
Multiple Communities of Ego in Social Networks
Günce Keziban Orman

Abstract—Communities in social networks have the tendency
to overlap. Their overlapping parts carry important knowl-
edge about the studied system. For this reason overlapping
community identification arises as an important task in social
network analysis. Up to now, several different methods have
been proposed but suffer from being sensitive to not only the
number of nodes in overlapping parts of communities, but
also the number of communities which overlap. In this work,
we propose a new algorithm merging multiple communities
around each ego nodes. It is designed for detecting highly
overlapping communities at small size. These types of com-
munities correspond to small social groups that share members
such as families, close friends or coworkers. Experiments are
conducted on artificial and real-world networks. Performances
are evaluated quantitatively and qualitatively by comparing
foremost state-of-art algorithms. The results show that our
algorithm overcomes previous issues of overlapping community
detection.

Index Terms—Overlapping Community, Node Disjoint Path,
Algorithm Comparison

I. INTRODUCTION

Community detection is one of the most attractive subjects
in social network analysis [1]. A community corresponds to
a group of nodes with denser inner links and sparser outer
links [1]. Communities are widely studied for discovering
functionally related objects, finding interactions between
modules, inferring missing attribute values and predicting
unobserved connections, etc.[2]. The applications are numer-
ous, such as: recommendation systems, viral marketing or
sentiment analysis. Right now, majority of the existing ap-
proaches considers communities as disjoint node groups [1].
Recently, a high interest to finding overlapping communities
arises [3], [4], [5]. An overlapping community structure can
be defined as groups of nodes in which any two groups might
share common nodes.

In [6], the authors underline that communities as functional
objects share some common nodes. Those overlapping nodes
have higher link density than non-overlapping parts. Hence,
finding them gives us important knowledge about the func-
tional roles of those communities and their nodes. Raey et al.
show that overlapping communities are significant features
in social networks [7]. Finding them serves to discover the
dynamics of social interactions. For instance, in a social
environment, one person can belong to multiple communities
at the same time, e.g. his coworkers, his social friends or his
family members. Overlapping parts of different communities
may represent similar sides of those social groups. Or,
people belonging to only one community may be identified
by a single interest. Moreover, overlapping amount of two
communities gives an idea about their future state, i.e. those

Manuscript received March 7, 2021; revised March 24, 2021. This work
was supported by the Galatasaray University Research Fund (BAP) within
the scope of project number 18.401.004, and titled ”Sıralı Sistemlerde
Tahmin ve Çıkarım”.

G.K. Orman is an Assitant Professor of Computer Engineering Depart-
ment, Galatasaray University, Istanbul, Turkey, (korman@gsu.edu.tr).

groups might merge in near future. As a result, overlapping
community detection becomes an important task in social
network analysis.

We encounter several different approaches which are ded-
icated to the detection of overlapping community structure
[5], [8], [4], [3], [9], [10], [11], [12]. In [3], the authors reveal
common limits of state-of-art algorithms; they are sensitive
to the overlapping level of the communities. More explicitly,
their performance is affected by both the number of nodes
which are at the overlapping parts of the communities and
also the number of communities which overlap. Some other
drawbacks can be listed as first, some of the existing methods
put every node into at least one community [4], [13]. How-
ever, in reality, networks may contain community-less nodes
which correspond to noise or outliers. Second, the size of
communities are in general large [4]. But, one needs to find
smaller communities which corresponds to small friendship
groups or family member in real-world social environments.
In this work, we propose a new overlapping community
detection algorithm that overcomes mentioned drawbacks of
previously described algorithms. This algorithm let the user
regulate the size and the cohesiveness of the communities. It
is not sensitive to the overlapping level of the communities
and also extracts a specific type of outlier or noise.

In real-world social environments, we encounter multiple
cohesive groups around each specific person. Some of those
groups are his family members, his coworkers, his social
friends and so on. Each person can also contact individually
with some unique people without belonging to any group. In
the algorithm, we modelled this social life phenomenon. We
concentrate on each ego node and look for all social cohesive
groups around each ego. At that point we consult the notion
of being k-connected of the nodes for defining cohesive
groups. Our algorithm discovers overlapping communities by
merging similar k-connected node groups around each ego.
The two main contributions of this article is first analytically
describing a new algorithm for finding overlapping com-
munity structure fro social network and second evaluating
the performance of this algorithm by comparing it with the
performance of foremost overlapping community detection
algorithms. We consider some prominent methods such as
OSLOM [14], GCE [5], MOSES [8], COPRA [4] and EGO-
BASED [9] at this comparative study. In the following
section, we give the definitions and methods related to the
details of proposed algorithm. In section III, we describe the
LFR model and accuracy results of all algorithms. Finally,
in the last section, we give a brief conclusion and explain
future aspects of this work.

II. METHOD

Given a plain network G = (E,V), V is a set of n nodes
and E is a set of m links. For each node i in V , its ego-
centered network at radius di, Gdi

i , is the sub-network of G

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

centered on node i and surrounded with dth
i level neighbors

of i. Note that if di = 1, all the nodes in G1
i are the direct

neighbors of i. If di is equal to the diameter of G then, Gdi
i

is as same as G. Two paths between two nodes i and j are
node independent, a.k.a node disjoint, if they do not have
any common internal nodes except i and j [15]. We say i
and j are k-connected if there is at least k ∈ [0,∞[different
node disjoint paths from i to j. We define an ego-centered
k-connected node group Cip ⊆ V di

i of ego i as a group of
nodes in which each pairs of nodes are k-connected. Note
that ∪pCip is equal to V di

i depending on the value of k. If
k is at its lowest value, ∪pCip =V di

i . However, if k is at its
maximal value, several nodes may not belong to any group.
Note that in an ego-centered k-connected node group, ∀k > 1,
the nodes stay connected even if ego is removed from the
network because they are all k-connected before the removal.
To find such groups, we propose an algorithm which at first
eliminate the nodes which are not k-connected with the ego.
We then extract each connected components after removing
ego.

Algorithm 1 Finding Ego-centered k-Connected Node
Groups

Require: Gdi
i , k, i

Ensure: Ci =Ci1, . . . ,Cip

1: for j ∈V di
i do

2: if nodeDis jointPathNumber(i, j)< k then
3: Gdi

i = remove(Gdi
i , j)

4: end if
5: end for
6: Gdi

i = remove(Gdi
i , i)

7: Ci = extractConnectedComponents(Gdi
i)

8: Ci = insertEgoToAll(Ci, i)

We give pseudo code of finding ego-centered k-connected
node groups in algorithm 1. It takes minimum number of
node disjoint paths (k), ego-centered network (Gdi

i) and ego
(i) itself as input. It first eliminates the nodes whose node dis-
joint path numbers to the ego are less than k (lines 1, 2, 3, 4
and 5). Here, function nodeDisjointPathNumber(. . .)
in line 2 calculates the number of disjoint paths. We use
push relabel max flow algorithm [16] for this function. The
complexity of this step is O(|V di

i |3). We calculate it for
all nodes, so it makes O(|V di

i |4). Functions remove(. . .)
and insertEgoToAll(. . .), given in lines 6 and 8 re-
spectively, can be computed in constant time. Extracting
connected components after removal of ego (given in line
7 as function extractConnectedComponents(. . .))
can be done with BFS. Running time of this step is
O(|V di

i |+ |E
di
i |). So overall running time of this algorithm

is O(|V di
i |4 + |V

di
i |+ |E

di
i |)∼ O(|V di

i |4).

A. Ego Based Merged Overlapping Communities

We can extract same or similar node groups for different
egos if they share many common neighbors. In this case,
we need to merge similar groups to detect final community
structure. Previously, Rees et al. merged the groups that
match all nodes but one node of smaller group [9]. However,
if the sizes of node groups are high, although the groups are

similar, they can be ignored. That is why; we propose to take
into account the rate of the similar part to non similar part
of the node groups. Let us note that S1 and S2 are two node
groups and sim(S1,S2) = |S1∩S2|/|S1| is their similarity.

Algorithm 2 Merging Node Groups
Require: S, threshold
Ensure: M

1: sort(S)
2: for i ∈ 1 . . . |S| do
3: for j ∈ i . . . |S| do
4: if sim(Si,S j)≥ threshold then
5: S j = union(Si,S j)
6: Si = /0
7: end if
8: end for
9: end for

The pseudo code of merging process is given in algorithm
2. It takes the set S, whose members are the node groups
found for entire network, and the minimum ratio of the
similarity (threshold) as the input parameters. It outputs
overlapping community structure M. It firstly sorts S ac-
cording to the size of node groups in increasing order (line
1). Computing size of each group can be done in constant
time. We apply simple radix sort which requires O(|S|) where
|S| is the total number of node groups. Then, the procedure
checks if the similarity of each pair of node groups, Si and
S j is greater than given threshold (line 4). Similarity can
be computed in O(min(|Si|, |S j|)) by using hash table for
storing the elements of one of the node groups. In case
of being sufficiently similar, these two groups are merged
(line 5) and the groups Si and S j are updated. Merging
phase can also be done in O(min(|Si|, |S j|)) with hash table.
The algorithm continues until each pair of node groups is
processed. The average size of a node group can be given
n/|S|. So, the overall time complexity of merging phase is
O(|S|+2× (n/|S|)×|S|2)∼ O(n×|S|)

The algorithm Ego Based Merged Overlapping Commu-
nities, EMOC, at first extracts ego-centered network of each
node i at radius di. This can be done in constant time by using
the adjacency matrix representation of the graph. It then
finds k-connected node groups related to each ego by using
algorithm1 and creates the global set S of node groups over
entire network. Finally, it applies algorithm 2 and creates
the overlapping community structure. Total time complexity
of these two steps is O(|V di

i |4 + n× |S|). We assume that
|V di

i |4� n×|S|. It results O(|V di
i |4). This complexity highly

depends on the density of network and the chosen radius
value di to create ego-centered networks. If network is sparse
and di = 1, then, size of ego-centered network will be logn
[9]. So, time complexity will be O((logn)4). In case of
dense network, or high values of di, complexity can be
O(n4). Indeed, considering each node as an ego gives the
opportunity of paralleling the computation. Thus, in practice,
this time complexity can be reduced too much.

EMOC considers three parameters: (1) di, radius of ego-
centered network to adjust the size of the communities. As
this parameter can be constant for whole network, it can also
change from one node to another, (2) k, number of node dis-
joint paths, to regulate the cohesiveness of node groups and

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

Table I
LFR NETWORK GENERATION PARAMETER VALUES

Parameters Values
1 µ {0.1,0.3,0.5}
2 (cmin,cmax) {(5,25),(10,50),(20,100)}
3 On {50,100,500}
4 Om {2,3,4,5,6,7,8,9,10}

(3), threshold, to decide the minimum ratio of node groups
similarity. Adjusting values of these parameters requires
topological analysis of the studied network. Nevertheless,
in the most basic form, one can set constant di = 1, k = 2
and threshold = 0.8 for considering first-level ego-centered
network, minimum cohesiveness inside the groups and high
similarity of the groups. Note that decreasing the value of
threshold may result high overlapping of the communities.

III. RESULTS

We made experiments on artificial and real-world networks
to see the performance and the limits of EMOC. We generate
artificial networks with predefined overlapping community
structure by using LFR model [17] which is the most realistic
artificial network generator in the literature. It allows the
user to adjust many network properties by its generation
parameters. It is used for community detection algorithms
performance evaluation commonly [3]. Usually, the authors
generate a set of artificial networks having different topo-
logical properties by changing the values of LFR generator
parameters. Then, they examine the performance of the
algorithms by applying them on generated networks. The
version of LFR we consult at this work generates plain
networks with predefined overlapping community structure.
We manipulate following parameters; (cmin,cmax), µ , On and
Om. This allow us to control generated communities’ sizes,
the ratio of the links inside of the same communities that a
node has, total number of nodes which belong to more than
one community and maximum number of communities that
a node can belong in overlapping structure respectively. The
values of those parameters are given in table I. We generate
networks with n = 1000. Three parameters of EMOC are
set to di = 1, k = 2 and threshold = 0.8. The accuracy of
EMOC is determined by a modified version of normalized
mutual information (NMI) for overlapping communities [18].
As the traditional one, modified NMI is used commonly for
this issue. It takes 0 if two compared overlapping structure is
totally dissimilar and it takes 1 if they are exactly same. We
compare EMOC with five foremost overlapping algorithms:
GCE [5], OSLOM [14], COPRA [4], MOSES [8] and
EGO-BASED [9]. In this section, we at first concentrate
on quantitative performance evaluation of algorithms. Then
we evaluate the algorithms’ by the qualitative properties of
estimated community structures. Finally, we give the results
on real-world networks.

A. Quantitative Performance on Artificial Networks

In figure 1, NMI scores of the algorithms with Om increase
for different µ values is given. For µ = 0.1, the case of
having cohesive communities with good separation, all the al-
gorithms exhibit good performance (NMI > 0.8, see figure 1
top-left). When Om 6 5, OSLOM and MOSES are the most

2 4 6 8 10

0.
0

0.
4

0.
8

µ=0.1

Om

N
M

I

●
●

● ● ● ● ● ● ●
●

●
● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

µ=0.3

Om

N
M

I

●
● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

µ=0.5

Om

N
M

I ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

● EMOC
COPRA
GCE
OSLOM
MOSES
EGO−BASED

Figure 1. NMI Results of six algorithms for (cmin,cmax) = (5,25), On = 50.
Top-left plot is for well-separated communities (µ = 0.1). Top-right plot is
for medium-separated communities (µ = 0.3). Bottom-left plot is for few-
separated communities (µ = 0.5)

2 4 6 8 10

0.
0

0.
4

0.
8

cmin=5

Om

N
M

I
●

●
● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

cmin=10

Om

N
M

I

● ●
● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

cmin=20

Om

N
M

I

● ● ● ● ●

●
● ●

●

● ● ● ● ●

●
● ●

●

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

● EMOC
COPRA
GCE
OSLOM
MOSES
EGO−BASED

Figure 2. NMI Results of six algorithms for µ = 0.1, On = 50. Top-left
plot is for small communities ((cmin,cmax) = (5,25)). Top-right plot is for
medium communities ((cmin,cmax) = (10,50)). Bottom-left plot is for large
communities ((cmin,cmax) = (20,100))

performing ones. GCE, EMOC and COPRA follow them.
EGO-BASED seems the least performing one. The two ego
based methods are less sensitive to community cohesiveness.
Among them, EMOC seems more performing than EGO-
BASED. The performance of EMOC, EGO-BASED and
COPRA decreases with increase of µ . However, EMOC and
EGO-BASED still can keep their performance stable to the
increase of Om. COPRA does not exhibit a robust behavior
especially when µ = 0.5 (figure 1 bottom-left).

We show NMI results of the algorithms according to
different community sizes on different plots in figure 2. For
all algorithms, the easiest case occurs when the network has
small communities whose sizes change between 5 and 25
(figure 2 top-left). For larger communities the algorithms
performance is still good (figure 2 top-right). However, we
observe a linear decrease for all algorithms except ego based
ones with the increase of Om. Two ego based methods keep a

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

2 4 6 8 10 14

0.
0

0.
4

0.
8

On=50

Om

N
M

I
●

●
● ● ● ● ● ● ● ● ● ● ● ●●

●
● ● ● ● ● ● ● ● ● ● ● ●

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

On=100

Om

N
M

I

●
●

●
● ● ● ● ● ● ●

●
● ● ●

●
●

●
● ● ● ● ● ● ●

●
● ● ●

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

On=500

Om

N
M

I

●

●
●

●
●

●
●

●
●

●
● ● ● ●

●

●
●

●
●

●
●

●
●

●
● ● ● ●

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

● EMOC
COPRA
GCE
OSLOM
MOSES
EGO−BASED

Figure 3. NMI Results of six algorithms for µ = 0.1, (cmin,cmax) = (5,25).
Top-left plot is for low level of overlapping (On = 50). Top-right plot is for
medium level of overlapping (On = 100). Bottom-left plot is for high level
of overlapping (On = 500)

stable performance. Among them, EMOC results are as good
as other algorithms while EGO-BASED is one step backward
than them. Especially, when Om > 8, EMOC and OSLOM
perform the best.

In figure 3, we represent NMI results of the algorithms
for networks generated with On = 50, 100 and 500 in plots
top-left, top-right and bottom-left respectively. The easiest
case for all algorithms is On = 50. When the numbers of
overlapping nodes increase to 100, we observe a visible
linear decrease on the performance of all algorithms except
ego based ones. EMOC’s performance is as similar as the
case of On = 50. Among the expansion based methods,
MOSES exhibit better performance than the others even for
high Om values. It is claimed that MOSES is successful for
detecting highly overlapping structures [8]. As seen in top-
right plot, EMOC performs as well as MOSES for Om > 6.
Its performance is higher than MOSES for Om = 9 and 10.
In case that the half of the nodes in the network overlaps
(figure 3 bottom-left), the decrease of the performance of all
algorithms with the increase of Om becomes more visible.
The performance of the algorithms OSLOM, GCE and
MOSES decrease logarithmic. Among them, MOSES has a
smoother decreasing trend. COPRA has a sudden decrease.
Even for low Om values, its performance is worse than the
others. Two ego based methods have similar performance
trends and values.

By overall observation of the results for every parameter
combination, the performance of GCE, OSLOM and MOSES
are good and similar with each other when communities
do not overlap too much. However, their performances are
affected by overlapping density (controlled by On) and
diversity (controlled by Om). In contrast to this fact, two
ego based methods seems more stable than the others when
meeting with the changes on overlapping level. Among them
EMOC exhibits better results than EGO-BASED in many
cases. Especially, if the communities are well-separated and
their sizes are small, EMOC results are as good as the most
performing algorithms.

B. Qualitative Performance on Artificial Networks

In this section, we evaluate estimated community struc-
tures qualitatively by taking into account LFR reference
community sizes as well. Estimated Om with Om increases
for different On are shown in figure 4. It is an expected
behavior that reference structure has a linear increase with
the increase of Om. For any algorithm, we also expect such
a linear increase.

2 4 6 8 10

0
5

10
15

20

On=50

Om

M
ax

im
um

 O
ve

rla
p

●

● ●

●
●

●

● ●

●

●

● ●

●
●

●

● ●

●

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

On=100

Om

M
ax

im
um

 O
ve

rla
p

●
● ●

●
●

●

●
●

●

●
● ●

●
●

●

●
●

●

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

15
25

On=500

Om

M
ax

im
um

 O
ve

rla
p

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

2 4 6 8 10

0
5

15
25

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

15
25

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

15
25

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

15
25

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

15
25

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

15
25

Om

M
ax

im
um

 O
ve

rla
p ● EMOC

COPRA
GCE
OSLOM
MOSES
EGO−BASED
REFERANS

Figure 4. Maximum number of overlapping communities found by each
algorithm and LFR reference for µ = 0.1, (cmin,cmax)= (5,25). Top-left plot
is for low level of overlapping (On = 50). Top-right plot is for medium level
of overlapping (On = 100). Bottom-left plot is for high level of overlapping
(On = 500)

COPRA does not find any overlapping community for
any case. MOSES and OSLOM find community structure
with the most similar maximum overlapping community
to the reference one for any case. However, when half of
the nodes overlap (On = 500), they differentiate from the
reference. Especially, OSLOM seems not to find as many
overlapping communities as the reference one for this case.
GCE cannot find as many overlapping communities as the
reference one when Om > 5 for On = {50,100}. Two ego-
centric methods find much more overlapping communities
than the reference one for any case. Among them, EMOC
has a more linear trend. EMOC is designed for finding small
and highly overlapping communities. These graphical results
confirm its compatibility for this aim.

In figure 5, estimated values of On are shown. COPRA
does not find any overlapping nodes for any On. Estimated
values are different from the reference one when half of
the nodes overlap. For other two cases (On = {50,100}),
OSLOM finds as much overlapping nodes as the reference
one. Two ego-centric methods result much more overlapping
nodes than the reference one. Among them EGO-BASED
puts all nodes into more than one community for any case
while EMOC results %30 of overlapping nodes in the
network. In the reference community structure, LFR puts all
nodes into at least one community. Thus, we expect that
the algorithms should not result any community-less nodes.
Community-less node numbers for different On and Om
values are shown in figure 6. Except GCE and MOSES, all
the algorithms put all the nodes into at least one community.

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

2 4 6 8 10

0
20

0
60

0
On=50

Om

O
n

●
●

●
●

● ● ● ●
●

●
●

●
●

● ● ● ●
●

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

On=100

Om

O
n

●
●

● ● ● ● ●
● ●

●
●

● ● ● ● ●
● ●

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
40

0
80

0

On=500

Om

O
n

●

● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●

2 4 6 8 10

0
40

0
80

0

Om

O
n

2 4 6 8 10

0
40

0
80

0

Om

O
n

2 4 6 8 10

0
40

0
80

0

Om

O
n

2 4 6 8 10

0
40

0
80

0

Om

O
n

2 4 6 8 10

0
40

0
80

0

Om

O
n

2 4 6 8 10

0
40

0
80

0

Om

O
n

● EMOC
COPRA
GCE
OSLOM
MOSES
EGO−BASED
REFERANS

Figure 5. Number of overlapping nodes found by each algorithm and LFR
reference for µ = 0.1, (cmin,cmax) = (5,25). Top-left plot is for low level
of overlapping (On = 50). Top-right plot is for medium level of overlapping
(On = 100). Bottom-left plot is for high level of overlapping (On = 500)

However those two algorithms output some community-less
nodes. Especially, GCE finds many community-less nodes.
Their numbers are affected both by Om and On. When
there is too much overlapping node with many overlaps
between communities (Om > 6 and On = 500), MOSES
results many community-less nodes. We want to remind
here that NMI is sensitive and positively affected by the
number of communities. Those two algorithms’ NMI score
are high to be compared with other algorithms. However,
here we discover that they might result many community-
less nodes. Hence, the reliability of quantitative comparison
of the algorithms might be open to criticism. One single
measure is not efficient to explain the performance of the
algorithms but it should be supported by qualitative analysis
which enlightens the properties of the algorithms.

2 4 6 8 10

0
10

30
50

On=50

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

2 4 6 8 10

0
10

30
50

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
10

30
50

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
10

30
50

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
10

30
50

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
10

30
50

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

60
10

0

On=100

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

2 4 6 8 10

0
20

60
10

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

60
10

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

60
10

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

60
10

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

60
10

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

0
40

0

On=500

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

2 4 6 8 10

0
20

0
40

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

0
40

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

0
40

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

0
40

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

0
40

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

● EMOC
COPRA
GCE
OSLOM
MOSES
EGO−BASED

Figure 6. Number of community-less nodes found by each algorithm
and LFR reference for µ = 0.1, (cmin,cmax) = (5,25). Top-right plot is for
medium level of overlapping (On = 100). Bottom-left plot is for high level
of overlapping (On = 500)

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●
●●

●

●

●

●
●

●

● ●

●

●

●

●
●

12

3

4

5

6
7

8

9

10

11

12

13

14

15 16

17

1819

2021

22

23

24

25
26

27

28 29

30

31

32

33
34

Zachary Club Network Communities
After Fission

12

3

4

5

6
7

8

9

10

11

12

13

14

15 16

17

1819

2021

22

23

24

25
26

27

28 29

30

31

32

33
34

EMOC communities for
d_i=1, k=2

Figure 7. Zachary Karate Club Network. The different colors of nodes
represent belonging to different communities. Nodes with multiple colors
belong to multiple communities. Left and right plots represent ground-truth
and EMOC communities for di = 1, k = 2 and threshold = 0.8 respectively.

C. Results on Real-World Networks

We apply our algorithm on two real-world networks.
The first one is well-known Zachary karate club network
[19]. This network is created by observing Zachary club
members for 2 years. It shows the relations of 34 club
members. Club members split into two groups because of
political conflict between karate trainer John (node #34)
and club president Mr. Hi (node #1). There are two natural
communities whose leaders are those two members. One can
see these communities represented by different colors in left
plot of figure 7. The faction of each club member is also
declared as strong or weak connection with one of the leaders
or none.

We find 4 communities (shown in right plot of figure 7).
Natural communities of Zachary network seem to be split
by EMOC. Union of red and green communities of EMOC
substantially correspond John’s group. Likewise, yellow and
blue communities of EMOC constitute Mr. Hi’s group. There
are 5 overlapping nodes (#1, 3, 9, 32, 33). Mr. Hi (node #1)
belongs to three communities that 2 of them correspond to
his group after split. Evaluating centrality scores, overlapping
nodes have the highest betweenness centrality. Overlapping
nodes are either lying in-between two groups or they are em-
bedded in the core center of the groups. The most interesting
result is about node #9. Its betweenness score is not as high
as others. This node was a weak supporter of John before the
split but he joined Mr. Hi’s group afterwards [19]. EMOC
puts him into two communities that each of them correspond
to the groups of different leaders in reality. Two nodes (#10
and 12) are not placed into any community. Regarding their
topological position, node #12 is connected only with node
#1 (Mr. Hi). Node #10 has only two connections. The faction
of this node is marked as none. Node #10’s two friends are
Mr. Hi’s strong supporter and John himself. His idea about
leaders is neutral and his friends are homogeneous. As a
result, although he is placed in one of the groups in reality,
we cannot claim that he is embedded there. Briefly, it is seen
that EMOC finds consistent communities with real groups in
Zachary Karate network. Overlapping nodes have important
topological situation. Community-less nodes can be either
non-effective or easily affected by other people. Second real-
world network we deal with is Facebook Network [20]. This
network is a combination of 10 ego-centered networks that
each of them includes the social circles of ten different
Facebook users. There are 4039 nodes corresponding 10
ego and their friends and 88234 links representing the
friendship relation of them. This network is ego-centralized

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

●

●●●●●●●●
●
●●●
●●●●●●
●●
●
●●●
●●

●●●●●●● ●●●●●●
●●
●●●●●●
●●●●●
●
●●

●

● ●●●●●● ●●●

●
●●●●●●●●●●●●

●●
●
●●●●●●●●●●●●●●●
●● ●●●●●●●

●

●●●●●
●
●
●●●
●

●

●●
●
●●●●●●●●●●●●●

●
●
●●●
●●●●●●●●● ●●●●●●●●
●●●●● ●●● ●●●
●● ●● ●●
●●●●●●●●●●●
●
●
●

●●●●●●●●● ●
●●
● ●
●
●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●● ●●

●
●
●●●●
●
●●
●
●●●●
●
●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●
●●
●
●
●●●●
●●

●
●●●●●●

●●●
●
●●●●●●
●
●●
●●●●●●

●

●●●●
●

●●●●● ●●●●
●

●●
●

●●● ●
● ●

●●
●

●

●
●

●●●●●●●●●●
●

●
●●● ●

●
●●●●

●
●

●● ●●●●
●●●●

●
●

●

●●●●
●●●

●●●●● ●

●

● ● ●●
● ●●

●●
●●●●●●

●●●●● ●●●●●● ●●●●●
● ●●● ●

●
●●●●●●●● ●

●

●●●● ●●●

●

●
●●●● ●●●

●●●● ●
●

●●
●

●●
●●●

●●
●●●● ●

●● ●●
●

●● ●●● ● ●● ●●●●●
●●●●●●●

●
●●●

●●
●●●●● ●●●●

●
● ●●● ●

●
●

●
●

●
●●

●●
●● ●●●

●●●●●●
● ●

●●● ●● ●●●●● ●●
●●● ●●●●● ●●● ●●

●
●●

●●●●● ●● ●● ●● ●●●●●●●●● ●
●

●● ●●●●
●

● ●● ●
●● ●●●●● ●● ●

● ●●●●●●●●●● ●●● ●●● ●● ●●●●● ●● ●● ●● ●●● ●

●

●●●●●●●
●●● ●

●

●●●●
●

●

●
●● ●●●●●

●
●●●●●

●
●●●●
●
●●●

●●●●●●● ●●●●●●●●●●
●

●
●

●●●●
● ●●●●●●●●●● ●● ●●●● ●●● ●● ●
● ●●●●●
●

●●●●●
●●●●●●●●●●● ●●

●
●● ●●

●
● ●●● ●●●●●

●●●● ●●
●●

●●
●●

●
●

● ●
●●●
●●●● ●● ●●
●●●●●●● ●● ●●
●
●●

●
●●●● ●●●● ●●● ●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●
●

● ●● ●● ●● ●●●●●●●● ●●●●
●

●

● ●● ●● ●●●● ●● ●
●●● ●●●●●● ●● ●●● ●●
●● ●●● ●● ●●●● ●●●● ●●●●●● ● ●●● ●● ●● ●●●●●
●●●● ●●● ●●● ●●● ●
● ●●●●●● ●●●

●●
●

● ●●●● ●●
●
●●

● ●●●●●●● ●●● ● ●●●
●●● ●●●●●●
●●● ●●●●
● ●● ●●● ●●●● ●

● ●● ●● ●●
●●●●
●

●●● ●●●
●

●● ●●●●●
●●
●● ●●●●● ●●●

● ●●●● ●●
●

● ●● ●● ●●● ● ●●●
●●● ●●●●●●
●

● ●●●●●●● ●●●●● ●● ●●●●
●
●
●● ●● ●

●
●●●●
●●●●●●● ●●●● ●● ●● ●● ●

●● ●●●● ●●●●
●●● ●●●

●
●●● ●●●

●
●● ●●
●●

●●● ●●
●

●●● ●● ●●●●
●●
●●● ●●● ●● ●● ●●
●● ●●

● ●●●●● ●●●●●
●

●●●●
●● ●●●● ●

● ●●●●
● ●
●
●● ●●●●●

●
●●● ●●●●● ●●● ●●● ●● ●●●●
●● ●●● ●● ●●●● ●● ● ●●● ●● ●●● ●●
●● ●●● ●● ●●● ●● ●●●●
●●●● ●●●
●

●
●●●●●
●

●●● ● ●●● ●●
●● ●●

●●
● ●● ●●

●●●
●●

● ●● ●●● ●●● ●●●
●●
● ●●● ●●●

●
●●●● ● ●● ●●●● ●●●●●
●

● ● ●
●● ●●● ●●●●●●

●
●● ● ●● ●●● ●●● ● ●●●

● ●● ●●● ●●●
●● ●

●
● ●
●
●●

●
●

●● ●●
● ●

●
●

●
● ●●● ●●● ●● ●●

●●
●●

●
●●● ●●●●●●●
●●●

●
●●●

●
●●● ●●●●

●● ●●
●

●●● ●●● ●●● ●● ● ●●
●

●●● ●●● ●●●●
●● ●●
●

●●● ●●
●

●
●

● ●●● ●●●●● ●●●●
● ●
●●

●
●●●● ●●

●
●● ●●

●
●●

● ●●●
●● ●
●
●● ●

● ●● ●●
● ●● ●●●

●● ●●●● ●●●●● ●●●
●● ●
●●●● ●● ●●●●● ●● ●●● ●● ●●●●● ●● ●● ●● ●●●
●

●
● ●●●● ●●●● ●● ●● ●●●●●●

●

● ● ●●●
●

●●● ●●●●● ●● ● ●●
●● ●

●
●

●
●●● ●

● ●●● ●
● ●●●● ●● ●●●●

●
●●●●●

●● ●● ●● ●●●●
●
●●●
●●●● ●●●

● ●●●
●
●●●●●●
●
●●●● ●●●● ● ●● ●● ●
●

● ●●●●● ●● ●
● ●●●●●
●

●
●●●

●
● ●●●●●● ●

●
●●● ●●● ●● ●
●●●●

●
●●●●●
●

●
●

●●●
●
● ●● ●

●● ●● ●● ●● ●●● ●●
● ●● ●●●●●●●

●●● ●
●●●● ●●● ●●● ● ● ●●●●●

●
●●●●

●●●● ●● ●
● ●

●●●●● ●● ●● ●

●

●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●
●
●●●
●●●●●●●●●●●●●●
●●
●●●
●
●●●●●●
●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●
●

●●●●●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●
●●●●●●●●●
●●●●●
●●
●
●●●●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●
●●●
●●
●●
●●●●●●●●●
●●●
●●●●●●●
●●●●●●●●●●●●
●
●
●●●●●●●●●
●
●●●
●
●●●●●●
●●●●●●●
●●●
●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●
●●●
●●●●●●●
●●●
●
●●●●●●●●●
●
●●●●●●
●
●●●

●
●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●
●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●
●
●
●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●
●●●●
●●●●●●●●●●●
●●
●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●
●●●●●●●
●●●●●
●●● ●●
●●●●
●●●●●●●●●● ●●
●●●●●●●●● ●●● ●●●●●●●●●
●
●●
●
●●●●

●
●●●●●

●
●●● ●●●●
●● ●●
●
● ●●●●
●●●● ●●
●●●●●● ●●●● ●●●●●●●●●●● ●●
●●●●●
●●●●
●●
●●●●●
●
●●●●●●
●
●●●●●●●●●●●● ●●●●●●●●● ●●● ● ●●●●●●●
●
●●●● ●
●
●●●●●●●●●
●
●●●
●●●●●●●●●
●
●
●●●●● ●●●●●●●●
●
●●●●● ●● ●●●●●
●
● ●●
●
●●●●●●
●
● ●
●●●●●●●●●●●
●●
●●●●●●●●
●●
●●●●●●●●●●● ●●● ●●
●●●●●●●●
●

●●●
●●●●●
●
● ●● ●●
●
● ●●● ●●●●● ●●● ●●●●●●●
●
●●●●●
●●●●●●●

●● ●●
●● ●

●●●●●
●●●●●●

●●
●●●●●●●

●●
●●●●●
● ●●
●●
●
●●●●●●●●●●
●
●
●
●●●●● ●●●
●
● ●●●●●●●●●●
●●●●
●●● ●●●
●
●
●●●●●●
●
●●●●●
● ●●● ●

●
●●
●●●●●●● ●●
●●●
●●●●●●●●●●●●●●●●
●
●●●
●●●●
●●●●●
●●●●●
●
●
●
●
●
●●●●●●●

●
● ●●●● ●●●●
●
●●●●● ● ●●●●●
●● ●●●●●●●●●●●●
●
●●

●
●●● ●●●●●●●●●
●
●●●●●●● ●●●●●●●●●●
● ●
●●●●●
●●●●●● ●●● ●●●●
●●●●
●
● ●●●●●

●● ●●
●
●●●●●●
●●●● ●●
●
●●●
●●●●● ●●
●
●●● ●●●●●●●
●● ●●●●●●●●●●●●●●● ●
●●
●●
●●●
●●●
●

●●
●●
●
●●●●●●
●

●
●●●●●●
●●
●
●● ●●●●●
●

●●●●● ●
●●●●●●●●●●●
●●●●●●● ●●●
●●●●●●●●
●●
●●●●●● ●●

●
●● ●●● ●
●●●●
●
●
● ●●●●●●
●
●●●●● ●●
●
●●

●

●●●●
●
●●●●●
●●●●●●●
●●
●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●
●●●●●
●●●●●●●●●●
●●
●●●●●●
●●●●●●●●
●
●
●●●●
●●●
●
●●
●

●●
●
●●●●
●
●
●●●●●
●
●●●●●
●●●●●●●●
●●●●
●
●●●
●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●
●●●
●
●●
●
●●●
●
●●●●●
●
●
●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●●
●●
●
●●
●
●●●
●
●●●●●
●
●●●●●●●●●●
●●●●●●●●
●

●

●●●●●●●
●
●●●
●
●●●●●●●●
●
●●●●●●
●●●●●●●●●●●
●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●
●●
●●●●
●●●●●●●●●●●●
●
●●●●●
●
●
●●
●●
●●●●●●●●
●

●●●●●●
●
●
●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●

●

●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●
●
●
●
●●●●●●
●●
●●●●●●

5 10 15

0.
00

0
0.

00
4

Community Number

P
ag

e
R

an
k

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●
●

● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●

●

●●●● ●●●●●● ●●●● ●●● ●●●● ●● ● ●●● ●● ●●●●●●●●●●● ●● ●●● ● ●●●●● ●● ●● ●●●● ●●●● ●●

●

●●●● ●●● ●●●●● ●

●

● ● ●●● ●● ●● ●●●●●● ●●●●● ●●●●●● ●●●●● ● ●●● ● ●●●●●●●●● ● ●●●●● ●●● ●●●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●●●● ● ●● ●● ●●● ●●● ● ●● ●●●●●●●●●●●● ●●●● ●● ●●●●● ●●●● ●● ●●● ● ●● ●●

●

●● ●

●

●● ●●● ●●●●●● ● ●●●● ●● ●●●●● ●● ●
●

● ●●●●● ●●● ●● ●●● ●●●●● ●● ●● ●● ●●●●●●●●● ● ●●● ●●●● ●● ●● ●●● ●●●●● ●● ●● ●●●●●●●●●● ●●● ●●● ●● ●●●●● ●● ●● ●● ●●● ●
●
●●●●●●●●●● ●

●

●●●● ●●●●● ●●●●● ●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●● ●●●●●● ●●●●●●●●●● ●● ●●●● ●●● ●● ●● ●●●●●● ●●●●●●●●●●●●●●●● ●● ●●● ●●●● ●●● ●●●●● ●●●● ●●●● ●● ●●● ●● ●●●●●●●● ●● ●●●●●●●●● ●● ●●●●● ●●●●

●

●●●● ●●● ●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●● ●● ●● ●● ●● ●●●●●●●● ●●●● ●●● ●● ●● ●●●● ●● ●●●● ●●●●●● ●● ●●● ●●●● ●●● ●● ●●●● ●●●● ●●●●●● ● ●●● ●● ●● ●●●●● ●●●● ●●● ●●● ●●● ●● ●●●●●● ●●●●●● ● ●●●● ●●●●●● ●●●●●●● ●●● ● ●●●●●● ●●●●●● ●●● ●●●● ● ●● ●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●●● ●●● ●●●●●

●

●●● ●●●●● ●●●● ●●●● ●●●● ●● ●● ●●● ● ●●● ●●● ●●●●●● ●● ●●●●●●● ●●●●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●●●●● ●●●● ●● ●● ●● ●●● ●●●● ●●●●●●● ●●●● ●●● ●●● ●●● ●● ●●●●● ●●● ●●● ●● ●●●● ●● ●●● ●●● ●● ●● ●●●● ●●● ●●●●● ●●●●● ●●●●● ●● ●●●● ●● ●●●●● ●●●● ●●●●● ●●●● ●●●●● ●●● ●●● ●● ●●●●●● ●●● ●● ●●●● ●● ● ●●● ●● ●●● ●● ●● ●●● ●● ●●● ●● ●●●● ●●●● ●●●●● ●●●●● ●●●● ● ●●● ●●●● ●● ●●● ●● ●●●●● ●●● ●● ●●● ●●● ●●● ●● ● ●●● ●●●● ●●●● ● ●● ●●●● ●●●●●●● ● ●●● ●●● ●●●●●●● ●● ● ●● ●●● ●●● ● ●●●● ●● ●●● ●●●●● ●●● ●●●●
●

● ●● ●●● ●●● ●● ●●● ●●● ●● ●● ●● ●●● ●●● ●●●●●●● ●●● ●●●● ●●●● ●●●●●● ●●● ●●● ●●● ●●● ●● ● ●● ●●●● ●●● ●●●●●● ●●● ●●● ●●●● ●● ●●● ●●●●● ●●●● ● ●●●

●

●●●● ●● ●●● ●●● ●●● ●●●●● ●●●● ●● ●● ●●● ●● ●●● ●● ●●●● ●●●●● ●●● ●● ●●●●● ●● ●●●●● ●● ●●● ●● ●●●●● ●● ●● ●● ●●● ●●● ●●●● ●●●● ●● ●● ●●●●●●

●

● ● ●●●● ●●● ●●●●● ●● ● ●●●● ●●● ●●●● ●● ●●●
●

● ●●●● ●● ●●●● ●●●●●●●● ●● ●● ●●●●●●●● ●●●● ●●●● ●●● ●●●●●●●●●●●● ●●●● ● ●● ●● ●●● ●●●●● ●● ●● ●●●●●● ●●●●●● ●●●●●● ●●●●● ●●● ●● ●●●●●● ●●●●● ●● ●●●●●● ●● ●●● ●● ●● ●● ●●● ●● ● ●● ●●●●●●●●●● ●●●●● ●●● ●●● ● ● ●●●●●●●●●● ●●●● ●● ●● ●●●●●● ●● ●● ●

●

●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ● ●●●●●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●● ●● ●●●● ●●●●●●●●●● ● ●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●

●

●●
●

●●●

5 10 15

0.
0

0.
2

0.
4

Community Number

B
et

w
ee

nn
es

s
C

en
tr

al
ity

●

●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●
●

●

●●●●●
●

●●
●
●●●●●●●●●●●● ●●●●●●●
●
●●●●●●●●●●●● ●●●
●
●●●

●

●●●●●●●●●●●
●●

●
●
●●
●
●●●●●●●●●●

●

●●●●●●●●●
●
●●●

●
●●●●●
●
●●●●●● ●●● ●●●
●
●

●

●

●

●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●● ●●●●●●●●●●●
●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●
●
●●●●●●
●
●
●
●●●● ●●●●●●●●●●
●
●●●●●●●●

●

●
●
●●

●

●●●
●
● ●

●

●●

●

●●

●

●●
●

●

● ●

●●

●

●

●

●

●●●●●●●●

●
●

●

●

●●

● ●

●

●
●
●●

●

●

●

●
●●

●
● ●

●●●

●

●

●

●
●●

●

●

●

●
●

●

●
●●

●

●

●
● ●●● ●● ●

●

●
●

●●
●
●

●
●●●●

●
●

●
●
●●

●
●
●
●
●

● ●

●
●

●

●

●●●
●
●

●
●●

●

●

●
●
●
● ●

●
●

●●

●
●●● ●●●

●

●●● ●

●

●●

●
●●

●●
●

●●●
●
●● ●

●
● ●●

●

●
●

●

●●
●

●●

●

●●
●●
●
●●
●
●●
●

●

●●
●

●

● ●●●
●●
●

●●●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●
● ●
●● ●●●●●● ●

●

●●● ●● ●●●●
●

●

● ●
●

●

●

●●●●

●

●●

●

●

●

●●
●●

●●●
●

● ●● ●● ●●●●●●●●●

●

●●● ●
●
●●

●

● ●●

●

●● ●

●
●
●●

●

●

●

● ●●●●●●●●●● ●●● ●
●

●
●

● ●●●●●
●
● ●● ●● ●

●

● ●

●

●●●●●●●●●●

●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●

●

●●●●●●●● ●

●

●●●●● ●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●●●● ●● ●●●●

●

●●

●

●

●

●

●

●●●●● ●●●●●●●●●●●●●●●●

●

●

●

●●

●●●

● ●●●

●●

●●● ●●●●

●

●●●

●

●

●

●●

●

●

●

●●●●●●● ●●

●

●●●●●●●● ●● ●●●●●

●

●

●●

●

●

●

●●
●

●●
●
●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●

●● ●● ●● ●● ●●●●
●

●●● ●●●
● ●
●● ●●
●

● ●●
●

● ●● ●
●
●● ●●●●●● ●● ●●● ●●●● ●●●

●
● ●●●● ●●●● ●

●
●●●● ● ●●● ●● ●● ●●●●● ●●●● ●●● ●●●

●

●● ●● ●●●●●● ●●●●●● ● ●●●● ●
●

●●●● ●●●●●●● ●●●
● ●

●●●●● ●●●●●● ●●● ●●●● ● ●● ●●● ●●●● ●● ●● ●● ●● ●●●●
●

●●●
●

●●
●

●● ●●●●●

●

●●
●

●●●●● ●●●●
●

●●● ●●●● ●● ●
●

●●● ●
●

●● ●●● ●●●●●●
●

● ●●●●●●● ●

●

●●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●●●●●

●

●●● ●●

●

●
●

● ●●●
●●

●●
●

●●●●
●
● ●●●●

●
●●
●●

● ●●● ●● ●●●●● ●
●

● ●●● ●●
●

●●● ●● ●●●
●

●● ●● ●● ●●●●
●

●● ●●●●● ●●●●● ●●●●● ●● ●●●● ●● ●●●●● ●●●● ●●
●
●● ●●●● ●●●●● ●●●
●
●● ●● ●●●●●●
●

●● ●● ●●
●
● ●● ●

●●
● ●●

●
●●

●
● ●● ●●●

●●
●●● ●●

●
●●●

●
●●● ●●●●● ●●●●●

●

●●● ● ●
●

●
●●

●● ●● ●●●
●

● ●●●
●

●
●

●● ●● ●●● ●●● ●●● ●● ● ●●● ●●●● ●●●● ●

●

● ●
●

●
●

●●●●●●● ●

●●●
●●●
●
●●●●●● ●● ● ●● ●●●

●
●● ● ●●
●

● ●●

●

●● ●●●●●
●
●● ●●●●

●

● ●● ●●● ●●● ●● ●●● ●●●
●

●
●

● ●● ●●● ●●
●

●●●●●●● ●●●

●

●●●
●

●
●● ●
●●●●

●
●●●

●●
● ●●● ●●● ●● ●

●

●
●●

●●
●

●● ●●
●

●●●
●

●● ●
●
●

●
●●● ●● ●●● ●●●

●
● ●●●● ●

●
●●

●

●●●● ●● ●●● ●
●
●

●
●●

●
●●●● ●●●● ●● ●● ●●● ●● ●●● ●● ●
●●

● ●
●

●●● ●
●

● ●● ●●●●● ●● ●●●●●

●

● ●●● ●● ●●●●● ●●

●

● ●● ●●●
●

●●

●

●●● ●●●● ●● ●● ●●●●●●

●

● ●

●
●

●● ●
●

● ●●●
●

● ●● ●
●

●●
●

●●● ●●●● ●● ●●●

●
●

●●●● ●●

●

●●● ●●●●●●●● ●●
●

● ●●●
●
●●●● ●●●● ●●●●

●

●● ●●●●●●●●
●
●●● ●●●●
● ●
●

●
●

●
●● ●●●●● ●● ●● ●●●●●● ●●●

●
●●

●
●
●

●●● ●●●●●
●
●● ●● ●●●
●

●● ●●●●● ●●

●●
●●●● ●● ●●●

●●
●● ●●

●
●● ●● ● ●● ●●●
●
●●

●
●●● ●●●●● ●●● ●●● ● ●

●
●●●●●●●●● ●●●● ●● ●● ●●●●●● ●●

●
●

●
●

●
●●
●
●●●
●
●●●●●

●

●●●●●

●

●●●●●●●
●●
●●●

●

●
●●
●●●●●
●●

●●●
●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●
●●●

●

●●
●
●●●●●●●●●●●●●●●
●
●
●
●●
●
●

●●●●●

●●

●●

●

●●●●
●
●●●●
●●●

●●●●●●●
●
●●
●
●●

●

●●

●●

●●●●●●●●

●

●●●●●
●
●●●●●●●●●●●●●
●
●

●●●●●●●●

●

●●●●●
●

●●●●●●●
●
●

●●

●●●
●●●●

●
●●

●●●●

●●
●●●
●●
●
●
●

●

●
●
●●●●●●●
●
●●●●●
●
●●●●

●

●
●
●●●

●

●●

●

●
●
●

●

●

●

●
●
●●
●
●
●
●
●
●

●●●

●

●●●●●●●●●●●
●
●●●●●●●

●●
●●●●●●●●●●●●●●
●
●
●
●●●●
●●

●●

●

●●●

●

●●●●●●●●●

●

●
●●●

●●●●
●
●●●●●

●

●●
●●
●
●
●●●

●

●●

●
●●●
●●
●
●●●

●

●●●●●●●●●●●●
●
●●●

●

●●●●●
●
●

●●
●
●
●
●●
●●

●
●
●
●●●●
●●
●●

●
●●●
●
●●●
●
●●●●●●●●●●●●
●
●●●
●
●●●●
●
●●●●●●

●
●
●●●
●
●●●●
●
●●●

●●
●●●●●●●●●●●●●
●
●●●

●

●
●●
●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●●●●●●

●
●●

●

●

●

●
●
●●
●
●●

●●

●●

●

●●●●●●●●●●●●●●●

●

●●●●
●
●

●

●●
●●

●●●●●

●●●●●
●●●
●
●●
●
●●●●●●●●●

●●
●●

●

●●●●●●●●
●
●
●
●●

●

●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●
●●

●●
●
●
●
●●
●●

●●●●●●
●
●●
●●
●●●●●●
●●

●●●●●●●●●●●

●

●●●●●●●●●●●●
●●

●●●●●

●

●●●

●

●●●●●●●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ● ●●●●●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●
●●●●●●● ●●● ● ●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●

●

●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●
●

● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●● ●● ●●●● ●●●●●

●
●●●● ● ●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●

●
●●●● ●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●

●

●●

●

●●●●●●●●●●●●●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●
●●●●●●●●●●

●

●●●●

●

●●●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

5 10 15

0.
20

0.
30

0.
40

Community Number

C
lo

se
ne

ss
 C

en
tr

al
ity

●

●●●●●●●●
●
●●●●●●●●●●●
●
●●●
●●
●●●●●●● ●●●●●●
●●●●●●●●●●●●●●●●
●
● ●●●●●● ●●●
●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●
● ●●●●●●●

●

●●●●●
●
●●●●
● ●
●●
●
●●●●●●●●●●●●●

●

●●●●●
●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●
● ●● ●●●●●●●●●●●●●
●●● ●●●●●●●●● ●
●●
● ●
●
●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●● ●●
●●
●●●●
●
●●
●●●●●
●
●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●●
●●
●
●●●●●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●

●

●●●●
●

●●●●● ●●●●
●

●●

●
●●●
●

● ●
●●

●

●

●
●

●●●●●●●●
●● ●
●

●●● ●
●

●●●●
●

●
●

● ●
●●●

●●●●

●
●

●

●●
●
●

●●●
●●

●●● ●

●

● ● ●●
● ●●

●
●

●●●●●●
●●●●● ●●●●●●
●●

●●●
● ●

●● ●
●

●●●●●●●● ●

●

●●●● ●●●

●

●

●●●● ●●●
●●●● ●
●

●●
●

●●
●●●

●●
●●●● ●

●● ●
●

●

●● ●
●● ● ●● ●
●●●●
●●●●●●
●

●
●●●

●
●

●●●●● ●●●●
●

● ●●● ●
●

●
●

●

●
●●

●●
●● ●●● ●●●●●● ●

●
●●● ●● ●●●●●

●●
●●● ●●●●● ●●●

●●
●

●● ●●●●● ●● ●● ●● ●●●●●●●●● ● ●●● ●●●●

●

● ●●
●

●● ●●●●● ●●
●

● ●●●●●●●●●● ●●● ●●● ●● ●●●●● ●● ●● ●● ●●● ●

●

●●●●●●●
●●● ● ●
●●●●

●
●
●
●● ●●●●●

●
●●●●●

●
●●●●
●
●●● ●●●●●●● ●●●●●●●●●●

●
●

●
●●●●
● ●●●●●●●●●● ●● ●●●● ●●● ●● ●
● ●●●●●
●

●●●●●●●●●●●●●●●● ●● ●
●● ●●

●
● ●●● ●●●●● ●●●● ●●●●

●●
●●

●
●

● ●
●●●
●●●● ●● ●●
●●●●●●● ●● ●●
●
●●

●●●●● ●●●● ●●● ●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●

●
● ●
● ●● ●● ●●

●
●●●●● ●
●●●

●●

● ●●

●
● ●

●

●

●
●

● ●
●
●

●
●
●
●●●● ●●
●●

● ●●

●
●

●●● ●
● ●

●
●●

●
●●
●

●●●●●

● ●
●●● ●● ●●

●●●
●

●

●
●●● ●

●● ●
●● ●●●

●

●
●

●

●

●
●
● ●
●

●●

●

●

● ●
●●● ●●

●
●●

●

●●●●
●●

●
●
●

●
● ●
●●
●

●● ●●●●●
● ●●● ●●●
●

● ●
●

●●
●

●
●

●
● ●

●

●
● ●● ●●

●●●●
●

●●●
●●

●

●

●
●

●●●
●

●
●

●

●● ●●●
●
● ●●●
● ●●●
●

●
●

●

● ●

●

●● ●
●
● ● ●●●

●

●
●

●●●
●
●●

●

●
●

●●
●

●

●●
●
●●●● ●● ●●●●

●

●
●

●

●● ●

●

●
●

●

●
●●●
●●

●
● ●●●● ●● ●

● ●

●

●

●● ●●●
● ●●

●●

●●● ●●
●●

●●
● ●●
●

●

●
●

●●

●●

●
●
●

●
●

●

●●

●
●● ●

●
●
●

●
●

●●● ●
●

● ●
●

●
● ●●

●
● ●

●

● ●●
●●

● ●●●●●

●

●●●●

●●
●●●● ●

● ●●●●

●

●

●

●

● ●●
●●●

●

●●
●

●●●●● ●
●● ●●●

●● ●●●●
●

● ●●

●
●●
●
●●● ●● ●

●
●● ●● ●●●

●
●

●●
●●●

●●

●●●

●●
●●

●● ●●
●
●

●●
●●

●
●
●●●

●

●

●●
● ● ●

●●
●

●

●● ●● ●

●

●
●

●
●●

●●●

●●

● ●
●

●●● ●●● ●
●
●

●●

● ●
●●

●
●●

●

●●
●
●

● ●● ●●
●

● ●●
●
●●
●

● ● ●

●

● ●
●

● ●●●●●●

●

●● ●
●● ●●● ●●● ● ●●●

●

●
●

●●● ●●●

●
● ●

●
●

●
●
●●

●

●

●

● ●●

●
●
●

●
●
● ●●
● ●
●●
●

● ●
●

●
●

●●

●

●●●
●●●●●●●
●
●● ●
●●●

●

●●●
●●

●

●

●● ●

●

●

●

●● ●
●●

●●
●

●● ● ●● ●
●
●● ●
●● ●●●●

●

● ●●

●

●●

●

●●

●

●

●

● ●●

●

●●●●● ●
●
●●

● ●
●
●

●

●●
●
●

●
●

●

●●
●●

●

●●
● ●●●
●

● ●

●

●

● ●

● ●
●

●●

● ●

●

●

●●

●
● ●

●

●

● ●
●●

●
● ●●●

●
●

●
●
●

●● ●
● ●
●
●

●● ●
● ●●
● ●● ●●●
●●

●
● ●● ●

●
●
●

●

●

●

●

●●

●●

●●●● ●

●

●● ●●
●
●●

●

●

●
● ●

●●

●
●●

● ●●●●● ●● ●
●●

●● ●

●

●
●
●●

●

●

●

●●
● ●

● ●
●
●● ●● ●●●

●

●

●
●●●

●
●
●

●● ●
● ●

●●●

●

●●●

●
●

●● ●
●●

●

●●●

●

●●●
●●●

●

●●●
●

●●●● ● ●● ●●
●
●

● ●
●
●●

●
●

●

●

●

●●●
●●

●

●

●●●

●

● ●●●

●●
● ●

●

●●

●

●●
● ●
● ●

●
●●

●

●

●
●●●●

●

●

●

●●●

●

●
●

●
●●

●
●● ●

●

●● ●●● ●●
●

●● ●
●
●●
●

●●

●●

● ●
●●●● ●●

● ●

●

● ● ● ●●●
●

●

●

●●
●
●

●●●● ●
● ●
● ●

●

●●●● ●● ●● ●

●

●●●
●

●●

●
●

●●
●
●

●●
●●

●

●●
●

●●
●●●

●

●●

●

●

●

●

●
●
●●

●●
●
●

●●●

●●●

●
●
●

●

●●
●

●

●●●
●

●

●●
●●●●●

●

●●
●

●●
●
●

●●
●
●●●

●

●●
●

●
●●●●
●
●●

●

●

●

●
●
●
●●●●●●●
●
●

●

●●●●●
●
●
●
●

●

●

●●

●●●

●
●●
●

●

●
●

●

●
●
●

●●●●

●●
●

●
●
●
●

●

●
●●
●
●

●●●

●●

●

●●
●●

●●

●
●

●●

●

●

●●

●

●●
●

●

●

●●

●

●

●

●●
●

●●
●
●
●●

●●●

●●

●

●●

●●

●
●
●
●

●●

●●
●
●
●
●
●●
●●

●

●
●
●●●●

●
●●

●

●

●●
●●●
●
●
●

●
●

●●

●●●●
●●
●
●●
●
●

●●●

●

●
●

●

●

●

●

●

●●

●●

●●

●
●

●●

●
●
●
●
●
●●

●

●

●

●●

●●●

●
●

●●

●

●●●
●
●

●
●
●●
●

●

●

●

●

●●
●●

●●
●●

●

●●
●

●

●
●●

●

●●

●
●
●●

●

●

●●

●●

●

●●

●
●
●●

●

●●●

●

●●
●
●

●

●
●

●●

●

●
●
●

●●

●

●
●
●
●

●●

●●●
●
●

●●

●

●

●
●

●●●●

●●

●

●

●
●
●

●●
●
●

●●●
●
●
●
●●●

●

●●
●

●●

●

●
●
●
●
●

●

●
●●

●

●

●
●
●●

●●
●
●
●●

●

●

●●
●
●
●

●

●

●

●●

●

●●●

●

●●●●
●

●
●

●
●

●

●

●

●

●
●●●

●

●●

●

●
●

●
●●
●●
●
●
●

●

●
●
●●
●●●●

●

●●
●
●●
●

●●●

●

●●●
●●●
●●

●

●●●●

●

●
●

●●

●
●
●
●

●
●
●●●●●●
●

●

●●●●

●

●●●●●●

●
●

●
●●●
●

●
●

●
●
●

●

●
●●●
●
●
●●
●●●

●

●

●●

●●●
●

●

●
●

●●

●

●●
●●

●

●●●

●

●

●
●

●
●●●●

●●●
●
●
●●

●●

●●●●

●

●●●●●

●●
●●
●●●

●

●●

●

●

●●

●

●
●

●●●
●
●
●
●●

●●

●
●
●

●

●
●

●●

●

●●●●●

●
●
●

●●

●
●

●●
●
●●●

●

●
●●

●

●●
●

●

●●

●
●

●

●●●

●

●

●
●

●

●
●●

●

●●●

●

●●

●

●

●
●●

●
●●

●●●

●
●
●

●
●
●●●●

●

●●●

●●
●●
●

●●
●

●●
●●
●●

●
●●●●
●
●●
●●●●●
●
●●●●
●●
●

●●

●
●●●
●
●●●●●
●
●●● ●
●
●●●
●
●●●●● ●●
●

●●●●●●●●●
●
●●
●
●
●●●

●
●●●●

●●
●●● ●●●●
●
● ●
●
●
●

●●●●
●●●● ●
●
●●
●
●
●● ●●●
●

●●
●●●●
●●●
●
● ●●
●●
●
●●
●
●●●
●
●
●●●●●

●
●●
●●●●
●
●●●●●
●●●●
●
●● ●●
●
●●●●●● ●●● ● ●
●●
●●●●
●
●
●●● ●

●

●●●●●●●●●
●
●●●
●●●●●●●●●
●●●●
●●
●

●
●●
●●●●●

●

●●
●●
● ●● ●●●●●
●
● ●●
●
●
●●
●●●
●
● ●
●●●
●●
●●●●●●
●●
●●
●●●
●●
●
●
●
●●
●
●
●●●●●
●●

●
●●

●●
●●●●
●●●●
●

●●●
●
●
●●●
●
● ●● ●●

●

● ●
●●

●●
●●
●

●●● ●●●●●●
●
●
●
●●
●
●●●●
●●●● ●
●

●
●

●
● ●
●●●●●

●●●●●●
●
●

●●●●●●
●
●●
●
●
●●●
●

●
●
●
●

●
●●●●●●●●
●
●
●
●

●
●
●
●
●
●

●●●
●
● ●●
●●
●●●●
●
●
●●
●●
●●
●

●●●

●

●
●●●●●
●
●

●●●●●
●

●●
● ●

●
●●
●
●
●●●●●

●
●
●●●
●
●●●●
●●●●●●●●●●●
●
●●●
●●●●
●
●
●
●●
●●
●●
●●
●
●
●
●
●●●
●
●●●

●
● ●●●● ●●
●●
●
●
●
●●
● ●

●
●●
●
●
●●

●●●●●●●●●
●●●
●
●●

●
●●
● ●
●●●●●●●●
●
●●●●●
●● ●●●●
●
●●●●●
●

●●●●●●
●●
●●●● ●●
●

●●●●
●
●
●●
●● ●●●●●

●● ●
●
●
●●●●
●●
●
●●
●

●●
●

●●●
●
●●●● ●●

●

●
●
● ●●●●●●●
●● ●●●●●●●●●●●●
●●● ●

●
●
●●
●
●●
●●●
●

●●
●●
●
●●●
●
●●
●

●
●●●
●●
●
●●
●
●
●

●
●●●●
●

●
●
●
●● ●
●●
●
●●●●●●●●
●
●●●●●●

●●
●

●●●
●
●●●●
●
●

●●●●●
●

●●
●

●● ●●
● ●
●●●
●
●
●
●

●●●●●●

●

●●●●● ●
●
●
●
●

●

●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●
●
●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●
●●●●●●●
●
●●
●

●●●●●●●
●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●
●
●●
●●●●
●
●●●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●
●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●
●

●●●●●●●
●
●●●
●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●
●
●
●●●●
●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●

●
●●●

5 10 15

0.
00

0.
10

0.
20

Community Number

D
eg

re
e

ce
nt

ra
lit

y

Figure 8. Relation between nodal topological measures and the numbers
of communities that Facebook users belong. Each red circle in the plots
corresponds to the scores of one node. Top-left, top-right, bottom-left,
bottom-right plots show the relation between community numbers and page
rank, betweenness, closeness and degree centralities respectively

by its construction. We apply EMOC with same parameter
values. We examine a possible relation between numbers of
communities that a node belongs and topological properties.
For this reason, we represent in figure 8 the scores of page
rank, betweenness, closeness and degree centralities with the
numbers of overlapping communities for each node. As it
is case for Zachary karate network, in Facebook, the most
overlapping nodes (#108 and 1685, points at the top-right
corners of each plot) are the most central ones. Their page
rank score is also high. Those nodes correspond to two egos
having hub position in the network. Some nodes belonging
to low numbers of community have high page rank scores.
Looking at them in more detail, we notice that those nodes
are not central themselves but they have direct connection
with important hubs. As a result, their page rank score is
high because of knowing important people.

Considering two real-world network experiments, EMOC
in general finds small communities. Some of them corre-
sponds to highly interconnected node groups which do not
have relation between each other except connecting to the
same hub. In general the most overlapping nodes are those
hubs. Other highly overlapping nodes are bridges connecting
different communities. The community-less nodes are differ-
ent types of outliers such as the people having unexpected
behavior or people who have no more connections than one
in whole network.

IV. CONCLUSION

In this work, we propose an algorithm EMOC to find small
overlapping communities and evaluate its accuracy on the
artificial networks by comparing its results with foremost
algorithms. The results show that EMOC is performing to
find small and well-separated communities. Those types of
communities are family members or close friend groups
in real-worlds social environments. Its performance is not

sensitive to overlapping density and diversity. Hence, it
can be used for detecting communities in any overlapping
level. It can find contextually accurate communities in real-
world social networks. In its estimated community structure,
overlapping nodes corresponds to hubs which are meeting
points of different node groups or bridges binding different
communities. The community-less nodes are different types
of outliers. Some prominent perspectives appearing from this
study are examining the roles of different parameters of
EMOC on the topology of detected communities, applying
EMOC on different types of social networks and interpreting
the results and developing a strategy to automatically and
dynamically determine EMOC parameter values according
to the topological positions of the nodes. We also want to
modify EMOC for weighted and directed networks.

REFERENCES

[1] S. Fortunato, “Community detection in graphs,” Phys. Reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[2] J. Yang, J. McAuley, and J. Leskovec, “Community detection in
networks with node attributes,” in ICDM, 2013, pp. 1151–1156.

[3] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community
detection in networks: The state-of-the-art and comparative study,”
ACM Comput. Surv., vol. 45, no. 4, pp. 43:1–43:35, Aug. 2013.

[4] S. Gregory, “Finding overlapping communities in networks by label
propagation,” New Journal of Physics, vol. 12, no. 10, p. 103018,
2010.

[5] C. Lee, F. Reid, A. McDaid, and H. Neil, “Detecting highly over-
lapping community structure by greedy clique expansion,” in SNA-
KDD10, 2010.

[6] J. Yang and J. Leskovec, “Overlapping communities explain core-
periphery organization of networks,” Proceedings of the IEEE, vol.
102, no. 12, pp. 1892–1902, Dec 2014.

[7] F. Reid, A. McDaid, and N. Hurley, “Partitioning breaks communities,”
in ASONAM, 2011, pp. 102–109.

[8] A. McDaid and N. Hurley, “Detecting highly overlapping communities
with model-based overlapping seed expansion,” in ASONAM, 2010, pp.
112–119.

[9] B. Rees and K. Gallagher, “Overlapping community detection by
collective friendship group inference,” in ASONAM, 2010, pp. 375–
379.

[10] X. Chen and J. Li, “Community detection in complex networks using
edge-deleting with restrictions,” Physica A: Statistical Mechanics and
its Applications, vol. 519, pp. 181–194, 2019.

[11] H. Jin, W. Yu, and S. Li, “Graph regularized nonnegative matrix
tri-factorization for overlapping community detection,” Physica A:
Statistical Mechanics and its Applications, vol. 515, pp. 376 – 387,
2019.

[12] T. Chakraborty, S. Ghosh, and N. Park, “Ensemble-based over-
lapping community detection using disjoint community structures,”
Knowledge-Based Systems, vol. 163, pp. 241 – 251, 2019.

[13] J. Xie, B. Szymanski, and X. Liu, “Slpa: Uncovering overlapping
communities in social networks via a speaker-listener interaction
dynamic process,” in ICDMW, Dec 2011, pp. 344–349.

[14] A. Lancichinetti, F. Radicchi, J. Ramasco, and S. Fortunato, “Finding
statistically significant communities in networks,” PLoS ONE, vol. 6,
no. 4, p. e18961, 2011.

[15] D. R. White and F. Harary, “The cohesiveness of blocks in social
networks: Node connectivity and conditional density,” Sociological
Methodology, vol. 31, no. 1, pp. 305–359, 2001.

[16] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-
flow problem,” J. ACM, vol. 35, no. 4, pp. 921–940, 1988.

[17] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities,” Phys. Rev. E, vol. 80, p. 016118, Jul 2009.

[18] A. Lancichinetti, S. Fortunato, and J. Kert??sz, “Detecting the over-
lapping and hierarchical community structure in complex networks,”
New Journal of Physics, vol. 11, no. 3, p. 033015, 2009.

[19] W. W. Zachary, “An information flow model for conflict and fission
in small groups,” Journal of Anthropological Research, vol. 33, pp.
452–473, 1977.

[20] J. J. McAuley and J. Leskovec, “Learning to discover social circles in
ego networks.” in NIPS, 2012, pp. 548–556.

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

