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Abstract—We consider the numerical results of the piecewise
monotonic approximation method combined with a test for
trends of the residuals that is applied to a data set which is
considered difficult to be fitted. If n are the data and k−1 is the
number of positions of the joins of the monotonic sections, the
method requires O(nk−1) combinations of positions in order to
find an optimal one. The test attempts to distinguish genuine
trends from data errors in order to provide automatically an
adequate number of monotonic sections. This problem is hard
to solve, due to both the inherent combinatorial nature of the
piecewise monotonic approximation method and the need to
compare the goodness of competing fits. We show that the test
for trends by controlling an upper bound of the variance of the
fit allows progressively improved approximations. Our results
expose some critical questions and suggest a subject for future
research.

Index Terms—approximation, data smoothing, divided dif-
ference, dynamic programming, least squares, piecewise mono-
tonic, Raman spectrum, turning point

I. INTRODUCTION

LET {φi : i = 1, 2, . . . , n} be a sequence of measure-
ments of function values {f(xi) : i = 1, 2, . . . , n},

where f(x) is a real function of one variable, and where
the abscissae are in the strictly ascending order x1 < x2 <
· · · < xn. We assume that due to errors of measurement the
sequence of the first differences

{φi+1 − φi : i = 1, 2, . . . , n− 1} (1)

has far more sign changes than the sequence of the first
differences of the function values f(xi). The number of
sign changes in the sequence (1) may suggest to smooth the
data, particularly if it is known that f(x) is composed of a
smaller number of monotonic sections than that shown by the
first differences (1). Demetriou and Powell [5] proposed and
studied a data smoothing method by imposing a prescribed
number, say k − 1, of sign changes on the first differences
of the smoothed values {yi : i = 1, 2, . . . , n}. These
values allow at most k sections of monotonic components
alternately increasing and decreasing. There is no loss of
generality to assume that the first monotonic section of the
best fit is increasing. Ideally, k − 1 is the number of sign
changes in the first derivative of f(x), but the user can try
many values of k that may be suitable.

Vassiliou and Demetriou [10] have extended this method
by applying a test on the residuals for trends in order to
identify automatically an adequate value for k. The test has
been motivated by a test of data trends by Powell [8] on
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curve fitting by splines. The underlying assumption is that
the residuals are random variables with the same probability
density function, which has mean zero. This assumption
is useful to our theoretical analysis, but in practice our
knowledge is restricted to just the data at hand, which
indicates the difficulty of the problem we have addressed.

Our test for trends includes a parameter, η say, that forces
some smoothness in the fit by controlling the number of
monotonic sections k. Therefore, changing η allows different
numbers of monotonic sections in the derived fit.

In this paper we consider the details of one calculation that
considers best approximations to real data from a Raman
spectrum in order to identify peaks. Peak finding is an
important problem of spectroscopy of continuous interest
(see, for example, Gunther [6]; also, [2] and [4] are two
applications of the piecewise monotonic method on peak
finding). The data show many peaks of various sizes at
irregular positions, sudden changes, and great variability. The
complexity of the underlying physical laws make this a good
test of the efficacy of the extended piecewise monotonic
approximation method. We consider ranges of values of
η that satisfy an inclusion relation, each range giving the
same k. Thus, a sequence of values of η is generated that
detects progressively monotonic sections with diminishing
importance on the fit.

Piecewise monotonic approximation by Demetriou and
Powell [5] is a combinatorial optimization problem that
requires about O(nk−1) combinations of positions of sign
changes in the first differences of the smoothed values in or-
der to identify an optimal combination. The problem has been
solved by developing a dynamic programming algorithm
that requires only O(kn2) computer operations in the least
squares case. Software has also been developed by Demetriou
[1] that is about 1800 Fortran lines including comments,
which gives an idea of the size of the probelm. The inclusion
of the test for trends by Vassiliou and Demetriou [10] reorga-
nizes the iterations of the dynamic programming algorithm
at the expense of only O(kn) computer operations, and is
also supported by software development that is necessary to
apply the test for trends.

Section II gives some details of the calculation that are
needed later. Section III considers the details of an experi-
ment with the method of Section II on the mentioned Raman
spectrum data. Section IV gives some concluding remarks.

II. AN OUTLINE OF THE METHOD

In this section we include basic ideas of the piecewise
monotonic method [5] that are necessary to apply this method
together with our test for trends.

Therefore we let k be a positive number that is smaller
than n, and the piecewise monotonic method seeks a vector
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y in Rn that minimizes the sum of squares

Φ(y) =
n∑

i=1

(φi − yi)2 (2)

subject to the piecewise monotonicity constraints

ytj−1
≤ ytj−1+1 ≤ · · · ≤ ytj , j odd

ytj−1 ≥ ytj−1+1 ≥ · · · ≥ ytj , j even

}
, (3)

where {tj : j = 1, 2, . . . , k − 1} are integers that satisfy the
conditions

1 = t0 ≤ t1 ≤ · · · ≤ tk = n. (4)

While k is provided by the user, the integers {tj : j =
1, 2, . . . , k−1} are variables of the minimization calculation
together with the components {yi : i = 1, 2, . . . , n}. There
are about O(nk−1) combinations of positions of the variables
{tj : j = 1, 2, . . . , k − 1} for solving this problem, which
makes it a formidable calculation. Demetriou and Powell
have developed a dynamic programming method that gen-
erates the required fit in only O(kn2) computer operations.
The calculation takes account of the following two properties
of the solution that depend on the problem and that do not
occur generally.

The first property is that the optimal fit interpolates the
data at {tj : j = 1, 2, . . . , k − 1} giving

ytj = φtj .

The second property is that the optimal fit when k ≥ 2 con-
sists of separate optimal monotonic components that occur
between successive integers {tj}. Therefore the calculation
of the optimal fit reduces to dividing the data into at most
k disjoint sets of adjacent data and solving a monotonic
calculation for each set. The division into suitable sets is
achieved by the mentioned dynamic programming method.
In order to provide a brief description of it, we introduce the
notation

α(tj−1, tj) = min
ytj−1

≤ytj−1+1≤···≤ytj

tj∑
i=tj−1

(yi − φi)2, j odd,

for the monotonic increasing section on the interval [tj−1, tj ],
and similarly the notation β(tj−1, tj) for the monotonic
decreasing section on the interval [tj−1, tj ]. It follows that
if the values {tj : j = 1, 2, . . . , k− 1} are optimal and k is
odd, say, then the least value of the objective function (2) is
the expression (see Demetriou [3])

Φ(y) = α(t0, t1) + β(t1, t2) + α(t2, t3) + · · ·+
α(tk−1, tk).

Further, we introduce the notation γ(m, t) = minz∈Y (m,t)∑t
i=1(zi − φi)2 for any integers m ∈ [1, k] and t ∈ [1, n],

where Y (m, t) is the set of t-vectors z with m monotonic
sections. Therefore in order to calculate γ(k, n), which is
the least value of the objective function (2), the calculation
begins with the values m = 1 and

γ(1, t) = α(1, t), for t = 1, 2, . . . , n. (5)

Then, as m = 2, 3, . . . , k, it proceeds by applying the
formulae

γ(m, t) =

 min
1≤s≤t

[γ(m− 1, s) + α(s, t)] , m odd

min
1≤s≤t

[γ(m− 1, s) + β(s, t)] , m even, (6)

and storing τ(m, t), which is the value of s that minimizes
the right hand term of expression (6), for t = 1, 2, . . . , n.
In this way, γ(k, n) can be found in O(kn2) computer
operations. At the end of the calculation, m = k occurs
and the value τ(k, n) is the integer tk−1. Hence, by setting
t0 = 1 and tk = n, the sequence of optimal values
{tj : j = 1, 2, . . . , k − 1} is obtained by the backward
formula

tj−1 = τ(j, tj), for j = k, k − 1, . . . , 2, (7)

and the components of the relevant optimal approximation
are obtained by independent monotonic approximation cal-
culations between successive {tj}.

As already stated, in this paper we take the point of view
that k is unknown, which makes the piecewise monotonic
problem even harder to solve. So our algorithm combines
the dynamic programming method described above with a
test for trends between the monotonic sections (3) in a way
that increases m in formulae (6) up to an adequate value of
k.

Our algorithm is given the data {φi : i = 1, 2, . . . , n},
while the user may specify a value for a positive parameter
η (for example η = 1), which will be explained later.
Initially, the algorithm sets m = 1, makes the assignments
(5), obtains the components {yi : i = 1, 2, . . . , n} of the
best approximation that gives γ(1, n), and applies the test.
If the test fails, then an iterative procedure starts. On each
iteration, m is increased by one, the best approximation to
the data that has m monotonic sections is calculated, and
the residuals are tested for trends between successive tj . If
trends are found, another iteration starts so as to add one
more monotonic section. Otherwise the iteration sets k to
the current value of m and stops.

The test for trends by Vassiliou and Demetriou is briefly
described as follows. We let {yi : i = 1, 2, . . . , n} be the
components of the best approximation with m sections. Next,
we form the residuals

ei = yi − φi, i = tj−1, tj−1 + 1, . . . , tj , (8)

and calculate the quantity

Rj =

tj∑
i=tj−1+1

ei−1ei. (9)

We suppose that there is a trend if

Rj ≥ ηCj , (10)

where η is a positive parameter whose initial value is
provided by the user, and where

Cj =
√
tj − tj−1

tj∑
i=tj−1

e2i /(tj − tj−1 + 1). (11)

The current approximation is considered to be satisfactory
if (10) fails to be satisfied for all j such that 1 ≤ j ≤ m.
Otherwise m is increased by one and another iteration is
commenced. The iterations continue until no more trends
are indicated in the fit.

The parameter η deserves our attention. Inequality (10)
indicates that the termination of the Vassiliou and Demetriou
algorithm with an adequate approximation depends on the
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value of the parameter η. This parameter controls the sensi-
tivity of the method with respect to the magnitude of the
identified turning points y(tj). Larger values of η reveal
only dominant turning points of the fit, while smaller values
of η detect in addition turning points of minor importance
to the fit, which are not detected with the larger values of
η. Thus, the user, instead of having a direct control on k
as it happens in the method of Demetriou and Powell, has
an indirect control on it through the parameter η, because
the ratio Rj/(η

√
tj − tj−1) provides an upper bound on the

variance of the fit on the section [tj−1, tj ] as we can derive
from equations (10) and (11). Two main advantages of this
approach are the following. First, an adequate value of k for
identifying simultaneously all the turning points with almost
the same importance is automatically determined. Second,
the computation benefits as no redundant values of k are
attempted. In particular, provided that the user knows the
experimental accuracy, he may well take it into account to
stop when the error in the fit is only due to this accuracy.

III. ANALYSIS BY AN APPLICATION ON A DIFFICULT
DATA SET

This section presents an example that illustrates the effi-
ciency of our method for identifying the peaks of a Raman
spectrum sample. Peak finding is an important application
of the piecewise monotonic approximation method, and the
complexity of the underlying structure of the spectral data
makes it an excellent test for our method. We use the
descriptive term “turning point” for the value y(tj) at the
integer variable tj . To comply with the terminology of the
specialists we refer to y(tj) as a peak. The data set named
“Artesunate” was downloaded form RRUFF [9], which is a
project website containing an integrated database of Raman
spectra, X-ray diffraction and chemistry data for minerals.
Our choice of the data set is due to its contamination of
different levels of variation and the many isolated peaks of
different magnitude it contains.

The Artesunate datafile contains n = 2374 pairs of
data points. The first coordinate represents the Raman shift
(cm−1) and the second coordinate represents the intensity,
feeding our algorithm with values {xi : i = 1, 2, . . . , n} and
{φi : i = 1, 2, . . . , n} respectively. The data are too many
to be presented in these pages, but their main characteristics
are illustrated in Fig. 1. Specifically, across the data, we can
distinguish ranges of small variability, many noticeable peaks
of different magnitude, sharp increases and sharp decreases
as well. We do not know the underlying physical law, and
we make no assumption about the nature of any underlying
function f(x).

We seek turning points that reveal simultaneously all the
peaks in the data with the same importance with respect
to the reduction of the residuals after employing the test
for trends. To this end, we fed the data to our computer
program by trying different values of η in the range [1, 50]
with step 0.1. The final choice of the range of values that
was picked for this experimentation is due to a preparatory
experimental outcome indicating that this choice can capture
piecewise monotonic fits from 1 to 488 monotonic sections.
In the second case there are on average five data points in
a monotonic section. This level of the experimental extend
was considered appropriate, but for illustration purposes only

piecewise monotonic fits with 2 to 48 monotonic sections are
presented in these pages. Again, in the second case there are
on average 51 data points per monotonic section.

We illustrate our findings by presenting in Table I the
turning points and their positions by piecewise monotonic
fits to the Artesunate data file for nine successive ranges
of values η. Table I consists of a duplex of columns, each
duplex having 49 rows, one for each turning point of the fit
when k = 48 including also the end point indices t0 and t48.
The left hand duplex gives j, tj , xtj and φtj . The right hand
duplex contains nine columns of ranges of values of η and
the corresponding values of k obtained from the calculation.
Each row presents the positions of the turning points (tj)
for each distinct optimal fit that was derived for all values of
tested η in the given intervals. At first, we found that identical
piecewise monotonic fits were derived for many different
successive values of η until a piecewice fit was produced
automatically providing a significant shift to the value of k.
For example, for all η ∈ [29.7, 44.3] a piecewise monotonic
fit with k = 4 monotonic sections is obtained, where the
turning points occur at positions 493 (peak), 1082 (trough)
and 1978 (peak) as indicated by the times signs in the column
labeled “[29.7, 44.3]”. However, when the value of η was
further reduced by 0.1, a different piecewise monotonic fit
with k = 10 monotonic sections was obtained, where the
turning points occur at positions 493 (peak), 561 (trough),
609 (peak), 681 (trough), 781 (peak), 1082 (trough), 1573
(peak), 1829 (trough), 1978 (peak) as again indicated by the
times signs in the column labeled “[21.9, 29.6]”. The sum of
squares of residuals and the maximum absolute residual of
the fits associated with these columns is added at the bottom
of Table I and visualized in Fig. 5 to further evaluate the
importance of the non captured peaks of the resultant fit. For
example, when η ∈ [29.7, 44.3] these quantities are equal to
γ(k = 4, n) = 0.65× 106 and D = 1.01× 102 respectively.

The best approximation with k = 4 is obtained for
η ∈ [29.7, 44.3] and its corresponding peaks are illustrated
in Fig. 1. The plot shows the two most important peaks
across all the data points that were identified by the method.
Here, we assume that there is some differentiation in the
importance of the peaks, which can be distinguished by
picking an alternative value of η within the range [44.4, 48.6]
(see, Table I).

The next three figures show the results of the next steps
of the process with k = 10, 15 and 26 corresponding to
η ∈ [21.9, 29.6], [20.8, 21.8] and [16.1, 20.7] respectively, in
order to give more emphasis to sets of turning points that
imply fits with less important monotonic trends. The piece-
wise monotonic approximation with k = 10 was calculated
giving nine turning points and having sum of squares of
residuals equal to 0.13 × 106 as we see in Table I. Fig. 2
displays the data and the fit. The new fit maintained the
peaks of the fit presented in Fig. 1, while three extra peaks
were automatically detected in-between the old ones and
highlighted in Fig. 2. It can be seen that the importance of
the new peaks is relatively lower compared to the two peaks
identified in the previous step (Fig. 1). The coordinates of
the turning points can be seen in Table I.

The piecewise monotonic approximation with k = 15 gave
five extra turning points which enhance both the left hand
side part and the right hand side part of the fit that occurs in
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TABLE I
LEFT FOUR COLUMNS: TURNING POINTS IN THE ARTESUNATE SPECTRUM BY A BEST FIT WITH k = 48 MONOTONIC SECTIONS. RIGHT NINE

COLUMNS: THE TURNING POINT POSITIONS OF THE OPTIMAL FIT, FOR η RANGING IN A WAY THAT GIVES k ∈ {2, 4, 10, 15, 26, 30, 32, 36, 48},
ARE INDICATED BY THE TIMES SIGN

η ∈ [44.4, 48.6] [29.7, 44.3] [21.9, 29.6] [20.8, 21.8] [16.1, 20.7] [13.8, 16.0] [12.2, 13.7] [11.1, 12.1] [9.0, 11.0]
j tj xtj φtj k = 2 4 10 15 26 30 32 36 48
0 1 142.26 0.00 × × × × × × × × ×
1 82 180.31 33.47 × × × × × ×
2 131 203.94 0.22 × × × × ×
3 202 238.17 36.46 × × × × ×
4 279 275.29 0.01 × × × × × ×
5 346 307.59 90.76 × × × × ×
6 368 318.20 57.88 × × × × ×
7 393 330.25 84.78 ×
8 402 334.59 63.75 ×
9 433 349.54 142.4 × × × ×
10 455 360.14 113.38 × × × ×
11 493 378.46 271.16 × × × × × × × ×
12 535 398.71 0.53 ×
13 542 402.09 19.09 ×
14 561 411.25 0.04 × × × × × × ×
15 609 434.39 159.17 × × × × × × ×
16 632 445.48 64.47 × × × × ×
17 655 456.57 105.24 × × × × ×
18 681 469.10 0.11 × × × × × × ×
19 781 517.31 101.44 × × × × × × ×
20 838 544.79 0.14 × × × ×
21 912 580.47 18.24 ×
22 951 599.27 6.42 ×
23 966 606.50 21.94 × × × ×
24 1082 662.43 0.19 × × × × × × × ×
25 1222 729.93 18.29 × × × × ×
26 1319 776.69 0.24 ×
27 1352 792.60 12.87 ×
28 1404 817.67 0.04 × × × × ×
28 1458 843.71 21.82 × ×
30 1496 862.03 2.44 × ×
31 1573 899.15 65.39 × × × × × × ×
32 1684 952.66 0.15 × × × × ×
33 1716 968.09 30.89 × × × × ×
34 1753 985.93 2.64 ×
35 1776 997.02 22.52 ×
36 1829 1022.57 0.01 × × × × × × ×
37 1905 1059.21 61.55 × ×
38 1917 1065.00 37.15 × ×
39 1978 1094.41 327.15 × × × × × × × × ×
40 2003 1106.46 166.14 × × × × × ×
41 2028 1118.51 246.08 × × × × × ×
42 2075 1141.17 65.46 × × ×
43 2095 1150.81 88.30 × × ×
44 2188 1195.65 0.22 ×
45 2201 1201.92 12.74 ×
46 2237 1219.27 0.02 × × × × × ×
47 2295 1247.24 33.53 × × × × ×
48 2374 1285.32 0.00 × × × × × × × × ×

γ(k, n) = 0.317 0.656 0.136 0.665 0.225 0.155 0.135 1.004 0.514
D = 2.392 1.012 4.231 2.401 1.761 1.351 1.351 1.091 7.760

Fig. 2 with two extra peaks. The fit with k = 15 is presented
in Fig. 3, the additional peaks are highlighted and the sum
of squares of residuals is equal to 0.65× 105. As expected,
the importance of the two extra peaks is relatively lower
compared to the peaks identified in the previous step (Fig.
2).

One more run with k = 26 gave 11 extra turning points
that enhanced the fit of Fig. 3 with six more peaks, as
we see in Fig. 4. Now the sum of squares of residuals is
equal to 0.22 × 105. Again, the significance of the newly
identified peaks seems to be even less important compared
to the significance of the peaks that were detected in the
previous step (Fig. 3).

Clearly a visual comparison of Figs. 1 to 4 reveals the
differences of the final fits to the given Raman spectrum with
respect to the ranges of values of η. It is noticeable that for a
specific range of values of η (see, for instance Fig. 1 where
η ∈ [29.7, 44.3]) the method succeeds at identifying ranges
of data with peaks that have about the same magnitude. On
the other hand, different ranges of values of η imply different
number of monotonic sections for the resultant fit, urging the
user to derive as an appropriate value of k the one that reveals
a new set of peaks that are significantly different than those

in the previous attempt. As the values of η are reduced, the
method detects subtle monotonic trends in the data, which
are not detected in the previous steps.

We see in Table I that the sum of squares of residuals
decreased from 0.31× 107 down to 0.51× 104 as we move
from one interval of values of η to the next one, which in turn
increased the value of k from k = 2 to k = 48. Analogously,
we see a gradual reduction in the values of the maximum
absolute residual as k increased due to changing the value of
η, which indicates that the best fit comes closer to the data.
The sum of squares of residual values and the maximum
absolute residual values across k are both displayed in Fig.
5 giving one vertical axis of values for each case.

As already mentioned, adjusting the value of the parameter
η within a range of values, provides control to the method
with respect to the change of k in order to gradually
identify peaks of relatively similar importance. However, by
decreasing η and thus increasing k, piecewise monotonic
approximation has the freedom to add more turning points,
making the sum of the squares of residuals progressively
smaller. As can be seen in Fig 5, a piecewise monotonic ap-
proximation with more than k = 26 monotonic sections does
not provide any noticable further improvement, neither to the
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Fig. 1. Detected peaks (circles) by a best piecewise monotonic fit with k = 4 to 2374 data points (plus signs) of the Artesunate Raman spectrum. The
solid line illustrates the best fit. The Raman shifts and the intensities are given in the x-axis and the y-axis, respectively.
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Fig. 2. As in Fig. 1, but k = 10. The extra peaks as compared to Fig. 1 are indicated by circles.

sum of squares of residuals nor to the maximum absolute
residual. Therefore, a piecewise monotonic approximation
with k = 26 monotonic sections can be considered as an
adequate choice that has revealed the peaks and in-between
trends that seem to have real significance.

IV. CONCLUSION

Piecewise monotonic approximation provides the optimal
solution in only O(kn2) computer operations to a challeng-
ing combinatorial problem that requires k monotonic sections
to n data. We have given attention to an extension of the
method, where the residuals are tested for trends in order to
obtain automatically an adequate value of k.

We applied the method to the peak estimation problem
of a Raman spectrum. The data set was chosen, because
the complexity of the underlying physical laws and its
variability makes it a hard test for our method. We considered
the behaviour of the residual mean square by decreasing
systematically the value of a parameter η, which resulted to

increasing values of k. The main advantage of this approach
is that the user has a direct control on the accuracy of the
approximation.

We saw that the mean square error decreased consistently
at first and finally levelled off to a fairly constant value,
which made clear where to stop. The example of the this
paper drew attention to interesting questions on the test for
trends that deserves further study. The given calculations
have helped us to comprehend the behavior of the parameter
η on a difficult data set and gives promise for future research.
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Fig. 3. As in Fig. 1, but k = 15. The extra peaks as compared to Fig. 2 are indicated by circles.
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Fig. 4. As in Fig. 1, but k = 26. The extra peaks as compared to Fig. 3 are indicated by circles.
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