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Hidden Population Size Estimation under
the Zero Truncated Poisson Shanker Model

Ratchaneewan Wongprachan *

Abstract—Modeling the size of unknown popu-
lations has been discussed on the basic capture-
recapture method. As a result of heterogeneity of
capture probability, a mixture of Poisson distribu-
tions has been considered for developing the popu-
lation size estimator. In this study, I have proposed
the Horvitz Thompson estimator to model the hidden
population size based on the zero truncated Poisson
Shanker model. Simulated data were constructed un-
der various parameters for overdispersed data. The
efficiency of the new estimator is measured and com-
pared with alternative estimators. The behavior of
the estimator is presented using the Relative Root
Mean Square Error, the Relative Bias and the Rela-
tive Variance. The simulation study shows that the
new estimator performs well with the estimated value
closed to the real population size.
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1 Introduction

Population size estimation under capture-recapture
method has been used to model the hidden data; for ex-
ample, to model the number of animal population, the
number of unseen species, the number of hidden drug
users, the number of drink-driving offenders, the number
of illegal immigrants etc. The commonly used distribu-
tion of count datas; for example, the Poisson distribu-
tion has been proposed to model the total population
size under the same capture probability. This model is
appropriate for equidispersed count data, equality of the
mean and the variance. However, there is the hetero-
geneity of capture probability in practice. Therefore, a
mixture of Poisson distribution is used as a flexible model
for heterogeneous data which includes overdispersed and
underdispersed data.

Suppose there are n units captured independently with
replacement from population size N. Let X be a ran-
dom variable which follows the Poisson model and its
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parameter A denotes a random variable for the mixing
distribution. Let f, be the frequency of units captured
x times, for z = 0,1,2,.... For example, fy is unob-
served frequency, fi is the frequency of captured once,
f2 is the frequency of captured twice and so on. There-
fore, the number of units captured in the sample is de-
fined by n = 3 _, fe, the number of observation in
capture-recapture data is defined by K =3 _ = f,, and
fo = N — n. In this study, I have investigated the mixed
Poisson distribution based on one parameter called the
Poisson Shanker distribution. A new estimator using the
Horvitz Thompson approach has been proposed based on
the zero truncated Poisson Shanker model. The behavior
of the new estimator is addressed in a simulation study
which shows its efficiency compared to alternative esti-
mators.

2 Zero truncated Poisson Shanker model

Poisson Shanker distribution is an alternative model of
the Poisson mixture model and uses the Shanker distri-
bution for the mixing parameter [7]. Assume that X is a
random variable with the Poisson distribution
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where x = 0,1,2,... and A > 0. When ) is a random
variable following the Shanker distribution with the prob-
ability density function
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where A\ > 0 and « > 0, the random variable X is dis-
tributed as the Poisson Shanker distribution
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Pz =

where x = 0,1,2,... and a > 0. In capture-recapture
study, p, is the probability of a unit captured x times.
As a result of unknown the zero counts, fy, the zero
truncated distribution is considered in order to develop
the estimator. The probability mass function of the zero
truncated Poisson Shanker (ZTPS) is given by
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where x = 1,2,...,a > 0 and pq is defined as the unde-
tected probability. The mean, variance and dispersion of
a random variable X distributed as the ZTPS are given
by

(a+1)*(a®+2)

E(X)= 5
(0 aled + a2 +2a+1)’ (5)
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(6)
and
a® 4+ a* + 503 + 402 + 60 + 2
D(X) = (7)

ala?2+2)(ad+ a2 +2a+1)

Dispersion of the ZTPS model represents overdispersed
count data or the variance greater than the mean when
o < 1.24166. Additionally, it can be described as un-
derdispersed or the variance less than the mean when
a > 1.24166, and equidispersed or the variance equal to
the mean when o = 1.24166, respectively. Figure 1 shows
the probability mass function of the ZTPS distribution
under various parameters. It seems that the distribution
of X exhibits long right tail when « is larger.

3 Estimator

3.1 Horvitz-Thompson estimator based on
the ZTPS distribution

Horvitz-Thompson estimator has been used for fitting
the zero-truncated model in this study. Assume that
the probability of each unit caught on any occasion can
be defined by 1 — py and there are n units in the sam-
ple. Then, the total target population estimated by the
Horvitz-Thompson approach is defined by

n

N = ,
1—po

Under the ZTPS distribution, the Horvitz-Thompson es-
timator can be written as

n
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Figure 1: Probability mass function of the ZTPS distri-
bution under o = 0.1,0.2,0.3,0.5,1 and 5

In practice, the unknown parameter « is replacing by
@ using the Maximum Likelihood Estimation method
(MLE) in equation (8) for Nps. The likelihood function
of the ZTPS distribution is defined by

{ 2@ +a+z+1)
(

fa
a+1)z(a3+a2+2a+l)} ©)

L(a) = f;[

z=1

and the log-likelihood function can be written as
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= 2nln(a)+ Y fuln(e? +a+ax+1) — Kln(a + 1)
=1
—nln(a® + a? + 2a + 1).
(10)

where K = Z Tfg, n = Z fz, and m is a maximum

=1 =1
number of times of capture. The estimated parameter «

can be found by solving the first derivative of the log-
likelihood function in equation (11) and setting it equal
to zero.
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3.2 Alternative estimators

3.2.1 Chao estimator

The Chao estimator is a well-known nonparametric
method for modeling the size of unknown population in
capture-recapture analysis [4], proposed as a lower bound
for N refer to [3]; [2]; [5]; [8]. Terms of the frequency of
unit caught once and twice are used for the Chao estima-
tor as follow

N.=n+ St (12)
2fa
When f, equals zero, this estimator is modified to
< filf1 —1)
No=n+t 217 13
2+ 1) "

3.2.2 Estimator under the zero truncated Pois-
son model

Van der Heijen, Cruyff and Houwelingen introduced the
Horvitz-Thompson approach to develop the estimator
under the zero truncated Poisson distribution (ZTPoi),
which is defined by

-~ n

N,

P Tm e ()

where X is approximated using MLE, refer to [6].

4 Confidence intervals estimation

Not only point estimation, but also confidence inter-
val estimation has been addressed in this study. The
(1-))100% confidence interval for Ny, based on the ZTPS
model is constructed by

Nps £ Z 1/ Var(N,). (15)

Variance estimation by Béhning [1] has been used for
estimating the variance of the new estimator in equation
(8). A simple variance approximation by the conditional
technique is used to construct the variance of N as follows

Var(]\AfpS) =F {Var (Z\Afps|nﬂ + Var (E [ﬁpst .
(16)
4.1 Estimation of F [Var (ﬁpsmﬂ

This part arises from estimating the parameter a of the
Z'TPS distribution from the sample unit of size n. Assume

that the term of {Var (Nps|n>} can be approximated

by Var (Z\Afps|n) using the 6 method and h(«a) = .
1—po
Then,

Var (Nyuln) = n? <ai h(la)> Var(o) <6aah(1a)> 7
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Considering the Fisher information to approximate the
variance of its parameter, Var(a) can be derived as
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Replacing equation (18) and (19) in equation (17), the
term of Var(Nps|n) can be written as

~ o na(a+1)(a* + a3 + 502 + 3a + 2 RPN
Var(Nps|n) = { (0)45(3 201 ) Var(a).
(20)

4.2 Estimation of Var (E [ﬁps\nD

This term arises from the binomial random variable
for n by sampling from the unknown population size
N with probability of success 1 — pg. It provides
Var(n) = N(1 — po)po, where N(1 —pg) can be replaced
by n. Assume that F [Nps\n} can be approximated by

Nps, then
n
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Replacing equation (20) and (21) in equation (16), the
variance estimation of N,, can be written as

ZTPoi (N=1000, p=3)

= na(a+ 1) (a* + o + 50 4 3a + 2) s 8
Var(Np,s) (a3 T o2 T 2a+ 1)2 Var(a) Z’ 1200 =
8
+na2(a2+a+1)(a+1)2(a2+1) g
(a®+a?+2a+1)2 ’ 1000+ - === == = = = = = = — = = —
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Similarly, this approach has been used for N, and N, g
shown in equations (23); refer to [1] and [6] E 800 i +
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5 Simulation Results g 1000 - 3= = ‘%“ % - ‘% -
©
A simulation study has been carried out to evaluate the ‘é %
performance of Horvitz-Thompson estimator under the £ 800 4
ZTPS model and the results have been compared to the w
Z'TPoi model and the Chao estimator. Here, heteroge-

neous data have been simulated using the negative bi-
nomial distribution (NB) under the condition of popu-
lation size N = 250,500, 1000, 2000 with the parameter
pw=135and s=1,1.2515,2

‘rég$3w<s;J Qﬁu

Pz

All estimators have been fitted 10000 times to approxi-
mate point and interval estimation of N. Figure 2 shows
the estimated population size using the ZTPoi and ZTPS
estimators for the count data from the negative bino-
mial with p = 3 and s = 1,1.25,1.5,2. It is found that
the ZTPS esitmator gives the approximation closed to
N = 1000 with smaller bias. In this simulation study,
the performance of estimators has been evaluated by Rel-
ative Root Mean Square Error (RRMSE), Relative Bias
(RBias) and Relative Variance (RVar) as follows:

RRMSE(N) = %\/E(N — N)2 (25)
RBias(N) = %[E(]V) N (26)
RVar(N) = %[E(]\Af — E(N))? 27)

Table 1 represents RBias, RVar and RRMSE to measure
the performance of the estimators of N. Referring to
the performance in terms of RRMSE, it is found that
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Figure 2: Boxplot of the estimated Population size
N = 1000 based on the ZTPoi and ZTPS distribution for
data from NB(p, s)

the estimator under the ZTPoi model provides the high-
est RRMSE for all situations, while the estimator under
ZTPS model outperforms with the smallest RRMSE un-
der almost all conditions. As shown in Figure 3, the
ZTPS estimator provides good result especially when
@ > 1. In addition to that, the lower bound estimator
known as the Chao estimator is comparable to the ZTPS
estimator when s > 2, whereas the ZTPoi estimator re-
sults in less accuracy compared to others.

According to the behavior of estimators based on the
RBias criterion, it is found that the negative RBias for
ZTPoi and Chao estimators, especially ZTPoi gives the
worst RBias. The performance of ZTPS provides better
approximation with RBias close to zero.

Considering the RVar criterion, it is shown that ZTPoi
provides the smallest RVar, whereas ZTPS produces big-
ger RVar than ZTPoi for all situations. However, the
performance of ZTPS can be improved for large u. Al-
though, the ZTPoi performs the best in terms of RVar,
the estimated population size is an underestimate under
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Figure 3: RRMSE of population size estimators for count
data from NB(y, s)

6 Conclusions and Future Work

The problem of estimating population size has been in-
vestigated widely in many areas including ecology, social
science, medicine etc. The unknown zero frequency is an
important issue for modeling. Both parametric and non-
parametric statistics are used to develop the estimator for
the number of hidden population. Poisson Shanker is an
alternative to the mixed Poisson distribution with one
parameter showing overdispersion, underdispersion and
equidispersion. In this article, Horvitz Thompson esti-
mator has been improved based on the zero truncated
Poison Shanker model for modeling the population size.
The ZTPS estimator outperforms alternative estimators
including Chao and ZTP especially for large p. ZTP per-
forms poorly for heterogeneous Poisson population with
the underestimated population size. In this study, I have
used a one parameter model. On the other hand, dis-
tributions with more parameters would develop the effi-
ciency of estimator. Fitting more complex models will be
studied in the future.
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Table 1: RBias, RVar and RRMSE of population size estimators for count data from NB(u, )

RBias RVar RRMSE

N m s Chao Z'TPoi ZTPS Chao Z'TPoi ZTPS Chao ZTPoi ZTPS
250 1 1 -0.2398 -0.3688 -0.0382 1.8348 0.2895 2.0614 0.2546 0.3703 0.0985
1.25 -0.2021 -0.3235 0.0481 1.9539 0.3725 2.5608 0.2206 0.3258 0.1121

1.5 -0.1750 -0.2885 0.1152 2.0129 0.4457 2.9913 0.1966 0.2916 0.1589

2 -0.1364 -0.2366 0.2155 2.1271 0.5722 3.7161 0.1647 0.2414 0.2476

3 1 -0.1191 -0.2347 -0.0903 0.6248 0.0177 0.2760 0.1291 0.2348 0.0962

1.25 -0.0910 -0.1973 -0.0357 0.5629 0.0244 0.3237 0.1026 0.1975 0.0507

1.5 -0.0719 -0.1699 0.0047 0.5127 0.0264 0.3613 0.0850 0.1702 0.0383

2 -0.0478 -0.1318 0.0616 0.4412 0.0327 0.4190 0.0636 0.1323 0.0739

5 1 -0.0771 -0.1640 -0.0858 0.4042 0.0023 0.1059 0.0870 0.1640 0.0882

1.25 -0.0551 -0.1309 -0.0443 0.3299 0.0030 0.1199 0.0660 0.1310 0.0494

1.5 -0.0403 -0.1078 -0.0151 0.2812 0.0036 0.1303 0.0524 0.1079 0.0274

2 -0.0235 -0.0773 0.0237 0.2094 0.0044 0.1448 0.0373 0.0775 0.0338

500 1 1 -0.2441 -0.3704 -0.0415 1.6869 0.2798 2.0106 0.2509 0.3712 0.0758
1.25 -0.2079 -0.3259 0.0433 1.7792 0.3588 2.4893 0.2163 0.3270 0.0828

1.5 -0.1812 -0.2908 0.1104 1.8414 0.4296 2.9081 0.1911 0.2922 0.1342

2 -0.1419 -0.2386 0.2114 1.9604 0.5542 3.6263 0.1551 0.2409 0.2279

3 1 -0.1219 -0.2342 -0.0904 0.5709 0.0172 0.2727 0.1265 0.2343 0.0934

1.25 -0.0927 -0.1970 -0.0357 0.5251 0.0220 0.3211 0.0982 0.1971 0.0438

1.5 -0.0743 -0.1698 0.0043 0.4775 0.0259 0.3583 0.0805 0.1700 0.0271

2 -0.0512 -0.1321 0.0606 0.4064 0.0322 0.4154 0.0586 0.1324 0.0671

5 1 -0.0813 -0.1645 -0.0868 0.3562 0.0022 0.1047 0.0856 0.1645 0.0880

1.25 -0.0570 -0.1311 -0.0447 0.3010 0.0029 0.1191 0.0621 0.1311 0.0473

1.5 -0.0421 -0.1074 -0.0149 0.2541 0.0035 0.1294 0.0478 0.1074 0.0220

2 -0.0254 -0.0775 0.0231 0.1903 0.0043 0.1437 0.0320 0.0776 0.0287

1000 1 1 -0.2473 -0.3714 -0.0435 1.6086 0.2748 1.9837 0.2505 0.3718 0.0623
1.25 -0.2107 -0.3265 0.0419 1.7023 0.3534 2.4615 0.2147 0.3271 0.0650

1.5 -0.1832 -0.2917 0.1088 1.7808 0.4241 2.8805 0.1880 0.2924 0.1213

2 -0.1462 -0.2404 0.2076 1.8716 0.5424 3.5652 0.1524 0.2416 0.2160

3 1 -0.1236 -0.2347 -0.0912 0.5513 0.0170 0.2710 0.1258 0.2347 0.0927

1.25 -0.0949 -0.1976 -0.0369 0.5032 0.0217 0.3185 0.0975 0.1976 0.0410

1.5 -0.0756 -0.1699 0.0042 0.4606 0.0258 0.3574 0.0786 0.1699 0.0194

2 -0.0522 -0.1327 0.0597 0.3971 0.0319 0.4133 0.0558 0.1328 0.0631

5 1 -0.0819 -0.1645 -0.0870 0.3442 0.0022 0.1042 0.0840 0.1645 0.0876

1.25 -0.0582 -0.1309 -0.0448 0.2861 0.0029 0.1184 0.0606 0.1309 0.0461

1.5 -0.0431 -0.1075 -0.0152 0.2426 0.0034 0.1290 0.0459 0.1075 0.0189

2 -0.0264 -0.0775 0.0230 0.1811 0.0042 0.1433 0.0297 0.0776 0.0259

2000 1 1 -0.2487 -0.3720 -0.0448 1.5744 0.2719 1.9675 0.2502 0.3722 0.0547
1.25 -0.2120 -0.3274 0.0403 1.6726 0.3500 2.4432 0.2140 0.3277 0.0533

1.5 -0.1844 -0.2921 0.1079 1.7451 0.4203 2.8613 0.1868 0.2924 0.1144

2 -0.1466 -0.2409 0.2068 1.8486 0.5389 3.5478 0.1497 0.2414 0.2110

3 1 -0.1245 -0.2349 -0.0917 0.5404 0.0169 0.2703 0.1256 0.2350 0.0924

1.25 -0.0956 -0.1975 -0.0369 0.4933 0.0216 0.3178 0.0969 0.1975 0.0390

1.5 -0.0764 -0.1700 0.0038 0.4522 0.0256 0.3562 0.0778 0.1701 0.0139

2 -0.0524 -0.1325 0.0600 0.3914 0.0319 0.4135 0.0542 0.1325 0.0617

5 1 -0.0826 -0.1645 -0.0871 0.3358 0.0022 0.1041 0.0836 0.1645 0.0874

1.25 -0.0589 -0.1310 -0.0449 0.2790 0.0028 0.1182 0.0601 0.1310 0.0456

1.5 -0.0440 -0.1076 -0.0153 0.2357 0.0034 0.1288 0.0453 0.1076 0.0173

2 -0.0267 -0.0775 0.0230 0.1776 0.0042 0.1432 0.0283 0.0775 0.0245

ISBN: 978-988-14049-3-0 WCE 2022

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)





