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Graph-Theoretic Partitioning of RNAs and
Classification of Pseudoknots-II
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Abstract—Dual graphs have been applied to model
RNA secondary structures with pseudoknots, or in-
tertwined base pairs. In previous works, a linear-time
algorithm was introduced to partition dual graphs
into maximally connected components called blocks
and determine whether each block contains a pseu-
doknot or not. In addition, we have extended the
partitioning algorithm by classifying pseudoknots as
either recursive or non-recursive. In this paper we
present a methodology that uses our previous results
and classify pseudoknots into the classical H,K,L, and
M types, based upon a novel representation of RNA
secondary structures as dual directed graphs (i.e.,
digraphs). This classification would help with the
systematic analysis of RNA structure and prediction
as for example the implementation of more accurate
folding algorithms.
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1 Introduction

Let G = (V, E) be undirected graph composed of by a
finite set of wertices V' and a set F of unordered pairs
e = (v1,vy) of vertices. called edges, where each edge
represents a relation between two vertices.

In 2003, Gan et al. [5] introduced dual graphs to model
RNA secondary structures (2D). The 2D elements of
RNA molecules consist of double-stranded (stem) regions
defined by base pairing such as Adenine-Uracil,
Guanine-Cytosine, Guanine-Uracil, and single stranded
loops; stems and loops are mapped to the vertices and
edges of the corresponding dual graph, respectively (later
we present an alternative definition of dual graphs).

Dual graphs can represent complex RNA structures
called pseudoknots (PKs), which results when two base-
paired regions intertwine. Pseudoknots have been asso-
ciated with a diverse range of important RNA activities
as for example in viral gene expression and genome repli-
cation (e.g., hepatitis C, and SARS-CoV viruses). Even
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though emphasis has been recently placed on viral trans-
lational initiation and elongation, the broader roles of
pseudoknots are well-documented [4, 13].

In [17, 18] a linear-time partitioning algorithm was in-
troduced based on the dual graph representation of RNA
2Ds. This algorithm partitions a dual graph into con-
nected components called blocks and then determines
whether each block contains a pseudoknot or is a reg-
ular region. Thus our procedure provides a systematic
approach to partition an RNA 2D, into smaller classified
regions, while providing a topological perspective for the
analysis of RNAs.

In [19] pseudoknots were classified into two main groups:
recursive and non-recursive pseudoknot. The former is
distinguished from the latter because it contains an in-
ternal pseudoknotted or regular region that does not in-
tertwine with external stems within the PK. In addition,
if the PK is recursive, the partitioning algorithm uniquely
identifies each recursive region.

In the classical literature, pseudoknots have been classi-
fied and predicted by folding algorithms into four types:
H,K,L, and M [12]. Even though each type is defined in
terms of how few stems intertwine, pseudoknots can be
complex structures, recursive, and be comprised of sev-
eral stems. In this paper we show that based on the di-
rected graphs modeling of RNA 2Ds, each PK type can be
identified through a series of reductions to a unique rep-
resentative. This methodology will allow us to systemat-
ically analyze thousands of motifs and develop more pre-
cise RNA folding algorithms. Moreover, representation of
RNA secondary structures based on dual directed graphs,
is more precised than its dual undirected counterpart, as
it is possible, as will be discussed in Section 3, that a dual
undirected graph can model two or more distinct RNA
2Ds; this conflict is avoided by the novel representation.

The stimulatory nature of PKs in viral replication, and
specifically in frameshifting, has been widely studied (see
for example [2] and [4]). In a recent publication (2021),
Bhatt et al. [3] presented a detailed study of programmed
ribosomal frameshifting in translation of the SARS-CoV-
2 virus. Interesting enough evidences show that the sim-
plest H-type pseudoknot (or related structures, see Sec-
tion 3) are predominantly present in eukaryotic families
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of viral mRNAs. Related questions follow from this ob-
servation;

1. Are there families of viruses or retroviruses in
which other types of PKs (i.e., K, L, M) stimulate
frameshifting.

2. Are there structural differences in pseudoknots com-
prising the FSEs (i.e., frameshifting element) in eu-
karyotic cells versus prokaryotic cells.

3. Are there viral mRNAs in which PKs are not present.

Our methodology will be able to shed some light on these
outstanding questions.

In the next section, we present background material and
definitions relevant to this paper, and we review the par-
titioning algorithm introduced in [17, 18], as well as its
applications, as for example the development of a library
of building blocks for RNA design by fragment assembly
[9, 10]; we also discuss how the partitioning algorithm
can detect recursive PKs and its recursive regions. In
Section 3, we show how the aforementioned PK types are
identified from dual digraphs. In Section 4 we summarize
the findings and describe ongoing and future work.

2 Background
2.1 Biological and Topological Definitions

In 2003, Gan et al. [5] introduced dual graph-theoretic
representations of RNA 2D motifs in a framework called
RAG (RNA-As-Graphs) [14].

We define our biological variables as follows.

Definition 1. General terms:

a. RNA primary sequence: a sequence of linearly or-
dered bases x1,xa, ..., x,., where z; € {A,U, C,G}.

b. canonical base pair: a base pair (z;,x;) €

{(4,0),(U, 4),(C,G),(G,C), (G,U),(U,G)}

c¢. RNA secondary structure without pseudoknot -
or regular structure, encapsulated in the region
(igy...,ko): an RNA 2D structure in which no two
base pairs (x;,x;), (z1, Tm), satisfy io <i <1< j<
m < mg (i.e., no two base pairs intertwined).

d. a base pair stem: a tuple
(@i, Tig 1, - oy Tipr, Tjmpy - -, Tj—1,&5) G0 which
(i, x5), (Tit1,2j-1),-- -, (@ixr,xj—y) form base
paIrs.

e. segment region: is a tuple (Ti,Tit1,...,Titr) N
which (x;,2;) is not a base pair whenever j —i > 1.
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Figure 1: Graphical and dual graph representations of
an RNA 2D structure. (a) graphical representation of
a pseudoknot-free RNA primary sequence and embedded
stems or base pairs; (d') corresponding dual graph repre-
sentation. (b) graphical representation of a pseudoknotted
RNA 2D structure; (V') corresponding dual graph. This
figure was originally depicted in [17].

f. a pseudoknot encapsulated in the region (ig, ..., ko):
if A,m, (io < 1 < m < ko) such that (z;,,x.,) and
(z1, 1, ) are base pairs (i.e., at least two base pairs
intertwined).

A dual graph can be easily derived from the graphical
representation of an RNA 2D structure: each stem is
modeled by a vertex of the dual graph, and following the
primary sequence in linear order (i.e., from the 5 end
to the 3’ end), a segment between stems S; and S; is
represented by an edge (5;,5;) in the dual graph (see
Fig. 1).

In the next section we present our partitioning approach
of a dual graph G, into subgraphs G’ C G, called blocks.

2.2 Graph Partitioning Algorithm

The graph-theoretic partitioning algorithm is based on
identifying articulation points of the dual graph represen-
tation of an RNA 2D. An articulation point is a vertex of
a graph whose deletion disconnects a graph or an isolated
vertex remains. Articulation points allow us to identify
blocks (see Fig. 2); since a block is a maximally non-
separable component, a pseudoknot cannot be then con-
tained in two different blocks. Thus identification of these
block components allows us to isolate pseudoknots (as
well as pseudoknot-free blocks), without breaking their
structural properties.

An algorithm for identifying (bi-connected) block com-
ponents in a graph was introduced by John Hopcroft and
Robert Tarjan (1973, [7]), and runs in linear computa-
tional time.

A hairpin loop occurs when two regions of the same
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Figure 2: Identification of a) articulation points and b)
partitioning of a dual graph.

strand, usually complementary in nucleotide sequence
when read in opposite directions, base-pair to form a dou-
ble helix that ends in an unpaired loop. A self-loop in
the dual graph, i.e., an edge having the same vertex as
the end-points, represents a hairpin, and as it does not
connect two different vertices (i.e., stems), it is formally
deleted from the dual graph.

From Definition 1-c, an RNA 2D structure is a regular-
region (pseudoknot-free) and encapsulated in a region
(t0,- .., ko), if no two base pairs (z;,x;), (@1, ), satisfy
1<l <j<m,ig<i,jl,m<mg, otherwise the region
is a pseudoknot; this definition yields the following main
result.

Corollary 1. [17, 18] Given a dual graph representation

of RNA 2D structure, a block represents a pseudoknot if

and only if the block has a vertex of degree (Definition 1-
f) at least 3 where the degree of a vertez u is the number
of edges incident at u.

Corollary 1 yields the following algorithm,

Algorithm 1. Partitioning

1. Partition the dual graph into blocks by application
of Hopcroft and Tarjan’s algorithm.

2. Analyze each block to determine whether contains a
vertex of degree at least 3. If that is the case then
the block contains a pseudoknot, according to Corol-
lary 1. If not then the block represents a pseudoknot-
free structure.

Consider as an example the dual graph shown in Figure 2.
This graph is decomposed into 2 blocks. According to
Corollary 1, block 1 is a pseudoknot as it has a vertex of
degree at least 3, while block 2, a cycle, corresponds to a
regular region.

In the next section we extend our algorithm to classify
PKs as either recursive or non-recursive; the algorithm
can also identify each recursive region.
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2.3 Classification of pseudoknots as either
recursive or non-recursive and identifi-

cation of each recursive region

no external base pair (or stem)

pseudoknot

Figure 3: Recursive pseudoknot.

The RNA 2D dual graph and graphical representations
depicted in this section are based upon New York Univer-
sity’s RAG-database [8], and R-Chie visualization soft-
ware [15], respectively.

A recursive pseudoknot is a pseudoknot M, ; in a re-
gion [¢, j] that contains a pseudoknotted or regular region
My, @ < k <1< j, and there does not exist a base pair
(@, xq), such that x4 is a base of My, and . is a base
of M; ; external to My (see Fig. 3).

A pseudoknotted block can be classified as recursive by
determining the edge-connectivity of the block. The edge-
connectivity is defined as the minimum number of edges
that if they are deleted then the resulting graph is dis-
connnected. As an example consider the Hepatitis Delta
Virus Ribozyme (see Fig. 4), necessary for viral replica-
tion. The stem labeled 4 in the graphical representation
(or vertex labeled 4 in the dual graph) is attached to
the pseudoknot by the segments a and b in its graphi-
cal representation, or edges labeled a and b in the dual
graph representation. As by deleting two edges in the
dual graph, vertex labeled 4 becomes disconnected, then
stem 4 is a recursive region of the PK, thus the dual graph
edge-connectivity is 2. The proof of the following lemma
was shown in [19].

Lemma 1. The dual graph representation of a pseudo-
knotted block is recursive if and only if the block has edge-
connectivity 2.

It can be determined that a pair if edges is a disconnect-
ing set by application of Depth-First-Search [6] in time
(|E|?), allowing us to find every internal recursive region
of a recursive pseudoknot, if such pair of edges exist.
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Figure 4: Hepatitis Delta Virus Ribozyme secondary
structure. a) Graphical representation. b) Dual graph
representation.

The following is the partitioning and classification of
pseudoknots algorithm.

Algorithm 2. Partitioning and Classification of
PKs

i. Input dual graph G = (V, E) as the Adjacency Ma-
triz, of a RNA 2D.

7. Output partitioning of the RNA 2D into recursive
PK, non-recursive PK, and regular regions.

1. Partition the dual graph into blocks by appli-
cation of Hopcroft and Tarjan’s algorithm;

2. Analyze each block to determine whether each
contains a vertex of degree at least 3;

3. IF  the block has a vertex of degree > 3 then
the block is a pseudoknot;

— Apply Depth-First-Search to find possible
pairs of edges that disconnect the graph
(i.e., edge-connectivity equals 2);

— if edge-connectivity = 2 then the block is
a recursive pseudoknot;
else the pseudoknot is not recursive;

4. ELSE the block is a regular region;.

As an example of a non-recursive pseudoknot consider
the Translational repression of the Escherichia coli alpha
operon mRNA ([22]), illustrated in Fig. 5. The dual graph
representation of this motif 2D has edge-connectivity 3,
thus it is not a recursive PK.

The algorithm is written in C++ and is archived for pub-
lic use [20].
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Figure 5: Translational repression of the FEscherichia
coli alpha operon mRNA. a) Graphical representation;
b) Dual graph representation.

3 Classification of H, K, L, M pseudo-
knots types

In the classical literature, pseudoknots have been classi-
fied and predicted by folding algorithms into four types:
H,K,L, and M [12]. Even though each type is defined in
terms of how few stems intertwined, pseudoknots can be
complex structures, recursive, and be comprised of sev-
eral stems. In this paper we show based on dual directed
graphs, each PK type can be identified through a series
of reductions to a unique representative. This method-
ology will allow us to systematically analyze thousands
of motifs and develop more precise RNA folding algo-
rithms. The results and algorithms discussed in Section
2.2 and Section 2.3, based upon undirected dual graphs,
can be extended to dual directed graphs, as the direction
of a directed edge can be ignored. Moreover, representa-
tion of RNA secondary structures based on dual directed
graphs, is more precised than its dual undirected counter-
part, as a dual undirected graph can model two or more
distinct RNA 2Ds; this conflict is avoided by the novel
representation. For example, the distinct directed graphs
representing K and L types (see Fig. 8), have the same
corresponding dual undirected graph, i.e., by replacing
directed edges by undirected edges.

In this section we follow the definitions of pseudoknots as
stated by Antczak et al. [1], and Kucharik et al. [12].

A H-type pseudoknot occurs when a nucleotide of a loop
or bulge pairs with a nucleotide of a single-stranded re-
gion outside the loop; this type can be alternatively il-
lustrated from the graphical representation (see Fig. 6-a)
by the intertwining of two stems.

A K-type PK results when two nucleotides from different
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Figure 6: Graphical representation of the H,K,L, and M
types. a) H-type. b) K-type, ¢) L-type, and d) M-type.

loops (or bulges) pair to form a double helical segment
(see Fig. 6-b). Similarly we can also describe L and M
types pseudoknots, derived from the H and K types, re-
spectively, by addition of a stem (colored red) as shown
in Figure 6-c and Figure 6-d.

Even though the different PK types are defined in terms
of few stems, each type may be composed of several stems
and also they could be recursive (see section 2.3). For ex-
ample Figure 7 illustrates two H-type PKs, PKB70 (i.e.,
the Legionella pneumophilia tmRNA), causative agent of
the Legionannary’s disease [11], composed of 5 stems,
and recursive PKB259 (i.e., potato yellow vein virus [16])
comprising a recursive region and 3 stems. Even though
two PKs of the same type of maybe structurally different,
in the following section we show how using dual digraphs
each motif type can be reduced to a unique digraph type-
representative.

3.1 Dual digraphs and reductions to unique
PK type identifiers

In this section we used dual digraphs and based upon two
graph-theoretical transformations, these digraphs can be
reduced to a unique representative identifying H,K,L, and
M pseudoknot types.

A dual digraph can be easily derived from the graphical
representation of a RNA 2D structure: each stem is mod-
eled by a vertex of the dual digraph, and following the
primary sequence in linear order (i.e., from the 5’ end to
the 3’ end), a segment between stems S; and S; is repre-
sented by an directed edge (S;,.5;) in the dual digraph.
Moreover each directed edge is assigned a weight corre-
sponding to the order in which the segment is reached
following the primary sequence (see Fig. 7-b); this weight
is represented as w(S;, S;).
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From a RNA 2D perspective, we informally define a
super-stem as a stem that completely contains another
stem (sub-stem). Formally a super-stem is a n-tuple
($i7$i+la cees Tidpy, Tj—ge v - ,{L‘j_l,(l?j), n = j — 1+ 1; in
which (245, j_1), k < r forms a base-pair (see definition
1-d), if there exist another stem (i.e., sub-stem) in the re-
gion (Ty, T4ty -+ Tidsy Tmesy -y Tm1,Tm), | > 1+ 1,
and m < j—r. For example in Stem Sy shown is Figure 7-
a (i.e., PKB70) is a super-stem of S; and S, and stem
S1 is a super-stem of Ss; similarly stem Ss is a super-
stem with respect to Sy. For ease of notation let S; > S5
represent the case when S; is a super-stem of S;. The
following proposition describes how a super-stem .S; and
its corresponding sub-stem S; can be detected in a dual
digraph,

Proposition 1. If there are exist exactly two anti-parallel
directed edges (S;, S;) and (S;,S;) between vertices S; and
S; of the dual digraph, with w(S;, S;)—w(S;, Sj) > 2, then

S; is a super-stem of S;.

Proof: Without loss of generality, let w(S;,S;) >
w(S;,55). Since w(Sj,S;) —w(S;, S;) > 2, implies that
if there is either an eternal stem Sy, intertwining .5;
and S;, or, S; forms a self-loop; if there exist an ex-
ternal stem S} intertwining S; and S, this stem does
not intercept the primary sequence between S; and 5.
If w(S;, Si) —w(S;, Sj) = 1, then S; is not fully contained
in S; (i.e., intertwines S;) [

As an example consider stems labeled Sy, and S; for
PKB270 shown in Figure 7-a. In the corresponding
dual digraph (Fig. 7-b) the vertices labeled Sy and S}
are connected by exactly two anti-parallel edges with
w(S1,S0) — w(Sp,S1) = 6 > 2. Please note that the
converse it is not necessarily true, that is, if .S; is a super-
stem of S;, then there exist exactly two anti-parallel
edges between vertices S; and S; in the dual digraph
with w(S1, So) — w(Sp, S1) > 2; for example in PKB259
(Fig. 7-e), stem S is a super-stem of S7, however there
are no anti-parallel edges between the corresponding ver-
tices in the dual digraph (Fig. 7-f). This has to do with
the fact that another stem (i.e., S3) intercepts the pri-
mary sequence between Sy and S;. From Proposition 1
we introduce the following graph reduction,

Reduction 1. Let G = (V,E) be a dual digraph.If
there are exist exactly two anti-parallel directed edges
(Si,8;5) and (S;,5;) between wvertices S; and S; of G,
with w(S;, S;) —w(S;, Sj) > 2, then transform G into G,
where S1 and S; are identified into a single vertex [S;, S;]
and any directed edge in G, (Si,S:), (Sk,S;j), k # i or
k # j, will result in an directed edge (Sk,[S1,52]) in
G', while keeping the same weights from the edges of G.
Similarly an edge (S;, Sk), or (S;,Sk) in G will have the
corresponding edge ([S1, 52], Sk) in G', while maintaining
the same weights on the original edges (see Fig. 7-b-c).
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Figure 8: By application of Reductions 1 and 2, a directed
graph representing a RNA motif, will be reduced to a
unique representative of the 4 different types (H,K,L,M).

A recursive PK can be classified by our partitioning al-
gorithm and a recursive fragment can be identified (see
Section 2.2). For example in the graphical representa-
tion of PKB259 (Fig. 7-e), segments a and b isolate the
recursive fragment Stem Sy, or equivalently, deleting ex-
actly two edges of the dual digraph (connectivity 2), a
and b, identified by Algorithm 2, disconnects the dual
digraph. The following graph reduction follows from the
algorithm,

Reduction 2. Let G = (V,E) be a dual digraph, and
Gy be a recursive fragment adjacent to Stem Sy by direct
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segment a from Stem Sy to Gy, and by segment b from G
to Stem Sy (i.e., deleting segments a and b isolates Gy ),
then transform G into G', by deleting segments a and b,
recursive fragment Go, and by inserting a direct segment
from Sy to Sy (see Fig. T-e-f).

By application of Reductions 1 and 2, a directed weighted
dual graph modeling a pseudoknotted region of a RNA
2D (recognized by partitioning Algorithm 2, Section 2.3)
will be reduced to one types depicted in Fig 8, otherwise
the PK is none of these types.

4 Conclusions and Ongoing Work

The Covid-19 pandemic accelerated the study of vi-
ral replication and the need to develop therapeutics
to control infectivity. The importance of the three-
stemmed pseudoknot-dependent ribosomal frameshifting
for the propagation of SARS-related coronaviruses is well-
established. We suggest that pseudoknots not only play
a significant role, but a predominant one in viral trans-
missibility for most viruses, and our proposed techniques
aim to shed some light in this area, as well to better
understand the roles of PKs in general RNA function-
ality. Evidences show that the simplest H-type pseudo-
knot (or related structures) are predominantly present in
eukaryotic families of viral mRNAs, and our proposed
techniques could make substantial progress on this area
of research.
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