



Abstract- Since the early 1940s, military communication

systems, regular networking, and wireless communication

systems use spreading techniques. One such technology is

Spread Spectrum, where the waveform is modulated by

spreading the bandwidth using a pseudorandom noise, thereby

encrypting the signal. The project verifies a spread spectrum

correlator and checks for its verification properties. It aims to

check the correlators through 14 different designs under tests

(DUTs) while correlating to the gold code (PRN), frequency,

and phase. It further aims to check the correlation properties

with frequency errors and phase errors. This project will allow

upgrading systems with spread spectrum techniques to send

and receive information with finer encryption. The project

aims to provide full functional verification of the design and

check if the design meets the specification requirements. The

results of the project show plot of correlation characteristics

with frequency and phase errors.

Index Terms— Gold Code, Pseudorandom Noise, Spread

Spectrum Technique, Universal Verification Methodology

I. INTRODUCTION

The Spread Spectrum technique is used in

communication systems by increasing the transmission

bandwidth to secure and reliable communication [1].

Narrowband signals transmit information; however, they are

intercepted easily. Any signal in the same band could easily

jam the narrowband signals leading to loss or delicate

information corruption. If there is a low S/N ratio due to

interference, communication performance (C) increases the

bandwidth by injecting a higher frequency signal.

The Shannon and Hartley channel-capacity theorem

explains Spread Spectrum using equation [2]:

 (1)

Where C stands for Channel Capacity (in bits/second), B

stands for required channel Bandwidth (in Hz), and S/N is

the Signal to Noise power Ratio. To apply the spread

spectrum technique to any channel; before the receiver

antenna, insert the spread spectrum code; this is known as

the spreading operation leading to the diffusion of

information to a larger bandwidth. The Spread Spectrum

technique applies on top of another modulation technique

such as BPSK[3]. Verification is the process of determining

the correctness of a design. It checks if the design developed

is according to the specifications before process installation

and optimization.

Akhhiila Gurram is a student at San Jose State University, San Jose, CA.

USA. phone: (925)-520-5274. email: akhhiila.gurram@gmail.com

Navika Iyer is a student at San Jose State University, San Jose, CA, USA.

phone: (408)-797-4212, email: navika.iyer20@gmail.com

The design verification process is not simply linear, but

it is a continuous process to test until it meets the

requirements.

Universal Verification Methodology is a standard

verification methodology consisting of class libraries

required to build reusable test benches for the System

Verilog-based environment. It works on a message-based

programming model where the UVM components

communicate with messages.

II. METHODOLOGY

UVM is a standard methodology used in verification to

test functionality, timing, and performance. Types of

verification: Simulation, assertions, formal, semi-formal,

and HW/SW. Verification of spread spectrum correlator

tests functionality by building class libraries to test the

System Verilog-based environment. It uses messages, data

collection, and class objects to communicate with multiple

UVM components through TLM interfaces, ports, exports,

and imps. UVM classes have UVM transactions,

components, and objects where each of them performs

different tasks. The verification runs in 9 different phases.

A. UVM Components

Major UVM components are sequencer, driver, monitor,

scoreboards, agent, environment, test, and top module, and

each of these components extends to a base class. UVM

Sequencer sends the sequence items generated by the

sequence to and from the driver with a built-in export called

seq_item_export. UVM driver collects the sequence items

sent by the sequencer and pushes them into the design under

test. It uses a configuration database to access the virtual

interface, which connects to the Design under test. During

the driver's run phase, the sequence item fields map to the

virtual interface handle. Therefore, the sequence items

convert to pin wiggles and apply to DUT. It continuously

drives the interface signals to the DUT throughout the

simulation time.

Verification of Spread Spectrum Correlator

Akhhiila Gurram, Navika Iyer, and Lili He, Member, IAENG

Fig. 1. Block diagram of Spread Spectrum Communication

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

mailto:akhhiila.gurram@gmail.com

UVM Monitor collects the signal level activity from the

design through the virtual interface, converts it to

transaction items, and sends it to the other UVM

components. It uses a configuration database to access the

virtual interface connected to the Design under test. The

data transfers through TLM analysis ports. UVM

Scoreboard component checks the functionality of the DUT,

whether the design is behaving correctly and according to

the requirements or not. It receives the data from the

monitor through analysis ports and stores the data in

analysis FIFOs.

UVM Agent is an abstract container class used to

emulate and verify the Design under Test. It encapsulates a

driver, sequencer, and monitor. All the components are

connected using TLM interfaces. The connect phase is the

most critical phase as it connects all the agent's child

classes.

UVM Environment is a container class for multiple

agents and other components like scoreboards, top-level

monitors.

UVM test contains the environment which, acts as a

container class. The top module contains all the components

like the test, packages, interface, and DUT. Import UVM

packages using "import uvm_pkg::*:" and run_test is

declared invoking to build the UVM test component

responsible for building the UVM hierarchy.

B. UVM Phases

There are nine phases in UVM. Build phase, connect

phase, end of elaboration phase, the start of simulation

phase, run phase, extract phase, check phase, report phase,

and final phase. These phases are essential to build, connect

and run the UVM components to act in a synchronizing

mechanism. The build phase is top-down, while the rest of

them are bottom-up. The extract phase, check phase, report

phase, and final phase are together called clean-up phases.

The run phase is the only phase with a method-type task

while the rest of them use functions [4-5].

C. UVM Objects

UVM object, unlike the UVM component, is not

required to stay alive during the entire simulation. Sequence

and Sequence items are the only two objects, and they

extend to a base class. UVM Sequence and Sequence item

classes are built with macros, registered with a factory, and

provided stimulus, triggered during UVM phases. The

classes use item methods like create (), copy (), clone (),

print ().

III. SPREAD SPECTRUM TECHNIQUE

Spread Spectrum's idea is to increase the bandwidth of

the signal transmitted but, at the same time, maintaining the

power level, and this leads to indistinguishable peaks in a

spectrum, which looks like noise. Since the information

cannot be differentiated from noise unless the receiver has

proper decoding techniques, it is tough to intercept or jam

these signals. The spread spectrum has emerged as one of

the most secure ways of transmitting the information.[6]

The 6 components of the block diagram are explained as

follows

A. Encoder

The encoder is responsible for converting messages into

bits (or signals). It removes redundancy to compress the

message and keep in mind that the message sent will

encounter various noise types. [7]

B. Modulator

The modulator is responsible for converting the message

bits into signals to send through a channel. There are

different types of modulation techniques used in the

industry, such as Phase Shift Keying (PSK), Frequency Shift

Keying (FSK), and Amplitude Shift Keying (ASK), among

others.[7]

C. Channel

The channel is the physical medium of message

transportation. A channel also includes attenuation, noise,

and interference to the message signal.

D. De-modulator

 The de-modulator is responsible for converting the

signals received through the channel back to bits. The

demodulation technique used is the same as the modulation

technique used to transmit the signal at the sender side.

E. Decoder

A decoder is finally responsible for converting the bits

into understandable and readable messages as sent by the

sender.

F. Spreading and de-spreading code

This additional code is added to the signal while

modulating and demodulating respectively to spread the

signal's bandwidth and make it immune to interceptions.[8]

IV. THE DESIGN UNDER TEST

Of the six inputs, Din is the input data signal, while the

address register is to determine the use of Din. A strobe

signal is a one-bit signal used to determine when to write or

check the address register. The fourth input signal is Samp

and it is used to get the sample value.

The last input signal is push_samp which determines

when the Sample value is available.

There are four outputs; Dout is the same value as Din.

The second output is the correlator which is the actual

output, and the third output is just a one-bit flag which is the

push_correlator which signifies that the correlator output is

ready.

Table I. Design Specifications

Name Size Direction

Din 32 bits Input

Addr 4 bits Input

Strobe 1 bit Input

Sync 1 bit Input

Samp 12 bits Input

Push_samp 1 bit Input

Dout 32 bits Output

Corr 32 bits Output

Push_corr 1 bit Output

The first module is called the Register Select Module. As

the name suggests, the responsibility of this module is to

select the register for input data. The first signal checked is

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

push_Samp. If push_Samp is high, the sample input is then

read.

The address signal has only four values considered in the

design. If the address is 0, 4, 8, 12, that means the input data

is equal to frequency, phase, S1, S2 register, respectively.

S1 and S2 registers are responsible for selecting tapping bits

for polynomials in the Gold Code. If the sync is high in the

accumulator module, it sets the accumulator equal to phase.

If the push_samp is high and sync is 0, then the

accumulator keeps adding frequency to itself. Once the

accumulator value crosses 100 Million, 100,000,000

subtracted from it, and raise a flag to indicate the Gold Code

to advance to the next chip.

Every time the accumulator crosses 100 million and

raises the flag, there is a counter to increment in the gold

code module. The Gold Code [9-10] module consists of two

polynomials. Both of them are set to 10'b1111111111 when

the sync signal is high. Four temporary registers aid in the

calculation of the gold code output. The 10th bit is taken

from the first polynomial and stored in the first register.

Then 2 bits are taken from the second polynomial, XORed

together, and stored in the second register. The output of the

gold code is the modulo two addition of register one and

register 2, and the gold code output becomes 0 [11]. Once

the accumulator raises its flag, move on to the next chip.

The two taps on polynomial 1 are modulo two added

together, and the polynomial is left-shifted by one and then

repeat the same process.

Once the counter reaches 1023, the push_corr flag goes

high. Gold code output determines whether the sample value

is added or subtracted to the correlator value and gives the

final output. Din directly goes into Dout.

V. UVM TESTBENCH

A. Interface

 The interface has input and output signals with a

clocking block, and the modport is a named port where the

direction of the signals is specified. The interface acts as a

medium between the design and the uvm testbench to

exchange the signlas.

B. Sequence Item

The class is registered with the factory “uvm_ object_

utils” and constructed using a class constructor. The items

are created in the body using type_id:: create. The body of

the sequence calls for multiple tasks. These tasks include

directed test case by specifying the Din value as 100

Million, push samp = 1, Samp = 1388 and address= 4'h0,

4'h4, 4'h8, 4'hC, and strobe = 1.

C. Sequencer

The class registers with the factory UVM “component

utils.”

D. Driver

The driver class's build phase has the configuration

database to access the design through a virtual interface.

Failing to connect will show a fatal error. The connect phase

connects the ports. The interface signals take sequence items

into at the positive edge of the clock. The sync signal is set

high for every alternative clock cycle, and the driver uses its

inbuilt seq_item_port to get signals from the sequencer and

item.done method use the items[11].

E. Input and Output Monitor

The monitor's build phase has the configuration

 Fig. 2 Block Diagram of Spread Spectrum

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

database, so the monitor accesses the design through a

virtual interface.

.

 Fig. 3. UVM Testbench Block Diagram

Analysis ports use messages for communication between

components. The task enabling the run phase has the input

interface signals that push into sequence items at the

clock's positive edge.

F. Scoreboard

There are five different scoreboards used in this project.

Each checks a separate module of the test and sends

information to each other through messages.

The four scoreboards send and receive messages to

imitate the correct function of the Spread Spectrum

Correlator. The reg select scoreboard performs a register

select operation. The accumulator scoreboard performs the

frequency addition and raises a flag. The gold code

scoreboard checks the tapping polynomials in register S1

and S2 and performs the operations. The correlator

scoreboard receives the output, which checks for the

accumulator flag and increments the correlator counter.

Once the counter reaches 1023, check the gold code output.

According to the gold code output, the correlator adds or

subtracts the previous value to the sample and gives it.

The 5th scoreboard, which is the checker scoreboard,

compares the output achieved using the reference model to

the actual output from the DUT. If it matches, the design

passes the test; otherwise, it fails the test.

G. Agent

The agent connects all the child classes like the

scoreboards, monitors, driver, and sequencers after the build

phase achieves proper hierarchy.

H. Environment

The environment class connects to the agent and builds a

hierarchy. The agent class item is created in the build phase

using type_id::create. The connect phase connects its child

classes, and it is displayed.

I. Test

The test class is the last in the hierarchy, which connects

the environment and the sequence. The items for the

environment and sequence class are created in the build

phase using type_id::create, and the run phase has phase

objections to signify the start and end of the test.

 Fig.4. Simulation results of passed DUTs

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

J. Top Module

The top module encapsulates the entire uvm

environment. We include all uvm component and object

files at the top to be built and used. After initializing the

clock and reset, provide the virtual interface handle,

instantiate the DUT, and set the configuration database. For

a better representation, create waveform files using dump

files [12]. The virtual interface is present in configuration

database allows us to access from uvm components like

driver and monitor.

 Fig. 5. Waveform of DUTS that failed the test

 Fig. 6. Zoomed waveform of the DUTs

 Fig. 7. Waveform of the DUTs that passed the test

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

VI. RESULTS

14 DUTs were tested 7 DUTs failed the test and 8 DUTs

Passed. This section shows screen captures of the simulation

results as well as the waveforms achieved by DUTs.

 Fig. 4 shows the simulation results of the DUTs that

passed the test. The expected and received values match;

therefore, the DUTs correlated correctly.Fig. 5 shows the

simulation results of DUTs that failed. Fig. 6 shows the

zoomed-in waveform of the DUT, which passed the

testbench. When the push corr is high, push the value of the

corr. Fig. 7 shows the waveform of the DUT till the end of

simulations which passed the testbench. When the push corr

is high, push the value of the corr, as seen in fig. 7.

As shown in the figure, the expected and received

outputs from the correlator do not match; therefore, the

DUTs failed the test. Fig. 8 shows the waveform of the

result which failed. The other DUTs never gave out any

outputs because the push corr never went high, implying the

corr value was never given out.

VII. CONCLUSION

The project's objective was to provide functional

verification for the spread spectrum correlator and plot its

correlation characteristics. It has successfully achieved

functional verification by building an environment

consisting of agents, drivers, monitors, and Scoreboards of

the main blocks like Accumulator, Correlator, and the Direct

Digital Synthesizer. The correlator output was verified and

shown in the results.

REFERENCES

[1] "An Introduction to Spread-Spectrum Communications - Maxim",

Maximintegrated.com, 2003. [Online]. Available:

https://www.maximintegrated.com/en/design/technicaldocuments/tuto

rials/1/1890.html. [Accessed: 02- Oct- 2019].

[2] V. Eerola and T. Ritoniemi, "Signal Acquisition System for Spread

Spectrum Receiver", US6909739B1, 2005.

[3] S. Kulkarni, P. Mazumder and G. Haddad, "A high-speed 32-bit

parallel correlator for spread spectrum communication", IEEE,

Bangalore, India, 1996.

[4] A. Goiser and M. Sust, "Spread Spectrum communication using

CMOS digital correlator", IEEE, Lisbon, Portugal, 1989.

[5] A. Hendrickson, "Verification of PN Synchronization in a Direct-

Sequence Spread Spectrum Digital Communication System",

US6002709, 1999

[6] J. Yun, "Adaptive acquisition method and apparatus for CDMA and

spread spectrum systems compensating for frequency offset and

noise", KR100473679B1, 2005

[7] V. Nath and A. Kumar, "A Comparative Study of Spread Spectrum

Technique based on Various Pseudorandom Codes", Global Journal

of research in engineering, vol. 12, no. 6, 2012.

Available:https://pdfs.semanticscholar.

org/b821/b35033237efd3c31bb016e93bb9d87e49e46.pdf. [Accessed

16 September 2019].

[8] "Exploring communications technology", OpenLearn, 2020. [Online].

Available:https://www.open.edu/openlearn/science-maths-

technology/exploring-communicationstechnology/content-section-1.4.

[Accessed: 03- Feb- 2020].

[9] "Understanding Spread Spectrum for Communications - National

Instruments", Ni.com, 2020. [Online]. Available:

https://www.ni.com/en-us/innovations/whitepapers/06/

understanding-spread-spectrum-for-communications.html. [Accessed:

07- Mar- 2020].

[10] "The GPS PRN (Gold Codes)", Natronics.github.io, 2020. [Online].

Available:https: //natronics.github.io/blag/ 2014/gps-prn/. [Accessed:

13- Feb- 2020].

[11] Huang, Kai & Zhu, Peng & Yan, Rongjie & Yan, Xiaolang. (2015).

“Functional Testbench Qualification by Mutation Analysis”. VLSI

Design. 2015. 10.1155/2015/256474.

[12] Saponara, Sergio & Vitullo, Francesco & Petri, Esa & Fanucci, Luca

& Coppola, Marcello & Locatelli, Riccardo. (2011). “Coverage-

Driven Verification of HDL IP Cores”. 10.1007/978-94-007-0638-

5_8.

 Fig. 8. Simulation results of DUTs that failed the test

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

https://www.ni.com/en-us/innovations/whitepapers/06/

