, 3π], it follows that there is a positive δ ∈ R
such that |eix − eiy| < ε whenever x, y ∈ [0, 3π] and
|x − y| < δ. Let m ∈ N such that π

2m < δ. It follows that
if n ≥ m then

∣∣∣θ(w)− ln(w)π
2n

∣∣∣ = θ(w)− ln(w)π
2n ≤ π

2n < δ

for all w ∈ D with f(w) /∈ A whence d(fn(w), f(w)) =∣∣ϕ(fn(w)), ϕ(f(w))
∣∣ =

∣∣∣ 1
1+ 1
∞
ei
ln(w)π

2n − 1
1+ 1
∞
eiθ(w)

∣∣∣ =∣∣∣ei ln(w)π
2n − eiθ(w)

∣∣∣ < ε for all w ∈ D with f(w) /∈ A.
Furthermore, d(fn(w), f(w)) = d(f(w), f(w)) = 0 < ε for
all n ∈ N and for all w ∈ D with f(w) ∈ A. Whatever, if
n ≥ m then d(fn(w), f(w)) < ε for all w ∈ D.

Definition 10: Let a, b ∈ R with a < b and f : [a, b] →
CT such that f ([a, b]) ⊂ A and take

∑
(uk + ivk) its

Cartesian form. We say that f is integrable in [a, b] if and
only if uk and vk are integrable in [a, b] for all k ∈ N. If f
is integrable in [a, b], the integral of f in [a, b] is defined as∫ b

a

f(t) dt =
∞∑
k=1

(∫ b

a

uk(t) dt+ i

∫ b

a

vk(t) dt

)
.

Definition 11: Let a, b ∈ R with a < b, f : [a, b] → CT
and (fn)n∈N be the related sequence of functions to f . We
say that f is integrable in [a, b] if and only if fn is integrable
in [a, b] for all n ∈ N and

(∫ b
a
fn(t) dt

)
n∈N

is convergent.
If f is integrable in [a, b], the integral of f in [a, b] is defined
as ∫ b

a

f(t) dt = lim
n→∞

∫ b

a

fn(t) dt.

Remark 12: Notice that if f has Cartesian form then
definitions 10 and 11 give the same result.

Definition 13: Let D ⊂ CT . A path in D is a continuous
function γ : [a, b] → D where a, b ∈ R and a < b. The
image of the function γ is denoted by |γ|.

Remark 14: For every path γ, either |γ| = {Φ} or
Φ /∈ |γ|. Indeed, as γ is continuous, Φ is an isolated point
and images of connected sets by continuous functions are
connected ones, if Φ ∈ |γ| then |γ| = {Φ}.

Now we define the derivative of a path. If γ(t) ∈
C then we have already the usual definition γ′(t) =

limh→0
γ(t+h)−γ(t)

h . If γ(t) = Φ then γ ≡ Φ and we
define γ′(t) = Φ. We have a difficulty when γ(t) ∈ CT∞.
If γ(t) ∈ CT∞ we have two possibilities: either there is a
neighbourhood U of t such that γ(U) ⊂ CT∞ or γ(U)∩C 6= ∅
for all neighbourhoods U of t. In the first case, for all s ∈ U ,
γ(s) = ∞eiθ for some θ ∈ R. Hence, as γ is continuous,
γ(U) is an arc of the circle at infinity. Thus there is a path
β in C such that γ(s) =∞β(s) for all s ∈ U and we define
γ′(t) = ∞β′(t). In the second case, t ∈ γ−1(C) so if γ is
differentiable in γ−1(C) we define γ′(t) = lims→t γ

′(s) if
this limit exist.

Definition 15: Let γ : [a, b]→ D ⊂ CT be a path and t ∈
[a, b]. Henceforth γ′C(t) denotes the usual complex derivative
of γ in t. We say that γ is differentiable in t if and only if
one of the following conditions holds:

i) γ(t) ∈ C and γ is differentiable in t in the usual sense.
In this case we define the derivative of γ in t as the
usual derivative of γ in t, that is, γ′(t) := γ′C(t).

ii) γ(t) = Φ. In this case we define the derivative of γ in
t as Φ, that is, γ′(t) := Φ.

iii) γ(t) ∈ CT∞ and there is a path β in C and a neigh-
bourhood U of t such that γ(s) = ∞β(s) for all
s ∈ U ∩ [a, b]. In this case we define the derivative
of γ in t as ∞β′(t), that is, γ′(t) :=∞β′(t).

iv) γ(t) ∈ CT∞ and t ∈ E, where E is the set of all elements
s from [a, b] such that γ(s) ∈ C and γ is differentiable
in s, and there is lims→t γ

′
C(s). In this case we define

the derivative of γ in t as lims→t γ
′
C(s), that is, γ′(t) :=

lims→t γ
′
C(s).

Definition 16: Let γ : [a, b] → D be a path. We say that
γ is smooth when γ is differentiable and γ′ is continuous in
[a, b].

Definition 17: Let γ : [a, b] → CT be a smooth path and
f : |γ| → CT be a function. We say that f is integrable
on γ if and only if (f ◦ γ)γ′ is integrable in [a, b]. If f is
integrable on γ, the integral of f on γ is defined as∫

γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt.

Proposition 18: Every complex function of complex vari-
able is integrable in the usual sense if and only if it is
integrable in the transcomplex sense. In other words: let
γ : [a, b] → C be a smooth path and f : |γ| → C be a
function, it follows that f is integrable on γ in the usual
sense if and only if f is integrable on γ in the transcomplex
sense. Furthermore both integrals have the same value.

Proof: Let γ : [a, b] → C be a smooth path and f :
|γ| → C be a function. As ((f ◦ γ)γ′)([a, b]) ⊂ C, there are

Proceedings of the World Congress on Engineering 2019 
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019



functions u : [a, b]→ R and v : [a, b]→ R such that u+ vi
is the Cartesian form of (f ◦ γ)γ′.

It follows that f is integrable on γ in the usual sense if and
only if (f ◦ γ)γ′ is integrable in [a, b] in the usual sense if
and only if u and v are integrable in [a, b] in the usual sense
if and only if u and v are integrable in [a, b] in the transreal
sense ([7], Proposition 49.a) if and only if, by Definition 10,
(f ◦ γ)γ′ is integrable in [a, b] in the transcomplex sense if
and only if, by Definition 17, f is integrable on γ in the
transcomplex sense. And∫
γ

C

f(z) dz =

∫ b

a
C

((f◦γ)γ′)(t) dt =

∫ b

a
R

u(t) dt+i

∫ b

a
R

v(t) dt

=

∫ b

a

u(t) dt+i

∫ b

a

v(t) dt =

∫ b

a

((f◦γ)γ′)(t) dt =

∫
γ

f(z) dz

where
∫
γ

C
f(z) dz denotes the integral of f on γ in the usual

sense and
∫ b
a

C
((f ◦γ)γ′)(t) dt denotes the integral of (f ◦γ)γ′

in [a, b] in the usual sense and
∫ b
a

R
u(t) dt and

∫ b
a

R
v(t) dt

denote, respectively, the integral of u and v in [a, b] in the
usual sense.

Example 19: Let us calculate the integral of |z| along the
semi-straight line from 0 to ∞i.

Fig. 1. A Semi-straight Line

Let f : CT → CT where f(z) = |z| and γ : [0, 1] →
CT where γ(t) = t

1−t i. Note that γ is continuous and
differentiable with γ′(t) = 1

(1−t)2 i. Thus
∫
γ
f(z) dz =∫ 1

0

f(γ(t))γ′(t) dt =

∫ 1

0

∣∣∣∣ t

1− t
i

∣∣∣∣ 1

(1− t)2
i dt =∫ 1

0

t

1− t
1

(1− t)2
i dt = i

∫ 1

0

t

(1− t)3
dt =∞i.

Example 20: Let us calculate the integral of z along the
circle at infinity. Let f : CT → CT where f(z) = z and
γ : [−π, π] → CT where γ(t) = ∞eit. Note that γ is
continuous and differentiable with γ′(t) = ∞ie−it. Thus∫
γ
f(z) dz =

∫ π

−π
f(γ(t))γ′(t) dt =

∫ π

−π
∞eit∞ieit dt =∫ π

−π
∞e−it∞ieit dt =

∫ π

−π
∞ie−iteit dt =

∫ π

−π
∞i dt =

i

∫ π

−π
∞ dt =∞i× 2π =∞i.

Fig. 2. A Semi-circle

Example 21: Let us calculate the integral of 1
|z|2 along

C, a semi-circle of centre 1 and radius 1
2 .

Notice that, for all z ∈ C, d(z, 1) = 1
2 whence |ϕ(z) −

ϕ(1)| = 1
2 , hence

∣∣ϕ(z)− 1
2

∣∣ = 1
2 . As d(z, 1) = 1

2 for all z ∈
C, we have that Φ /∈ C. Because of this, for all z ∈ C there
is w ∈ BC(0, 1) such that z = ϕ−1(w). Thus C is made from
points ϕ−1(w), with w ∈ C, such that

∣∣ϕ(ϕ−1(w))− 1
2

∣∣ =
1
2 , that is,

∣∣w − 1
2

∣∣ = 1
2 . But

∣∣w − 1
2

∣∣ = 1
2 if and only if

w = 1
2 + 1

2e
it for some t ∈ R. Therefore each point of C is

given by ϕ−1
(
1
2 + 1

2e
it
)

=
| 12+ 1

2 e
it|

1−| 12+ 1
2 e
it|e

iArg( 1
2+

1
2 e
it)

= 1

2−
√

2+2 cos(t)
(1 + cos(t) + i sin(t)) for some t ∈ R.

Let us take γ :
[
−π2 ,

π
2

]
→ CT , where γ(t) =

1

2−
√

2+2 cos(t)
(1+cos(t)+i sin(t)), and calculate the integral

of f : CT → CT , where f(z) = 1
|z|2 , along |γ|.

Firstly, note that γ is continuous. Indeed, if t ∈
[
−π2 ,

π
2

]
\

{0} then, clearly γ is continuous in t and, furthermore,
γ(0) = ∞ and limt→0 γ(t) = ∞ whence γ is also
continuous in 0. Secondly, note that γ is differentiable.
In fact, clearly γ is differentiable in

[
−π2 ,

π
2

]
\ {0} with

γ′(t) =
2 sin(t)

(√
2+2 cos(t)−4

)
4
(
2−
√

2+2 cos(t)
)2 + i

8 cos(t)−
(√

2+2 cos(t)
)3

4
(
2−
√

2+2 cos(t)
)2 and

limt→0 γ
′(t) = ∞ whence γ is differentiable in 0 with

γ′(0) =∞. Furthermore γ′ is continuous. Thus γ is a smooth
path.

Now, notice that f(γ(t)) = 1
|γ(t)|2 =

(
2−
√

2+2 cos(t)
)2

2+2 cos(t)

for all t ∈
[
−π2 ,

π
2

]
. Thus f(γ(t))γ′(t) =

sin(t)
(√

2+2 cos(t)−4
)

2(2+2 cos(t)) + i
8 cos(t)−

(√
2+2 cos(t)

)3

4(2+2 cos(t)) for all
t ∈
[
−π2 ,

π
2

]
\ {0} and f(γ(0))γ′(0) = Φ. Therefore∫

γ

f(z) dz =

∫ π
2

−π2
f(γ(t))γ′(t) dt

=

∫ π
2

−π2

sin(t)
(√

2 + 2 cos(t)− 4
)

2(2 + 2 cos(t))
dt

+i

∫ π
2

−π2

8 cos(t)−
(√

2 + 2 cos(t)
)3

4(2 + 2 cos(t))
dt

= (π − 2−
√

2)i.

Example 22: Let us calculate the integral of z along a
semi-circle at infinity. Let f : CT → CT where f(z) = z
and γ :

[
−π2 ,

π
2

]
→ CT where γ(t) = ∞eit. Note

that γ is continuous and continuously differentiable with
γ′(t) =∞ie−it. Thus

∫
γ
f(z) dz =

∫ π
2

−π2
f(γ(t))γ′(t) dt =
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∫ π
2

−π2
∞eit∞ieit dt =

∫ π
2

−π2
∞iei2t dt =∫ π

2

−π2
∞ei(2t+π) dt = limn→∞

∫ π
2

−π2
fn(t) dt where, for

each t ∈
[
−π2 ,

π
2

]
, (fn(t))n∈N is the related sequence to

∞ei(2t+π).

Now, notice that, given n ∈ N, from Definition 6 it follows
that, fn(t) = ∞ei

(l−1)π
2n for all t ∈

[−2n+l−1
2n+1 π, −2

n+l
2n+1 π

)
,

for each l ∈ {1, . . . , 2n+1}. Hence, given n ∈ N,
denoting the Cartesian form of fn as

∑(
u
(n)
k + iv

(n)
k

)
and denoting, for each l ∈ {1, . . . , 2n+1} and for each
t ∈

[−2n+l−1
2n+1 π, −2

n+l
2n+1 π

)
, the Cartesian form of fn(t) =

∞ei
(l−1)π

2n as
∑(

a
(n, l−1)
k + ib

(n, l−1)
k

)
, it follows that

∫ π
2

−π2
fn(t) dt =

∞∑
k=1

(∫ π
2

−π2
u
(n)
k (t) dt+ i

∫ π
2

−π2
v
(n)
k (t) dt

)
=

∞∑
k=1

2n+1∑
l=1

−2n+l

2n+1 π∫
−2n+l−1

2n+1 π

a
(n, l−1)
k dt+ i

2n+1∑
l=1

−2n+l

2n+1 π∫
−2n+l−1

2n+1 π

b
(n, l−1)
k dt

=

∞∑
k=1

2n+1∑
l=1

a
(n, l−1)
k + i

2n+1∑
l=1

b
(n, l−1)
k

 =

∞∑
k=1

(Φ + iΦ) = Φ.

Example 23: If γ : [a, b] → CT is the constant path γ ≡
Φ then

∫
γ

f(z) dz = Φ for all f : {Φ} → CT . Indeed,∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

f(Φ)× Φ dt =∫ b

a

Φ dt = Φ.

IV. CONCLUSION

Earlier, real elementary functions, real limits and both real
differential and integral calculus were extended to transreal
forms. This extended real analysis to transreal analysis.

We now introduce the transcomplex integral and, inciden-
tally, the derivative for transcomplex functions whose domain
is a real interval. In future work, totalising the transcomplex
derivative would complete the task of extending the main
elements of complex analysis to transcomplex analysis.

Taking these results all together, a very large part of
practical computation is extended to transnumbers.
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