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Abstract:

The paper presents a framework for curve evolution
and image segmentation,based on Level Set methods.A new
variational formulation for geometric active contours that
forces the level set function to be close to a signed distance
function, and therefore completely eliminates the need of
the costly re-initialization procedure. Our variational
formulation consists of an internal energy term that
penalizes the deviation of the level set function from a
signed distance function, and an external energy term that
drives the motion of the zero level set toward the desired
image features, such as object boundaries. The resulting
evolution of the level set function is the gradient flow that
minimizes the overall energy functional. The proposed
variational level set formulation has three main advantages
over the traditional level set formulations.First, a
significantly larger time step can be used for numerically
solving the evolution partial differential equation and
therefore speeds up the curve evolution. Second, the level
set function can be initialized with general functions that are
more efficient to construct and easier to use in practice than
the widely used signed distance function.Third, the level set
evolution in our formulation can be easily implemented by
simple finite difference scheme and is computationally more
efficient. The proposed algorithm has been applied to both
simulated and real images with promising results.To detect
objects in an image,active contour models evolve an initial
curve subject to conatraints specified in the image.
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1.Introduction:

In recent years, a large body of work on geometric active
contours, i.e., active contours implemented via level set
methods, has been proposed to address a wide range of
image segmentation problems in image processing and
computer vision . Level set methods were first introduced
by Osher and Sethian for capturing moving fronts. Active
contours were introduced by Kass, Witkins,and
Terzopoulos for segmenting objects in images using
dynamic curves. The existing active contour models can be
broadly classified as either parametric active contour
models or geometric active contour models according to
their representation and implementation. In particular, the
parametric active contours are represented explicitly as
parameterized curves in a Lagrangian framework, while the
geometric active contours are represented implicitly as
level sets of a two-dimensional function that evolves in an
Eulerian framework. fuzzy partition.

Geometric active contours are independently
introduced by Caselles and Malladi respectively.These
models are based on curve evolution theory and level set
method . The basic idea is to represent contours as the zero
level set of an implicit function defined in a higher
dimension, usually referred as the level set function, and to
evolve the level set function according to a partial
differential equation (PDE). This approach presents several
advantages over the traditional parametric active
contours.First, the contours represented by the level set
function may break or merge naturally during the evolution,
and the topological changes are thus automatically handled.
Second, the level set function always remains a function on
a fixed grid, which allows efficient numerical schemes.

Early geometric active contour models  are
typically derived using a Lagrangian formulation that yields
a certain evolution PDE of a parametrized curve. This PDE
is then converted to an evolution PDE for a level set
function using the related Eulerian formulation from level
set methods. As an alternative, the evolution PDE of the
level set function can be directly derived from the problem
of minimizing a certain energy functional defined on the
level set function. This type of variational methods are
known as variational level set methods .
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2. Level Set Formulation for Curve Evolution

2.1 Traditional Level Set Methods:

In level set formulation of moving fronts (or
active contours),the fronts, denoted by C, are represented
by the zero level set Citi={iz.wildit.z.u) =0 of a
level set function @t . %), The evolution equation of the
level set function 4 can be written in the following general
form:

i—if +Flvg =0 (1

which is called level set equation . The function F is called
the speed function. For image segmentation, the function
depends on the image data and the level set function .

In traditional level set methods , the level set function &
can develop shocks, very sharp and/or flat shape during the
evolution, which makes further computation highly
inaccurate. To avoid these problems, a common numerical
scheme is to initialize the function <Pas a signed distance
function before the evolution, and then “reshape” (or “re-
initialize”) the function %' to be a signed distance function
periodically  during the evolution. Indeed, the
reinitialization process is crucial and cannot be avoided in
using traditional level set methods.

2.2. Drawbacks Associated with Reinitialization

Re-initialization has been extensively
used as a numerical remedy in traditional level set methods
. The standard re-initialization method is to solve the
following reinitialization equation

— =sign{eqg)(1 - |7¢|) 2
b5 4
where ™o is the function to be re-initialized, and sign(«) is
the sign function. There has been copious literature on re-
initialization methods and most of them are the

variants of the above PDE-based method. Unfortunately, if
@0 is not smooth or @0 is much steeper on one side of the
interface than the other, the zero level set of the resulting
function @ can be moved incorrectly from that of the
original function . Moreover, when the level set function is
far away from a signed distance function, these methods
may not be able to re-initialize the level set function to a
signed distance function. In practice, the evolving level set
function can deviate greatly from its value as signed
distance in a small number of iteration steps, especially
when the time step is not chosen small enough.

So far, re-initialization has been extensively
used as a numerical remedy for maintaining stable curve
evolution and ensuring desirable results. From the
practical viewpoints, the re-initialization process can be
quite complicated, expensive, and have subtle side effects.
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Moreover, most of the level set methods are fraught with
their own problems, such as when and how to re-initialize
the level set function to a signed distance function . There is
no simple answer that applies generally to date. The
variational level set formulation proposed in this paper can
be easily implemented by simple finite difference scheme,
without the need of re-initialization.

3. Variational Level Set Formulation Of Curve
Evolution Without Re-Initialization.

3.1. GeneralVariational Level Set Formulation with
Penalizing Energy

As discussed before, it is crucial to keep
the evolving level set function as an approximate signed
distance function during the evolution, especially in a
neighborhood around the zero level set. It is well known
that a signed distance function must satisfy a desirable
property of [v@é] = 1. Conversely, any function A
satisfying |¥¢| = 1 is the signed distance function plus a
constant . Naturally, we propose the following integral

1 i 3
Pl :/ 3(]'\?-;1‘;[ — 1P dedy (3
0 2

as a metric to characterize how close a function # is to a
signed distance function in ggMc 2, This metric will play a
key role in our variational level set formulation.

With the above defined functional (g}, we propose the
following variational formulation ‘

Eia) = pPio) + £uld) 4

where o is a parameter controlling the effect of
penalizing the deviation of & from a signed distance
function, and €w(®) is a certain energy that would drive
the motion of the zero level curve of @ .
aE

We denote by 5=, the Gateaux
derivative (or first variauon) of the functional E, and the
following evolution equation:

bt (5)

is the gradient flow [18] that minimizes the functional &£,
For a particular functional £(d) defined explicitly in terms
of ¢, the Gateaux derivative can be computed and
expressed in terms of the function % and its derivatives .

We will focus on applying the variational
formulation in (4) to active contours for image

@
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segmentation, so that the zero level curve of  can evolve
to the desired features in the image. For this purpose, the
energy £m will be defined as a functional that depends on
image data , and therefore we call it the external energy.
Accordingly, the energy is called the internal energy
of the function " & ,since it is a function of * ¢ only.

During the evolution of ¢ according to the
gradient flow (5) that minimizes the functional (4), the zero
level curve will be moved by the external energy
Meanwhile, due to the penalizing effect of the internal
energy, the evolving function @ will be automatically
maintained as an approximate signed distance function
during the evolution according to the evolution (5).
Therefore the re-initialization procedure is completely
eliminated in the proposed formulation.This concept is
demonstrated further in the context of active contours next.

&
L

3.2. Variational Level Set Formulation of Active
ContoursWithout Reinitialization

In image segmentation, active contours are
dynamic curves that moves toward the object boundaries.
To achieve this goal, we explicitly define an external
energy that can move the zero level curve toward the object
boundaries. Let / be an image, and g be the edge indicator
function defined by

1

Y= Iy wa, + I

where <= is the Gaussian kernel with standard
deviationt @. We define an external energy for a function

¢ix.y) as below
where * * > U and v are constants, and the terms Lg(d) and

A, (@) are defined by

£4(9) = [ ai@)[veldzdy a
S
and
Ay(8) = f gH {—&)drdy, (8)
£

respectively, where @ is the univariate Dirac function, and
H is the Heaviside function. Now, we define the following
total energy functional

Elp) = pPd) + &y ap () (9
The external energy £y, drives the zero level set toward

the object boundaries, while the internal energy P (#)
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penalizes the deviation of & from a signed distance
function during its evolution.

To understand the geometric meaning of the
energy £,(¢), Wwe suppose that the zero level set of
can be represented by a differentiable parameterized curve
C(p), = [0.1].1t is well known [9] that the energy

functional £, |;(;§;) in (7) computes the length of the zero
level curve of ¢ in the conformal metric a(C () ilC!{wildm,
The energy functional “a{®) in (8) is introduced to speed
up curve evolution. Note that, when the function g is
constant 1, the energy functional in (8) is the area of the
region . The energy functional

in (8) can be viewed as the weighted area of

The coefficient v of can be positive or negative,
depending on the relative position of the initial contour to
the object of interest. For example, if the initial contours are
placed outside the object, the coefficient v in the weighted
area term should take positive value, so that the contours
can shrink faster. If the initial contours are placed inside the
object, the coefficient v should take negative value to
speed up the expansion of the contours.

By calculus of variations , the Gateaux

derivative (first variation) of the functional £ in (9) can be
written as

aE . .V
% o —y[& - dlv(IV_@ln
. T e
—Adiddivig §—gdia)
(s ,m(gtwl} vgdip)
where & is the Laplacian operator. Therefore, the

function ¢ that minimizes this functional satisfies the
. The steepest descent

is the

Euler-Lagrange equation g_i =0

process for minimization of the functional £
following gradient flow:

F;

En
=g

4

i?j' i i mn K ‘f' ” i &
¥ i+ Ac‘ﬁ@:}]dm{gf—;—} + wad(d)
|7 @] |7

(m

This gradient flow is the evolution equation of the
level set function in the proposed method.

The second and the third term in the right hand side
of (10) correspond to the gradient flows of the energy
functional ~ ALel#) and 1A, (), respectively, and are
responsible of driving the zero level curve towards the
object boundaries. To explain the effect of the first term,
which is associated to the internal energy uPjg), Wwe
notice that the gradient flow

= pla @ — div(

g

Ad— dizr(:—jigs = div[{1 — ﬁjw}
T | Fih

has the factor i1 — W}g) as diffusion rate. If W&l = 1,
the diffusion rate is positive and the effect of this term is

Vel Vel < 1.
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the usual diffusion, i.e. making ¢* more even and therefore
reduce the gradient If the term has effect of
reverse diffusion and therefore increase the gradient.

We use an image of a circular object, as
shown in Fig.1 to show the evolution of # according to
Eq. (10). In Fig. 1, the first figure in the upper row shows
the initial level set function, and its zero level curve is

Figure 1. Evolution of level set function # is shown
in Row 1 and Row 2 showsEvolution of zerolevel curve of
the corresponding level set function  in Row 1.

plotted in first figure in the lower row. The upper row
shows the evolution of the level set function ¢, and the
lower row shows the corresponding zero level curve of .
The fourth column is the converged result of the evolution.
As we can see from this figure, during the evolution, the
evolving level set function # is maintained very close to a
signed distance function.

4. Implementation

4.1 Numerical Scheme

In practice, the Dirac function 9(*! in (10) is slightly
smoothed as the following function ¢ (| defined by:

|| ==

ol <.

0, o
&m‘{ﬂumww~ G

We use the regularized Dirac %<!*) with £ = 1.5, for all
the experiments in the project. Because of the diffusion
term introduced by our penalizing energy, we no longer
need the upwind scheme [4] as in the traditional level set

methods.Instead, all the spatial partial derivatives §-§ and
%‘i are approximated by the central difference, and the

temporal partial derivative ié% is approximated by the
forward difference.The approximation of (10) by the above
difference scheme can be simply written as
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@R-H - @}a

s YR poak e
RS ML BN AT (12)

where L{; ;] is the approximation of the right hand side in
(10) by the above spatial difference scheme. The difference
equation (12) can be expressed as the following iteration:

oEtt = gk +TL(8) (13)

4.2. Selection of Time Step

In implementing the proposed level set method, the
time step can be chosen significantly larger than the time
step used in the traditional level set methods. We have tried
a large range of the time step T in our experiments, from
0.1 to 100.0. A natural question is: what is the range of the
time step T for which the iteration (13) is stable?It is found
that the time step T and the coefficient # must satisfy

T < i in the difference scheme described in Section 4.1,
in order to maintain stable level set evolution. Using larger
time step can speed up the evolution, but may cause error in
the boundary location if the time step is chosen too large.
There is a tradeoff between choosing larger time step and
accuracy in boundary location.

4.3. Flexible Initialization of Level Set Function

In traditional level set methods, it is necessary to
initialize the level set function ¢ as a signed distance
function . If the initial level set function is significantly
different from a signed distance function, then the re-
initialization schemes are not able to re-initialize the
function to a signed distance function. In our formulation,
not only the reinitialization procedure is completely
eliminated, but also the level set function ¢* is no longer
required to be initialized as a signed distance function.
Here, we propose the following functions as the initial

function™ . Let 20be a subset in the image domain ,a 2

Mo pe all the points on the boundaries of f1g , which can
be efficiently identified by some simple morphological
operations. Then, the initial function 20 is defined as

—p; (x,u) & Qg — 9l
Sz 4) = {0 (x,) € 8% (14)
7 0—Q

where & > 0 is a constant. We suggest to choose # larger
than 2, where £ is the width in the definition of the
regularized Dirac function 9z in an.

Unlike signed distance functions, which are
computed from a contour, the proposed initial level set
functions are computed from an arbitrary region %o in the
image domain ! . Such region-based initialization of level
set function is not only computationally efficient, but also
allows for flexible applications in some situations. For
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example, if the regions of interest can be roughly and
automatically obtained in some way, such as thresholding,
then we can use these roughly obtained regions as the
region o to construct the initial level set function @o .
Then, the initial level set function will evolve stably
according to the evolution equation , with its zero level
curve converged to the exact boundary of the region of
interest.

Note that this kind of initial function %u
significantly deviates from a signed distance function.
During the evolution,the level set function 4 may not be
able to keep its profile globally as an approximate signed
distance function in the entire image domain. But the
evolution based on the proposed penalizing diffusion still
maintains the level set function %' as an approximate
signed distance function near the zero level set.

5.0 Level for

Segmentation

5.1 Introduction

To detect objects in an image, active contour models
evolve an initial curve subject to constraints specified in the
image. T.F. Chan and L.A. Vese proposed an active
contour model using an energy minimization
technique.Their model works on noisy/blurred images, and
does not rely on gradient values to find the boundary.

Set  Framework Image

5.2. Model

T wihiou o

Assume that image %0 is formed by two regions of

approximately constant intensities w§ and “i, and the
object to be detected is represented by the region with value

uh, If the boundary is given by y, then g = «f inside

Coand wg == U outside “o. The following fitting energy
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FriC) + FaiC) = f [t — e1|Pdx i1
o inside O

f g — e2|Fdz
waabsicde ©

+

(where C is any variable curve, c1 and c2 are constants
depending on C) is minimized when €' = Th. i.e.

i{lf PO+ Fa(C} == 0 2 F1(Co) + Fa(Cy)
Adding some regularizing terms like the length of C and

the area inside C, the energy function F{(, ¢y, eq) is given
by

FLr L](g

+M / [itg — eq)Pda + Mg f [t — eq|2da
ituide o e

0, Ay, Ag >

= p (length of C'F + v (area inside &) (2)

oy and e are comstant ukunowns, gz 0, @ >
Op > 0 are fixed constants,

5.3. Level Set Formulation

In the level set method, C is represented
by the zero level set of a Lipschitz function  : R — R
such that

mside © ]

outside C = {x e RY 1 ¢fz) « 0}

Using the standard definition for the Heaviside function
Hand the dirac measure 5 ,

u [
AV

Fom B o

=1 2
HM—{: if

Azl = i‘H {z) (in the sense of distribartions)
We have the following results:

length

e -_~fﬂ [VH{¢)|dx = /Q 5(¢)|V | dax (3)

Aven inside O = [ Higidy | thus idi

J[ i%a{] e (11 i :] [wg — 1! }r{ihﬂh‘.& lfi)
Hinside O

f lug — enfPde = /i‘b’.g — )t =
Toutside O
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Pherefor €y

hol
F(d.crea) = g ( f ﬁf«sfsiwmm) +v f Hig)dz + (7)
154 n
4y j luo — o1 PH ($)dz + A f luo —ex[2{1 — H(¢) bz
S5 0

Minimizing the energy functional with Tespect to ¢ and o

gives f
= fn () dr (31
()= J il — Hi¢)Jdx (0)

Jall - H(g)}de

3. Salve PDE

96
2. Me:-n[w(mf‘ 7. (I,;, @) v (15)

=il = ) + Aa(ug ~ i‘zf] =0 om 02

Difa
5 =0 on 90 (16}

5.6 Results

which correspond to the average value of wy mside & and
ortside O respectively. (note, the enrve must have a non-
empty nterior and exterior).

Starting with an initial contours cemtered at (0.5,01.5)
with radii 0.1, 0.3 and 0.4, the algerithm converged
correctly to the the test image. [t was impressive to

5.4 Euler-Lagrange Equations

T compute the associated Euler-Lagrange squations for o,
we need regularized versions of H and § such that 8, = H,
In particular, we use

H.x) = é (1 +— : metm( )) (10)

&

5.(z) = Hi(» L €
(2) = Hi(2) = ( S )
The associated regularized functional F, of F will be

(/5 m)[‘wlz&r) +:z/H (e (11}

+A1 / {un—ellzﬁcm)dmﬁ-,&g/ g — ex]? {1—H.(¢)}de
Jn 0

F (w €1 {2‘2

Keeping oy and ¢y fixed we compute
lim l [F.(6+t.er,00) ~ Felbenea]  (12)

(where v 8 a test function) to obtain the Euler Lagrange
equations for ¢

suo)nn ([ cig(fé)IWi{)F—lV (ver) o

=0 on {1

—p = Xi{un — e )2 + Az(uo — tf‘z)g]

'l 5.(0) de
8o ()| V|l o (14)
;ﬂ(/ﬂ )| W |u1‘) 3l o (i om G4 (14}

5.5 Implementation

1. Intialize ¢

2, Caleulate ¢q(4°), co(0) and L = [ 8.06)[W | dz
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watch the contour deal with topological changes, the
sharp edges and the convex shape.

-0.1
1 objects detected!
0
D &
0 05 1
X
0.1
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6 Simulation Results

Al. Original Image A2. Original Image

oy poreme T Sty

B1. Image Contour

Cl1. Edge Image
C2. Edge Image
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7.Conclusions

The paper presents a new variational level
setformulation that completely eliminates the need for
reinitialization.The proposed level set method can be easily
implemented by using simple finite difference scheme and
is computationally more efficient than the traditional level
set methods. In our method, significantly larger time step
can be used to speed up the curve evolution, while
maintaining stable evolution of the level set function.
Moreover, the level set function is no longer required to be
initialized as a signed distance function. We propose a
region-based initialization of level set function, which is not
only computationally more efficient than computing signed
distance function, but also allows for more flexible
applications. We demonstrate the performance of the
proposed algorithm using both simulated and real images,
and in particular its robustness to the presence of weak
boundaries and strong noise.
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