

Abstract— This paper illustrates the AMBA AXI4-Lite

protocol bus model for multiple Master-Slave communication

using bandwidth arbitration. A bit movement block is designed

to perform read, modify, and write data into memory

locations. Each bit move block consists of five configuration

slave registers. The slave registers store source address, a

destination address, and, a start bit. Bit move operation begins

with start bit acknowledgment and the operation terminates

with the done signal. Eight instances of this block act as

masters, memory, and a total of 9 devices act as slaves. Master

initiates the transfer by providing slave address, and slave

acknowledges accordingly. Bandwidth allocation arbitrator is

designed to select the master permitted to use the bus. An AXI-

4 lite fabric is designed to establish connections between all

these devices. The project aims to develop the best performing

design which completes bit-move operation within a limited

number of cycles. The project is designed in System Verilog.

Index Terms— Bit movement, System Verilog, Arbitration,

AMBA AXI4-Lite

I. INTRODUCTION

HE technological advancement in the semiconductor

industry brought a plethora of devices on the same die

without much increase in the size of the die. Most of the

industries have incorporated SOC design as it includes more

components to be embedded in a single die. System on a

chip (SOC) is an integrated circuit that consists of all

essential computer components like Central Processing Unit

(CPU), Universal Asynchronous Receiver Transmitter

(UART), Random Access Memory (RAM), Read-Only

Memory (ROM), and various other peripherals [1]. With an

increase in the number of components on a single chip

performance degrades due to lack of proper interconnection,

so proper connections between these components are

essential for effective functionality. Advanced Micro

Controller Bus Architecture (AMBA) introduced by ARM

establishes the standards for proper communication between

devices in a system. Advanced Micro Controller Bus

Architecture (AMBA) is an open-source standard that

provides the protocol for interconnecting several

components in a chip. The AMBA protocol is popular and

widely adopted in the semiconductor industry. The

Manuscript received March 23, 2021, revised April 10, 2021. The

authors are with San Jose State University, Department of Electrical

Engineering, San Jose, CA, USA. (Corresponding author phone 408-924-

4073; fax: 408-924-3925; e-mail: lili.he@sjsu.edu).

Advanced Micro Controller Bus Architecture (AMBA) has

resolved problems in Soc by providing coherence in design,

reusability of designs and it is extensively used for a design

with high performance [2].

A bit movement block module has been designed and

implemented using AMBA AXI Lite protocol. The bit move

module performs read, modify, and write data into memory

locations. Each bit move block consists of five

configuration slave registers. The slave registers store

source address, a destination address, and, a start bit. The bit

move operation begins with start bit acknowledgment and

the operation terminates with the done signal. Eight

instances of this block act as masters, memory, and a total of

9 devices act as slaves. The master initiates the transfer by

providing the slave address, and the slave acknowledges

accordingly. Only one master at a time is permitted to use

the bus. Initially, every master gains the bus using

arbitration to talk to the slave, later based on the bandwidth

master gains the arbitration. An AXI-4 lite fabric is

designed to establish connections between all these devices.

In this project, the bit movement block with AMBA AXI4-

Lite model is designed in System Verilog.

II. THE PROPOSED BIT MOVEMENT BLOCK DESIGN AND

IMPLEMENTATION

A. AMBA AXI-4 Lite bus protocol

Advance extensible Interface (AXI) protocol aims to give

high performance in designs. The protocol provides great

flexibility in interconnections. Advance extensible Interface

(AXI) protocol operates in burst mode, has split transactions

[3]. A Single bus is everything and works as five individual

sub buses. Figure 1 depicts the block diagram of the AXI

protocol design. Different portions of the Advance

extensible Interface (AXI) are used for various operations.

The operations are as below.

 Write address bus for sending address from master

to slave.

 Write data bus to send data.

 Write response bus for giving back response to write

from the slave.

 Read address bus to initiates the read.

 Read data bus to send data from slave to master.

The basic concept of an Advance extensible Interface

(AXI) bus is to gain performance by splitting a single bus

into five buses, thus allowing reads and writes overlaps [4].

Design of Bit Move Block using Bandwidth

Arbitration for Master Slave Communication

Saranya Vasudevan and Lili He, Member, IAENG

T

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

The Advance extensible Interface AXI4-lite is a subset of

Advance extensible Interface. Advance extensible Interface

(AXI) is commonly used for lite which has no burst

capability and no split transactions which is much better

electrically. AXI4-lite interface is simpler when compared

to the complete AXI4 interface. The communication

between the AXI master and the AXI slave happens through

any of the five communication channels. The five channels

are the write address channel, write data channel, write

response channel, read address channel, and the read data

channel [5].

 Fig.1. Block diagram for AXI master-slave.

B. Design of bit move block

The bit move module moves data from one part of the

memory to another part of the same memory. Figure 2

depicts the block diagram of the bit-move module with slave

and master interface signals. To perform the bit-move

operation the bit move module uses a state machine. The

state machine needs information like source address, a

destination address, block size, and the condition to start the

bit move operation [6]. The data is read from the source

address and written into the destination address. The

information about the source address, a destination address,

block size, and the start bit are coded into the configuration

registers.

Figure.2. Bit-move module with slave and master.

The slave interface signals begin with the prefix‘s’ and

the master interface signals begin with the prefix ‘m’. The

test bench will program the configuration registers using the

slave interface signals. Table I provides a list of slave

interface signals. R0 and R1 provide the source address to

read the data from. R2 and R3 registers provide the

destination address to move the data to the required

destination. R1 register provides the size of data to move

several bits. The test bench writes ‘1’ to Start bit of R4

which initiates the bit movement operation. The bit-move

module starts the bit-move operation when the start bit is

asserted in the R4 configuration register. The bit-move

module then begins to move the data inside the memory.

TABLE I

List of slave interface signals

The slave address is controlled only by the test bench and

the Bit-move module can only respond to the slave

interface. The master interface is controlled only by the bit-

move module. Test bench can only receive/respond to the

master interface transfers by bit-move module. The test

bench can never initiate a transfer on the master interface.

Table II provides a list of master interface signals.

After the data has been moved, the module sends the

moved data and their respective addresses to the testbench

through the master interface signals. The slave interface

signals are single cycle operations. Therefore, the slave

interface signals cannot have any pipeline or additional

delay. The signals mReq, mRW, mAddr, mWdata, mRdata,

mBurst, mHold, mErr, Busy, ErrSeen, Done are the master

interface signals. The master interface signals are two-cycle

operations and support pipeline. The bit-move module

asserts the mReq, mRW, mAddr signals in the first cycle,

Number Signal

Name

Function

1

sSel

The test bench has enabled the slave

interface to perform a read or write to

the registers.

2

sRW

The test bench mentions if it wants to

read or write to the registers. 0

indicated read and 1 indicates write.

3

sAddr

This address mentions which register

to read from or write into. It has the

following registers written by test

bench through the slave interface.

R0: Source Address.

R1: Portion of source address and

block size.

R2: Portion of destination address.

R3: Portion of destination address.

R4: Error, Busy, and Start bit.

4

sWdata

The test bench sends the data to write

to the selected register through

sWdata.

5

sRdata

The bit-move module reads the

registers selected by the test bench

using sRdata.

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

and the data is sent in the following cycle. The bit-move

operation is performed with 32- bit blocks of data. The

source and destination addresses programmed in the

configuration registers are bit addresses. The bit addresses

point to the respective starting bit and need not point at the

32-bit word border.

TABLE II

List of master interface signals

Number Signal

Name

Function

1

mReq

The output from bit-move module would

like to initiate an operation to the test

bench.

2

mRW

The output from the bit-move module to the

test bench indicating bit-move module

would like to perform a read or write.

3

mAddr

The output from the bit-move module to the

test bench denoting the word address of the

data the module writes to the test bench.

4

mWdata

The output from bit-move module to test

bench denoting the data it sends to the test

bench.

5

mRdata

The input to the bit-move module from the

test bench denotes the read data from the

test bench sends to the module.

6

mBurst

The output from the bit-move module to the

test bench indicating bit-move sends bursts

of data

7

mHold

The input to the bit-move module from the

test bench indicating test bench is not ready

to accept transaction request from the bit-

move module.

8

mErr

The input to the bi-move module from the

test bench that it has detected an error in the

data sent by the bit-move module.

9

Busy

The output from the bit-move module to the

test bench indicating bit-move module is

busy with the moving operation.

10

Errseen

The output from the bit-move module to the

test bench indicating an error has been

encountered.

11

done

The output from the bit-move module to the

test bench indicating the bit-move module

has completed the bit-move operation.

The pointer can be anywhere in the 32-bit word address.

Hence, the bit-move module performs the Read-Modify-

Write while moving data to the destination. The read

happens on the source and the Read-Modify-Write

operation happens on the destination addresses. Read-

Modify-Write is necessary to complete bit move operation

in limited number of cycles.

C. Finite state machine for bit movement operation.

 The finite state machine (FSM) is developed to decide

the bit movement based on certain conditions [7]. The

conditions are coded into the states namely reset, read the

source, read destination, write destination address, write

destination address and read the source, write destination

data and read the source, and write destination data states.

Table III depicts the finite state machine for bit movement

operation.

TABLE III

States in the finite state machine.

S.No Current state Next state

1

Reset

Read source if start is true.

2

Reset

Read source if start is false.

3

Read source

Read destination is hold is false,

enough data available in

destination, source and destination

address match.

4

Read source

Write destination address if hold

is false and enough data available

in destination.

5

Read source

Read source if enough data not

available in destination or hold is

true.

6

Read destination

Write destination address if hold

is false.

7

Read destination

Read destination if hold is true.

8

Write destination

address

Write destination data if source

read is done.

9

Write destination

address

Write destination address if

source read is not done.

10

Write destination

data

Read destination is hold is false

and destination address matches.

11

Write destination

data

Write destination data if hold is

true.

 The reset state decides if the bit move engine will be in

the reset state or move to the read source state based on

the start signal. When the start signal is asserted, the bit

move module moves out of the reset state and enters into

the read source state. When the hold is false and if enough

data is available for destination in the read source state the

bit move engine progresses to the write destination

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

address state. When enough data is not available for the

destination in the read source state, the bit move engine

retains in the read source state. When the hold is true in

the read source state, the bit-move engine retains in the

read source state. When the hold is false in the read

destination state, the bit move engine progresses to the

write destination address state. When the hold is true in

the read destination state, the bit move engine retains in

the write destination address state. When the hold is false

and source read is done in the write destination address

and read source state the state machine progresses to the

read destination state. When the hold is false and source

read is not done in the write destination address and read

source state the state machine progresses to the write

destination address state. When the hold is true in the

write destination address and the read source state, the bit

move engine retains in the write destination address and

read source state. When the hold is false in the write

destination state and all data has been read, the bit move

progresses to the read destination state else bit move

progresses to the reset state. When the hold is false in the

write destination state bit move engine progresses to the

write destination data state.

D. Design of Bandwidth arbitrator

An arbiter decides whose turn it is to use a resource such

as a bus. Various types of arbitrators include bandwidth

arbitrator, round-robin arbitrator, priority arbitrator, priority

round robin arbitrator, etc.

Fig.3. Bandwidth arbitrator implementation.

In the current project, a bandwidth arbitrator is designed

to choose the bus master. Each master requesting bus access

has a certain amount of bandwidth. A bandwidth allocation

arbitrator selects the master having the highest bandwidth

and allows that master to have bus access. A bandwidth

allocation arbitrator is designed to identify the master that

has access to the AXI-4 Lite bus. Figure 3 depicts the

implementation of the bandwidth arbitrator.

The bandwidth arbiter needs information about the

allocation, allocation amount, maximum amount, and burst

size to arbitrate to the correct master. The request amount

Bandwidth allocation arbitrator is used to select the master

having the maximum bandwidth. Comparators are used to

implement the bandwidth arbiter in four stages. In each

stage, multiple comparisons are made to select the winner

from each stage. Each comparator compares any two

master’s bandwidth amounts to identify the winner at each

stage. The overall winner of the arbitration is determined in

the fourth or the final stage.

E. Interface the Bit-move Module with AXI4-Lite Bus.

The final stage of the project is to implement eight bit-

move modules with the bandwidth arbitrator along with the

AXI4-Lite fabric. The test bench is also one of the masters

connected to the fabric. The arbitrator arbitrates between the

masters and provides read or write access to the winning

masters. Anyone of the eight masters can request the bus

independently or at the same time. When multiple masters

request bus access at the same time, the bandwidth

allocation arbitrator decides which master gets access to use

the bus. When multiple masters requesting the bus, access

have the same bandwidth amount, the bandwidth allocation

arbitrator designed will select the master that has not used

the bus recently. For instance, consider both bit-move

module 0 and bit-move module 1 have the same bandwidth

amount. If bit-move module 0 has the bus access recently,

the current bus access is given to bit-move module 1.

The final stage of the project is to implement eight bit-

move modules with the bandwidth arbitrator along with the

AXI4-Lite fabric. Figure 4 depicts the block diagram for

interfacing eight bit-move modules with the AXI4-Lite bus.

The test bench is also one of the masters connected to the

fabric. The arbitrator arbitrates between the masters and

provides read or write access to the winning masters. The

performance of the AXI4-Lite bus in this stage is analyzed

and reported.

 Fig.4. Block diagram for eight bit-move modules and test bench.

F. Simulation and Results

The bit-move module starts the bit move operation as per

the state machine. The source is read once or twice based on

the address. The first read is source read, then destination

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

read based on address, source read, destination writes,

source read, destination writes and operation continues until

the entire bit movement operation is complete. Figures 5, 6,

and 7 depict the simulation results with the AXI4 Lite bus

for the initial bit move operation. The waveforms are shown

for the first few cycles of the grant. Initially, the bit move

module does not have the grant. The fabric has not yet

issued the grant to this bit move module. The bit move

master module has not won the arbitration yet. The bit-move

module sends its request, mReq = 1, mRw = 0 to read. The

ARREADY signal is still zero indicating the grant has not

yet been provided to the bit move module. Until the mHold

signal is one, the bit move module keeps holing its request.

The bit move can begin the operation only when the mHold

signal is zero.

Fig.5. Simulation results with AXI4 Lite bus for the initial bit move operation.

Fig.6. Simulation results with AXI4 Lite bus for the intermediate bit move operation.

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

Fig.7. Simulation results with AXI4 Lite bus for the final bit move operation.

The working of signals in the AXI read address channel

is explained below. In the next cycle, the destination read

happens. In the destination read state, ARVALID is one and

ARREADY is one, meaning destination read address

request has been sent as one. The first read data is source

read data and the second read data is the destination.

 The address from the bit move is a thirty-bit word

address. The AXI address is a 32-bit address. Therefore,

two zeros are appended in the LSB of the AXI address to

change the word address into a bit address. This is the

reason for the difference in the value between mAddr and

ARADDR shown in the waveform. However, the addresses

are the same as zeros are appended. When bit move is

requesting a read, ARVALID is set as one. ARVALID is

not performing write and AWVALID is zero. Since no read

data is available, RVALID is also zero. Once a grant is

obtained, the grant is used as ARREADY and ARREADY

becomes 1. When ARREADY is available, mHold becomes

0, which means the first source read address has reached the

memory. ARREADY is available and ARVALID is

available. So AXI transfer has happened successfully.

III. CONCLUSION

The AMBA AXI4-Lite specification by AMBA provides

the architecture for interconnects in ASICS. The project

implements the design of the bit movement module,

designing bandwidth arbitrator, designing AMBA AXI4-

Lite fabric using System Verilog. The master-slave

interaction using bandwidth arbitration happens in the bit-

move block. The project designed a bit-move module master

which initiates the transfer by providing a slave address, and

slave acknowledge accordingly. In any instance, only one

master has permission to access the bus. The AXI4-Lite

fabric establishes the connections between the devices

available on the AMBA AXI4 Lite bus. Eight bit-move

blocks compete for bus access and the bandwidth arbitrator

selects the appropriate bit master. The simulation results

verify the functionality of the bit move block on the AXI

interface. It has been proved that the developed design

completed the bit-movement operation within the specified

number cycle as the design passed all the test cases

successfully. The designed project can be used with direct

memory access controllers to move data from one address or

memory to another address or memory. The AXI fabric can

be used in applications having multiple masters

communicating with the memory. These applications of the

designed project help to achieve advancements in the

technological industry. The designed project can be

incorporated for the design of high speed and high-

performance applications owing to the high performance

and speed at which bit-move transactions are completed.

REFERENCES

[1] L.Benini, D. Bertozzi, "Network-on-chip architectures and design

methods", IEE Proc.-Computer. Digital. Tech., March 2005 vol. 152,

no. 2, pp. 166-176.

[2] Raghunathan A, Lahir. K, Lakshmi Narayana G., “LOTTERYBUS: a

new high-performance communication architecture for system-on-

chip designs,” in Proceedings of Design Automation Conference, May

2005, pp 1-58113-297-2.

[3] GruruPrasad S.P, Sudharshan K.M “Design, and Analysis of Master

module for AMBA AXI4”, September 2011, pp NCECS-2011.

[4] Anurag Vatsav. G, Tomar, Ashutosh Kumar Singh “Performance

Comparison of AMBA Bus-Based System-On-Chip

Communication Protocol”, 29 July 2011, pp. 449-454.

[5] Pradeep S, Laxmi C, “Design and verification environment for amba

AXI protocol for soc integration”, International Journal of Research in

Engineering and Technology, May 20114, ISSN: 2319-1163, vol. 3,

issue 3.

[6] M. Jones, Design specification for bit move. San Jose, 2019, pp.1-2.

[7] E. Clifford and Cummings, "Coding And Scripting Techniques for

FSM Designs with Synthesis-Optimized Glitch-Free Outputs", SNUG

(Synopsys Users Group Boston MA 2000) Proceedings, September

2000.

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

