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Abstract

In this paper a numerical algorithm is described for
solving the boundary value problem associated
with axisymmetric, inviscid, incompressible and
irrotational flow with a circumferentially arranged
cascade of aerofoils placed in the duct. The
governing equations are formulated in terms of the
stream function ¢x,y) and the function #Xx,y) as
independent variables where for irrotational flow
Ax,v) can be recognized as the velocity potential
function, for rotational flow #x,y) ceases being
the velocity potential function but does remain
orthogonal to the stream lines. A numerical
method based on finite differences solving a
Poisson type equation on a uniform mesh is
employed. The technique described is capable of
tackling the so-called inverse problem where the
velocity wall distributions are prescribed from
which the duct wall shape is calculated, as well as
the direct problem where the velocity distribution
on the duct walls are calculated from prescribed
duct wall shapes. Results for the case of
prescribing the radius i.e. the so called Dirichlet
boundary conditions are given. A downstream
condition is prescribed such that cylindrical flow,
that is flow which is independent of the axial
coordinate, exists. The numerical results are
obtained by using Green’s function for the Laplace
cquation on a rectangle. The presence of the
blades has a bearing on the rate of mass flow and
thus alters the usual equation of continuity

1. Introduction

Designers of ducts require numerical techniques
for calculating wall shapes from a prescribed
velocity  distribution. The objective of the
prescribed velocity is typically to avoid boundary
layer separation. At inlet a velocity is prescribed
to allow for a vorticity to be present calculated
from @ =V Ay where the ~ denotes the usual
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cross product of vectors, w 1s the vorticity vector
and v the velocity vector respectively.

The objective of the present paper is to describe a
numerical algorithm for solving the boundary
value problem that arises when the independent
variables are ¢ and ¢, where ¢ may be identified
as the velocity potential function (for irrotational
flow only), for flow with vorticity, ¢ ccases being
the velocity potential function but does remain
orthogonal to ¢ which may be identified as the
stream function. The dependent variable y, is the
radial coordinate and x 1s the axial coordinate. The
numerical technique is based on the finite
difference scheme on a uniform mesh.

2. The Design Plane

As shown in Pavlika [4] when the independent
variables are #x,y) and ¢x,y) where the &x,y)
and ¢x,v) have been previously defined it can be
shown that the governing partial differential
equation that the radius satisfics is given by:

ofdw), o (Ba,
cp\ B o owl\ Adyw
with the speed calculated from

2 2
Lz:% 6_}7 +L2 6_y (2)
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and completion of the physical coordinates are
provided from

_Bo,

40
P gy A
Ady

B o

dx dy

where x 1s the axial coordinate and A and B
satisfy their own first order quasi-linear hyperbolic
partial differential equations with characteristics
parallel to the ¢ and i axes which maps the
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physical flow field into an infinite strip in the
(& ) plane. In fact the A and B satisfy:

&,
o (og(d) =" B 3)
P q
and
3, ®
~—(log(B))=-—-4 (4)
oy q

Regarding temporarily 7, @, and g as known
functions of ¢ and i the system (3) and (4) as
previously mentioned is quasi-linecar hyperbolic
with characteristics parallel to the ¢ and i axes
which maps the physical flow ficld into an infinite
strip in the (4 planc. Bearing in mind the
freedom available in the stream wise variation of ¢
and the cross stream variation of y; suitable values
of 4 can be prescribed along one ¢ characteristic
and those of B can be prescribed along one
characteristic.

3. The Numerical Algorithm in the
Design Plane

Rewriting the partial differential equation that y
satisfies i.e. equation (1) as:

(2] L(12) - o
op | 8p) ow\Cow

A
where C = 3’ for problems posed in the design

plane ¢=0, the value of C will vary depending on
whether the flow field is irrotational or swirl free
etc. Equation (5) will be re-written as a Poisson
equation that is as:

2
V2y=£+(1_L 6_};_ iloge\C\ 6_y
C O

C* oy’ | og
1 ¢ {13y
i (©)
Cow\C oy
where V* is the usual Laplacian operator
ol o
Vie—+—
oy~ O
so that
2
Vip= (6):,673;,87};,6,,0)
oy Op Oy

where g 1s a function of the arguments shown as
defined by expression (6). Writing in finite
difference form using central differences gives:
-4y + Y = B (7)

where
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on a uniform mesh with Ap= Ay ="h.

4. Direct Solution of the Difference
Equations

The matrix-vector equation (7) is

7Y 4 Ay Py = po

With all of order (NxNJ, and column vectors ™
and I/ ) of order N. To solve the vector recurrence

relation a speculation is made that the Y vector
can be related linearly to the I vector as follows:
1= BE K ®
where the B” and the K are at present unknown
matrices and column vectors respectively.
Substituting (8) into (7) gives
WUBY + 4y = EO_ ! g gyt
— 17 = - VBV + 4y EVYT
+ BY + 4 (EY - KY)
but
Y(x) :B(H}) Y(i+j) + K(IJrU
Thus equating coetficients implies
B = BV + 4)" BV 9
and
K = B0+ a4y (BO— Y KP)
For i=0 this gives
Y@ = gty 4 g (10)
To determine the K%, if the first iterate BY = 0
then
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KY =17

The matrix and vector sequences are now defined
by equations (9) and (10) for i=] to M. The ¥"
vectors are now calculated starting from right to
left (as Y™ is known) using

Y{IM) :B(M”rj) Y{]\/I+j) + K(IMJU’)

5. Axisymmetric Flow in the
Absence of Body Forces

Here numerical solutions to inviscid axisymmetric
flow with a constant axial velocity component
given by u,(y) =f, where fis a constant will be
given. The swirl velocity u,(y), will be of the form

u,(y)= iWhere 1 is a constant and the term [y

represents the so-called free vortex term.

6. The flow equations in the
physical plane(y, o,x).

Adopting cylindrical polar coordinates with y
being the radial coordinate, e the circumferential
and x the axial coordinate, defining velocity
components u, , u, and u. with corresponding
vorticity components @, , @,, @; in the direction
of increasing v, o and x respectively, then the
equation of motion with unit density becomes:

Du

=W 11
o F (I

D : . .
WhereD—ls the material derivative. Equation
t

(11) can be written using well known vector
identitics as:

8uy +ux8uy o 8uy _ﬁ__a_p
ot ox oy oy oy
ou ou ou Uy,

L4y Ly =— 12
o T ox T oy (12)
Furthermore
ou +(uViu=-V.
o — " =

can be written (once again using an appropriate
vector identity as)

ou 1
Zr(oaru)=-V(p+-g*). Thus
Y (@ru)==-V(p 29)

for steady flow Crocco’s form of the equation of
motion is obtained, i.e.
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(n @)= VH (13)

1
where 77 is the total head defined by 7 = p+ 5 g

Calculating the cross product on the left hand side
of equation (13), gives

oH

T U0, U G,

oy

O=u,0, —u, o,

o

—=U_ ., — U ® 14
ax ¥y e ax ( )

In addition for axisymmetric flow the vorticity
vector @ becomes

ou
o=V Au= _ oy v+ o o, o+
- 0~ ox | = | 6x Oy

{15@ ”“)} x (15)
yooy

The equation of continuity becomes

Vau =
T Ox oy

7. The Blockage effect: deriving
the additional flow equation due
to the circumferentially
arranged aerofoils.

In deriving the additional flow equation the effect
of the circumferentially arranged blades placed in
the duct must be considered. The blades effect the
rate of mass flow 7, considering figure 7.1, with
k=k(x,y) representing the blockage effect, the mass

flow into and out of the fluid element is:
Face A:

( Ou J ok ,
2u, +—= &(2k+—&cj+0((&c) )
ax ax

Fuace B:

- 2ux+26ux 5x+aux oy |*
Ox Oy

ok ok
5y[2k+2&65x+@;5yJ
+O((6x))+0((6y))
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9. The Design Plane counterparts

Face C: . . .
o B In order to compute numerical solutions in the
| 2u + Y Sx+2 2 Sy |* design plane, expressions are required for the terms
Toox oy A, Band @, thus
ou, o, 1( 8
ox 2k+2%§y+%5 At A (u < J
oy Ox ox oy ¥ Ox
+O((6x)")+O((6y)) = —4 (log(»)
Face D: Os
or
O Ok
2u_+—*8y |6y| 2k+ 6y .
( Py J ( o n=-L " (log(y)).
, B o¢
+0((63)) but
summing these terms, using the principle of g
conservation of mass and taking the limit as 7= Ea_(log(A))
o —> 0,00 >0 gives: ¢ 5
lim thus Ay = f(y), that is WM he
5 of mass flow ) o) N Oku,) 0 on ()
= 46x5y T oy dy B arbitrary function f{y) represents the freedom in
6y —0 the cross stream distribution of g and choosing
which may be identified as the continuity Jf{) to be unity everywhere y can be identified as
equation for two dimensional compressible flow the usual Stokes stream function given by
with the density term being replaced by the oy oy
blockage factor k. ox =Ty oy = Vi
Equation (12), (circumferential component) gives
8. The Blockage Function k(x,y) O=1u, a(’; “a) |, , 6(; )
X y

Referring to the meridional plane figure 9.1, it

The blockage function k(x,y) 1s defined to be of may be deduced that

the formk(x,y)=1- A )where the function _ox &y
7(y) u, =49 a =9 2
Afx) represents the contour shape of the aerofoil 2
and the term 7¢y) is a scaling factor given be = a—(yua)=0
5
T(y)= i:: y, where N is the number of blades oy, =Cy)

(arbitrary). If the axial span of the aerofoil is x,

d.
i i where g = —S. In terms of Cfy) the vorticity
then the function A¢x) is defined to have a dt

maximum at x,/3 and A¢x,/5) = x,/10. Furthermore vector (equation (15)) becomes
Afx) is chosen to vanish at x=0 and x= x, 1 8C 8uy i
.Choosing A(x) to be of the form =VAau=q-—— ¥ty o+
_ a, B B . . ¥ ax Ox ay
A(x)=cx"(x" —x), where ¢ is a constant. with
1 oC
| 1 . LR
P =W arbitrary) = a = rE applying  these {y o } X
1/4 = oy + o, &+ ox, by definition.
.. : {35 .
conditions gives ¢ = ——| — An expression for @, is required as this appears in
X the expression for B, so using the radial component
1[5 1/4 of equation (14) gives
and ﬂ(x)=—8(x] (x—x,) . 10C) 1 0H
’ yoy) u, oy

using the Stokes” stream function this becomes
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2
= C("’)(C’CJ—J;‘W Now | Ci(;'u)dy=—l [craqry®
y dlﬂ' dw y—innar y 2 y-inner
which is the required expression to be used in 5 5 5
calculation of B according to definition (4). If far =—_ C_ - C_ + l I L&dy
upstream the flow is assumed to be cylindrical so 2| y? y? . 2 e v ody

that all quantities are independent of x, then with

unit density the equation of motion and the Stokes’ Therefore
Stream function give Hy)= 1 wt + Pyimer + 1 (1)
2 X y—inner
c 3 o 3, 2
_O p O p ui,lzo,lzyux + dec dw
ox dy y ox oy oV’ dy
giving Suppose u_, =u_,(y)and u,, =u, (), where
_C)(dC) Yo Ul the subscript 1 denotes upstream conditions_, then
W, = T E Ed—( i, )= u_y U, =u,,()and u,, =u,, @) arc required as

] functions of y, where the subscript 2 similarly
With  u (y)= Foand  wu, (y)=ky+ ; as denoting downstream conditions, so that

1 2 _ pl,inner 1 2
previously defined. Once dﬁ has been calculated Eux’z =Hw p E(u”"z isner
v 2
upstream it takes this value throughout the (4 ) 1 p1dC (16)
since as is self evident the expression is 2.7 i dy
independent of & This last expression for w, is d 1
: s ) ) ay
required in the calculation of B and numerical and I dy = (y - mer)
coupling with equation (1) gives the numerical -0 M2
solution in the design plane. Furthermore C (1) = iy = Yally,, and
equation (16) now gives
10. Downstream Conditions
1 1 inner inner
_ui,z = _u’i,l + it - Pa, +
Downstream a cylindrical flow condition as 2 2 P P
discussed below will be prescribed. Defining the 5 5
pressure function /f(y) and the function Cy) as 5((?’{&1 Visner ~ Uz D )
1 2y, P
Hy)=—(u, +u, )+ and C(y)= yu
)= 0 +uD)+ L and Co =, L1 j[ Jd(C)
for cylindrical flow radial equilibrium (from
equation (12) radial component gives or
2
Ldp _u. ul, =ul, +K + J' [%—%Jd((]z) (17)
pdy ¥y g\ Vs
Integrating gives where
1 ui CZ p inner p inner
_(p - py*”’”’i@f) = j _dy = J. #)dy K= 2( - - )+ (ui,l )mner - (“i,z )mner
P y—inner y y—inner 2 2

py—mner w=0 ux,l

Hp) = +u)+
2 with u, ; in this case given by (17).

N J‘ Cz(;!f)dy

y—inner y
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11. Calculation procedure

The calculation of the downstream radii v.(y)
follow from equation (18) with ., given by

equation (17), which can be written as

uiz = g(y)+ K , where
L
o

J@dw 19)

g)=ul,+ | [ iy

y=0

In order to calculate the (n+7)" iterate it is known

that:

d d dy
%(Jﬁf,@m )=12 {7}

oK | Jew)+K

but

" (17+1) "
ﬁ( 2 @ _ (szz,outer ) - (yzz,outer )( )
OF yz,owfer - K(,Hl) _K(n)
(20)

from which as can be seen from equation (20) the
K™ must be calculated iteratively with K¥=0,
Once the K™ has been calculated it is introduced
into equation (19), giving rise to a new

(Hfsz)(”mwhich in  turn gives a new

(yfsz)(nﬂ) from equation (18) and the process

repeated until some convergence criteria
satisfied.

12. Prescription of Wall
Geometries.

In this paper the Dirichlet boundary conditions will
be prescribed on the wall boundaries so that it is
the radii values, y that are given as a function of &
on the boundaries. The function chosen to give a 'y
distribution is based on the hyperbolic tangent,
choosing y(@)=Ctanh(ag+b)+k where C, a, b and
k are constants, applying the conditions that y=y,
at #0 and y=y, at ¢$=@ taking
a@+b=3(arbitrary) and »=-3, so that tanh(aD+b)

] and tanh(b) ~ 1, then it follows that

)= (yd ;yu Jtanh(a¢+b)+(yd ;yu J

(21)
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replacing & by x in equation (21) gives a y(x)
distribution. The inner radius is prescribed to be
given by a hyperbolic tangent function in this
paper. The geometries produced are shown in
figures 12.1, 12.2 and 12.3 respectively.

13. Alternative Solution using an
Integral formula based on
Green’s theorem.

Here a second method of solution is derived using
an integral formula. Commencing with the
generalized form of Green’s theorem for the self
adjoint elliptic operator E(t) in normal form given
by:

ov ot
E(f)— tE“ (v)d =pt——v—d
Ljv (H (Wdpdy i} P V@n 5

where t = ¥', E(u)=E"(u)where E“ (1) is
the adjoint of E and v is the fundamental solution
to the adjoint equation. In this case the adjoint
equation is given by V* =0 and E(t) = g as
defined by equation (6). The contour C bounding
the surface R is traversed in the counter clockwise
sense. For a doubly connected region introducing a
singularity at the point (¢,,y,) (inside or on the

contour C) and assuming
v@w)=F(@p.w)log, | r| so that the distance r

. . 2 2 1/2
is given by: r=((@=@)" + @ —,)’)
with 7'(g,y) analytic, then it can be shown that

m:’l’f(@O,I‘UO)F(QDO,WO)Z [——v—_—ds
on 0

o)

o't 'L
- vg(isi)dgpdws m= 152
_L_[ aqu aqu

with L =1log, t. Nowm = 2 if (¢,.y/,) is within

C and m=1 if (¢@,.y,) 1s on C (the m=1 case can
be shown using the appropriate Plemelj formulae
or by indenting the contour at (¢,.y,)). For the
Dirichlet case of boundary condition of (¢, y)the
requirement is that v(¢,y/)= 0 on C in addition to
v(@,y)being harmonic and for the Neumann
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" . . ov
conditions on t, the requirement is that — =0 and

on ”—’(% W)=

v(g,y) once again satisfying Laplace’s equation.

a vy taldeS

Yop on  ogin
Much literature is available for the Green’s 5 ot 52L 5\1 &t oL J
function for the Laplace equation (see Williams __U g( g( Ydgpdy
[6]) and need not be mentioned here. Hence for

the Dirichlet problem without loss of generality

a 2’a¢2 o o

setting '(@,yw)=1VY @,y and for interior points:

Xigpdy

&'t &L
oF o

(22)

27y 94, = —Cf)t—‘ods jj V8

14. Iterative solution

To convert formula (22) to a system of linear
algebraic equations the point #(¢,,y,) inside C is

related to its boundary values on C. To obtain the

i.e., the Green’s function v, satisfies Laplace’s first iterates fl(l) (@ 0,) 5 gi(“)is set equal to zero,

cquation on €€ where &0 is defined by: so that
REPEPyys W SWSYW,, and vanishes on C. 2 — ZN%*"[ﬁv ] £ As, 1=0,1,2..2N 1 2M+ 4
For the Neumann problem j on j

Using the trapezoidal rule

alt aZL o IN2MA | [ A
a—qu,a—qu)dw mt® = ZJ: 4[651(5;+151—1)f;

1-0,1,2,.2N +2M + 4

2rt (. 4,) = _¢VN%C& __UVNg(
c R

Which give integral formulae for the square of the @
radivs t, from which the radius y can be == Z K(vg,s) f1= 0,1,2,.2N+2M+4
determined., above Green’s function vy satisfics /

v
the Laplace equation on &0 with — vanishing

Where K (v,, )= 1(6‘5}(% N

on dr\ On
C. Knowled f the derivati ot d
on L. owledge of the derivatrves % an Using this method there is a simple self-
o consistency check. i.e. the t; are known upstream
—— are also required for the determination of the and  downstrcam for j=0.1.2....N+1 and
2% J=N+M+3,N+M-+4,... . 2N+M+3, hence the first
speed q given by equation (2) hence differentiating iteration may be written as:
under the integral sign above with respecat to @ 1-K,., K., Konia | Lo
t

and s gives integral formulae for both % and K., 1-K,; K, K vonra | Ty
ot

——, such that:

oy

L _KN+2 : : . _ICLN+W+4__t2N+M+4_

15, o oy &y - -
2r—Hq. Dy LD Kt
ﬂ-al//(%%) g)a 2 5!;511 Zu

Ft FLY v, Ft &L J,ZK%
_H ( e agozj g(agoz o7 <

and similarly for ﬁ ZKJIJ
op L/ _
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17. Figures

&x

8y

s
Uy
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v

Fig 7.1. A Fluid element

Fig 9.1. The meridional plane.
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Fig 12.1. The geometry and speed distribution produced with N=3.
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Fig 12.2. The geometry and speed distribution produced with N=4,
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Fig 12.3. The geometry and speed distribution produced with A=35.
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