

Abstract—In this paper we propose a design to develop an

engineering device for shared access to the decryption key of a

public key cryptosystem used for secure communication over a

network. The mechanism of the device is based on cryptanalytic

tools that are used to attack the Elliptic Curve Discrete Logarithm

Problem (ECDLP). The device comprises of three components:

Share Generator, Authenticator and Key Generator, and its

significance lies in safeguarding the secret keys of a public key

cryptosystem that is used to transmit messages across the

communication network.

Index Terms—ECDLP, Elliptic Curves, Pollards rho Attack on

ECDLP, Secret Sharing, Threshold Schemes.

I. INTRODUCTION

 The digital world today has brought with it a great demand

for information security products. The security aspects of these

products are based extensively on the advancements in the

science of Cryptology. The techniques used in these products to

secure information emphasize on the intractability of

mathematical problems such as the Elliptic Curve Discrete

Logarithm Problem (ECDLP). The incorporation of such

cryptographic schemes in devices ensures that data

communicated across networks are not vulnerable to attacks by

adversaries. That is, it ensures data authentication and integrity.

But what is important is to safeguard the secret keys that are

used to decipher the encrypted data.

Threshold schemes play a very important role in

safeguarding cryptographic keys. In a (t, n) scheme, a secret

piece of information can be shared among a group of n persons

such that, any t of them, t ≤ n may pool in their shares to

recover the secret while (t − 1) persons cannot. This security

check on the number of persons involved in reconstructing the

secret helps to distribute control of the access to the data

communicated across a network. In our paper we give the

design for a device that works on the principle of the Pollard

rho attack on the ECDLP. The algorithm not only provides an

effective method in generating shares to a secret that can be

shared among n persons in a group, but also, provides a method

to verify these shares and thus authenticate the m, t ≤ m ≤ n,

participants involved in reconstructing the secret key. This (t,

Manuscript received May 16, 2007.

K.P. Vidya is with the Department of Mathematics, Madras Christian

College (Autonomous), Affiliated to the University of Madras, Chennai, 600

059, India. (phone: 0091-044-24919718; e-mail: kpvidya@ hotmail.com).

n)-threshold scheme that is embedded in the Key Access

Device enhances the utility of the device with the replacement

of only one component embedded in the device whenever the

security needs demand a change in the secret key.

Section 2 and 3 of this paper gives a brief understanding of

secret sharing schemes and the mathematical background that

is required to develop the security system. Section 4 gives a

brief introduction to our scheme and section 5 describes the

Key Access Device (KAD), its design and the underlying

mathematical algorithm with an illustration. Section 6 discusses

the merits of implementing our cryptographic scheme in the

KAD.

II. SECRET SHARING SCHEMES

A secret sharing scheme is that in which a secret α is divided

into n shares which are distributed among the n participants so

that a coalition of authorized participants can combine to

reconstruct the secret. Shamir’s[25] results based on

Lagrange’s interpolation of polynomials simultaneously with

Blakley’s[3] contribution on geometric hyper-planes were the

first ever known secret sharing schemes that were later

classified as threshold schemes. A generalization of the scheme

was proposed in [15], and [2] describes its relation to monotone

functions.

A scheme is called a threshold secret sharing scheme with a

threshold value of t if only a coalition of t ≤ n participants can

reconstruct the secret while t−1 or fewer participants cannot. If

Φ denotes the group of participants and Γ and ∆ respectively

denote the set of authorized and unauthorized participants

where Γ and ∆ are assumed to be mutually disjoint then the

collection (Γ, ∆) is called the access structure of the secret

sharing scheme. The access structure is called a monotone

access structure if a set P containing Γ is also a set of authorized

participants. A hierarchical threshold access structure [32]

defines sets of participants distributed in say l levels with

different or same threshold values for each level. The level zero

indicates the central point, the lower levels are called level one,

level two, etc.. If different access structures in a family of

access structures are to be activated at different instances of

time then we say that the secret sharing scheme is dynamic. A

fully dynamic secret sharing scheme as defined in [6] is the

sharing of a set of secrets among a group of participants such

that any subset of participants has no information about the new

secret before knowing the new broadcast message but there

Decrypting Network Traffic- Shared Access

Control

K.P.Vidya, Member, IAENG

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

exists a perfect secret sharing scheme after seeing the new

broadcast message. The fully dynamic secret sharing scheme is

said to be strong if any subset of participants not in the new

access structure and who know all the previous secrets, still

have no information about the new secret.

A perfect secret sharing scheme is one in which the shares

corresponding to each unauthorized subset provides absolutely

no information about the shared secret. In fact, they have a

monotone access structure. The efficiency of any secret sharing

scheme is measured by its information rate = (Size of the shared

secret) / (size of that participant’s share). Since in any perfect

secret sharing scheme the size of a share is greater than or equal

to the size of the shared secret for all shares of the participants

of the scheme, it follows that all perfect secret sharing schemes

have information rate ≤ 1. Secret sharing schemes of rate 1 are

called ideal. The Shamir’s scheme is an example of a perfect

and ideal threshold scheme.

III. MATHEMATICAL BACKGROUND

A. Elliptic Curves, ECDLP and Pollard’s rho Attack on

ECDLP

An elliptic curve E defined over a finite field Fq, of

characteristic greater than three is given by the set of points that

satisfy the equation y
2
 = x

3
 + ax + b, a, b ε Fq where,

discriminant ∆ = −16(4a
3 + 27b

2) ≠ 0 together with the point at

infinity Ο. It forms an abelian group over a special type of

addition, where, Ο serves as the identity element of the group

and the inverse of a point R = (x1, y1) on the curve is given by

−R = (x1, −y1). The Group law for addition of two points R = (x1,

y1) and S = (x2, y2) for R ≠ S and S ≠ −R, is given by the

co-ordinates (x3, y3) ε E(Fq) where, x3 = λ2
 − x1 − x2, y3 = λ (x1 −

x3) − y1 and the slope λ is given by (y2 − y1)/(x2 − x1) if R ≠ S and

S ≠ −R and (3x1
2 + a)/2y1 if R = S. The order p of the elliptic

curve over Fq, i.e., the number of elements in the abelian group

is determined by the bounds stated in Hasse’s Theorem q + 1 −

2√ q < p < q + 1 + 2√ q while the order of a point R ε E(Fq) is the

smallest positive integer α for which αR = Ο. Further, if the

group is of prime order it implies that the group is cyclic and

every element of the group other than Ο is a generator of the

group.

Definition The elliptic curve discrete logarithm problem

(ECDLP): Given an elliptic curve E defined over a finite field

Fq, a point P ε E(Fq) of order p, and a point Q ε <P>, find the

integer l ε [0, p − 1] such that Q = lP. The integer l is called the

discrete logarithm of Q to the base P, denoted l = logPQ.

The Pollard’s rho attack[22] on the ECDLP finds two

distinct pairs (c ′, d ′), (c″, d″) of integers modulo p such that the

points X ′ = c ′P + d ′Q and X″ = c″P + d″Q collide. That is, a

suitable iteration function f: <P> → <P> is defined so that any

point X0 in <P> determines a sequence {Xi}i ≥ 0 of points where

Xi = f(Xi−1) for i ≥ 1. Now, since <P> is finite, the sequence will

collide at some i
th iteration and then cycle for the remaining

iterations forming a ρ-like shape. Then l can be obtained by

computing l = (c ′− c″)(d″− d ′)–1 mod p. This is in the case of a

single processor which has a run time complexity of (πn/2)

due to Teske[34] who suggested an iterating function in

pollard’s algorithm that modeled on a random walk.

IV. OUR SCHEME

Our scheme is a (t, n) threshold scheme which we call the

Pollard Secret Sharing Scheme(Single Processor), where, α is

set as the secret of the threshold scheme. <P> is partitioned into

n number of sets of roughly the same size and these form the

shares or shadows that are distributed to all the participants Ai, i

= 1,2, …, n. The threshold value t of the scheme is set

depending on the minimum number of partitions (shares)

required that would determine the computational feasibility of

the secret within the specified time limit requirement of the

application. Thus the threshold value t depends not only on the

number of partitions but also on the processing speed of the

machine used to compute the secret key.

The scheme has three main phases, the Share Generation,

Authentication or Share Verification, and the Reconstruction of

the Secret.

An entity T who plays the role of the trusted authority

generates the public and private key pair. The plain text

message that is encrypted using the public key is transmitted

across the network to its destination node. The cipher text

message can be decrypted using the private key only if a

coalition of authorized participants at that node combines to

reconstruct the secret decryption key. The security of our

scheme relies on the hardness of solving the ECDLP on

classical computers. We specify classical computers here, since

there exists a polynomial time algorithm proposed by Shor[26]

to solve the ECDLP on quantum computers. So we assume that

the system network is setup such that it is infeasible to compute

within a specified period of time, a solution to an ECDLP

instance given less powerful resources. But given more

powerful machines it is an easy problem to solve. Thus the

strength of computation of the secret reflects on the security

level of the cryptosystem. The application of this scheme is

made use of to design the Key Access Device described below.

V. KEY ACCESS DEVICE

The Key Access Device (KAD) is an engineering device that

may be deployed at every terminal of a communication network

that uses a common public key to encrypt data and shares the

decryption key amongst a group of authorized agents at each

terminal node. Its functionality is to derive the secret key of the

public key cryptosystem from inputs received from authorized

agents and transmits this secret key as input to an Enc-Dec

device that encrypts and decrypts the network traffic. The

shares that are jointly deposited into the KAD by any t or more

number of participants from a group of n authorized persons at

each node of a communication network are used to reconstruct

the secret decryption key. This envisages a greater role for the

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

KAD in providing access to the secret key of a cryptosystem

without compromise of the secret key to any of the authorised

agents.

A trusted third party T generates a public and private key pair

and publishes the public key so that anyone who wants to send

a message can encrypt the plain text with the public key. The

secret α to be used as the private key of the cryptosystem is

shared among n participants at each centre Ci in the

communication network. T generates the verification

parameters P and Q that are points on an elliptic curve E of

order p such that Q = αP. These parameters P, Q and p are

stored in a chip at the time of manufacture together with a

unique device identity number DID. The DID is specific to

each Key Access Device (KAD) that is installed at the different

centres Ci of the communication network. The chips are

parceled to the respective centres where the authorised agents

at these locations, insert the chip into the KAD to generate their

shares of the secret decryption key. This generation of the

shares of the secret key can be carried out only once in the

lifetime of the chip. Each share also consists of a unique value

that authenticates each authorized agent at the time of

reconstruction of the secret key. These unique values are stored

in the memory chip of the Share Generator component of the

KAD to be used at the time of reconstruction of the secret key.

The KAD now operates to receive the shares of any m, t ≤ m ≤

n authorised agents whenever the encryption-decryption device

(Enc-Dec) that is connected to the computer terminal (CT)

prompts for data decryption. The Authenticator component of

the KAD verifies the authenticity of these shares that are input

by the authorised agents. It then creates a data block DB that is

transmitted to the third component of the KAD called the Key

Generator. Here, the secret α is constructed using the

information in DB which is then delivered to the

encryption-decryption device. On receiving the secret α from

the KAD the Enc-Dec decrypts the message based on the

request received from the terminal.

A. Components and their functions

The Key Access Device comprises of two parts a main

device called the KAD and a detachable chip D. The Share

Generator, Authenticator, and Key Generator form the three

components of the KAD.

Fig.1. Components of the Key Access Device (KAD)

Share Generator

The Share Generator has two sub components, a detachable

chip D and a fixed programmable memory chip M. The unique

device identity number DID, the verification parameters P and

Q, and the order p of the elliptic curve group are stored in D at

the time of manufacture. When D is inserted into the Key

Access Device, the function g displays n and p, and receives n

sets of inputs of the Agents’ choice of random integers, ai, bi

which belong to the interval [1, p − 1]. It then computes the

respective unique value Ri a point on the Elliptic Curve E for

each Agent and stores these Ri in the memory chip M as the

identity value of the respective agent. These are used later for

authenticating the agents at the time of generating the secret

key. However, this process is carried out only if the detachable

chip D and the KAD are found to be compatible. This

compatibility of the D with the main device is verified by

comparing the DID of the detachable chip D with that of KAD.

Authenticator

When the Enc-Dec device prompts for the secret key the

Authenticator beeps loudly for the shares of the agents where,

any m agents, t ≤ m ≤ n, need to combine to reconstruct the key.

Let us suppose that the Authenticator receives the inputs say,

(aj, bj) from Agents Aj , j = 1, …, m, respectively. The function

g′ accesses the verification parameters P and Q from the chip D

of the share generator and computes Vj = ajP + bjQ, j = 1, …, m,

respectively. If these values of Vj are found to be equal to some

Rj in the memory chip M of the share generator, the

authenticator proceeds to construct a data block DB that is

passed as input to the next component the Key Generator.

Otherwise, the agents Aj are denied access to decrypt the

messages transmitted across the network.

The data block DB comprises of the shares (aj, bj, Rj) of the

agents Aj , j = 1, …, m, respectively, the verification parameters

P and Q and the order p of the elliptic curve group E(Fq). This

data block is passed as input to the Key Generator component

to compute the secret key α.

Key Generator

The process block g″ in this component receives the data

block DB from the Authenticator and outputs the secret S = α.

At first, the initial values of the iterative process are computed

as c ′ = Σ aj and d ′ = Σ bj and X′ = Σ Rj = c′P + d′Q . The

operations are carried out modulo p. Then, a set L is formed in

which each element of the set acts as an index to the partitions

or shares in DB. A partition function H defined from <P> to L

determines for X′ε <P>, the value h = H(X′) = H(x, y) = x mod m

+ 1. Here, m is the cardinality of L. Now, the variable h assumes

a value that is an element of set L. In the iterative process, the

shares are chosen corresponding to the value of h and the

process of computing X′ and X″ is repeated till their values are

found to coincide. The secret S = α is then obtained as α = (c ′−

c″)(d″− d ′)–1 mod p.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

B. Design

Fig.2. Design of the Key Access Device

C. Mechanism

The Pollard Secret Sharing Scheme (Single Processor)

SUMMARY A secret key α used in a cryptosystem is

distributed among n participants Ai. i = 1, …, n,

of the (t, n)-threshold scheme.

RESULT Any m participants for t ≤ m ≤ n pool in their

shares to reconstruct the secret.

I Share Generator:

1. E is the chosen elliptic curve over a finite field Fq

generated by <P> of prime order p.

2. The secret α that controls the critical action is a random

integer l and determines the point Q = lP on E.

3. Random integers ai, bi ε [1, p−1] are chosen such that Ri =

aiP + biQ, i =1… n.

4. Si = (ai, bi) are the shares of the participants Ai, i =1,…, n

5. (P, Q) the verification parameters and the prime p are

embedded in the chip D.

II Authenticator (in case of m inputs where t ≤ m ≤ n)

1. Any m number of participants, say, Aj , j = 1, 2, …m,

pool-in their shares, t ≤ m ≤ n.

2. Verification parameters P and Q are accessed from the

Share Generator to compute

ajP + bjQ = Vj , j = 1, 2, …m

 and compare if Vj equals respective Rj.

3. If Vj = Rj, the step 4 and the steps in Reconstruction of

Secret is carried out.

4. Set the Data Block DB with the shares (aj, bj, Rj), j = 1, 2,

…m and P, Q, p.

III Key Generator

1. Receive Data Block DB from Authenticator.

2. Set L = {1, 2, … , m}.

3. Set H: <P> → L = {1, 2, … , m} a partition function where

m indicates the number of partitions that are used during

recovery of secret. Here, we choose a simple partition

function such that, for X′ ε <P>, h = H(X′) = H(x, y) = x

mod m + 1 for t ≤ m ≤ n.

4. Set c′ = Σ aj (mod p), d′= Σ bj (mod p) and X′ = Σ Rj = c′P

+ d′Q (mod p).

5. Repeat

a) Compute h = H(X′) where h corresponds to an element

in L.

b) Set X′ = X′ + Rh (mod p), c′ = c′ + ah mod p, d′ = d′ + bh

mod p.

c) For r from 1 to 2 do

i) Compute h = H(X″), where h corresponds to an

element in L.

ii) Set X″ = X″ + Rh (mod p), c″ = c″ + ah (mod p), d″ =

d″ + bh (mod p).

 Until X″ = X′.
 6. Compute l = (c′ − c″)(d″ − d′)−1 mod p which is the secret

α. When reconstruction of α takes place the KAD sends

this α to the Enc-Dec device for decryption of the

message received across the network.

 7. Exit.

D. Illustration

Suppose that, Ai, i = 1, …, 5, are the participants of a secret

sharing scheme and that a subset of two or more participants are

to combine to reconstruct the secret key of the cryptosystem.

Share Generator: The trusted entity T selects at random the

elliptic curve E(F29) given by y
2
 = x

3
 + 4x + 20 where the

discriminant ∆ = −176896 ≡/ 0(mod 29). The number of

elements in the elliptic curve group is 37 a prime, and so, E(F29)

is a cyclic group. All elements of E(F29) for P = (1, 5) as the

generator are listed in the Table 1 below. Now assume that, the

secret S is set as equal to 30. If the point P in our algorithm is

chosen to be the pair (1, 5) then Q = 30P = (24, 7).

For inputs ai, bi from the authorized agents the shares are

computed as Si = (ai, bi, Ri) for i equal to 1 to 5. If the

corresponding shares for each Ai are S1 = (28 , 34 , (19, 13)), S2

= (17 , 27 , (16, 27)), S3 = (20 , 14 , (15, 2)), S4 = (14 , 23 , (1,

5)) S5 = (12 , 3 , (14, 6)), the participants Ai, i = 1, …, 5, retain

the knowledge of the pairs of random integers (ai, bi) and the

unique Ri are stored in the chip M to authenticate each Ai at the

time of reconstructing the secret key.

Authenticator: Now, suppose that, A1, A3 and A5 wish to

determine the secret key to decrypt the cipher text received at

their computer terminal Ci in the network. When the agents

input their random number pairs the respective value of Ri are

computed and the shares are set as S1 = (28 , 34, (19, 13)), S3 =

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

(20 , 14 , (15, 2)) and S5 = (12 , 3 , (14, 6)) after verification of

their authenticity.

Table 1.

0P=Ο 13P=(16,27) 26P=(10,4)

1P= (1,5) 14P=(5,22) 27P=(13,6)

2P= (4,19) 15P=(3,1) 28P=(14,6)

3P= (20,3) 16P=(0,22) 29P=(8,19)

4P=(15,27) 17P=(27,2) 30P=(24,7)

5P=(6,12) 18P=(2,23) 31P=(17,10)

6P=(17,19) 19P=(2,6) 32P=(6,17)

7P=(24,22) 20P=(27,27) 33P=(15,2)

8P=(8,10) 21P=(0,7) 34P=(20,26)

9P=(14,23) 22P=(3,28) 35P=(4,10)

10P=(13,23) 23P=(5,7) 36P=(1, 24)

11P=(10,25) 24P=(16,2)

12P=(19,13) 25P=(19,16)

Key Generator: The initial values of the iterating function are

given by (c′, d′, X′) = (23, 14, (1, 24)) where c′, d′ ε [0, 36] and

X′ = c′P + d′Q = 23P + 14(30P) = 36P modulo 37 = (1, 24). The

set L is set as L = {1, 2, 3}. The tabulations of c′, d′, X′, c″, d″,

X″ for the iterations are shown in Table 2. The process

terminates in the 4th iteration when X′ = X″ = 31P. The

corresponding values of c′, d′, c″, d″, are 16, 19, 7, 23

respectively.

Table 2

Itr
c′ d′ X′ c″ d″ X″

--
23 14

36P =

(1, 24)
23 14

36P =

(1, 24)

1
6 28

32P =

(6, 17)
25 22

19P =

(2, 6)

2
34 25

7P =

(24, 22)
19 10

23P =

(5, 7)

3
25 22

19P =

(2, 6)
13 35

27P =

(13, 6)

4
16 19

31P =

(17, 10)
7 23

31P =

(17, 10)

Now, l = (16 − 7)(23 − 19)−1 (mod 37) = 30 gives the value of

the secret α. On the reconstruction of the secret α the critical

action is carried out by A1, A3 and A5.

VI. MERITS

The Key Access Device plays a significant role in

safeguarding the secret keys of a cryptosystem irrespective of

the device and the technique used for the encryption and

decryption process. Our security technique offers a simple

method to update the secret keys without compromising the

keys themselves. The use of a detachable chip to update the

keys increases the functionality of the device with a need to

replace only one of its components. Also, since the agents at

each centre are given a share that can be verified, a log file

generated by the device can ensure non-repudiation in case of

any controversy involved in the communication process.

Our scheme based on the Pollard rho attack on ECDLP also

offers a very efficient iterative function that requires negligible

memory space. A better choice of the pair (H, f) where, H is the

hash function that determines a point in a partition and f is the

iteration function that determines the sequence of points in the

elliptic curve that collide at some stage, results in better random

walks that give added advantages in the speed up of the

algorithm.

Since the compromise of the secret key used in a

cryptosystem poses a serious security threat it becomes

essential that the system is periodically replaced with new

systems. But the implementation of our scheme in the Key

Access Device minimises this threat and hence reduces the

expenses incurred in frequent replacement of cryptosystems.

REFERENCES

[1] Benaloh, J. C., Secret sharing homomorphisms: keeping shares of a secret

secret, in Advances in Cryptology -- CRYPTO '86, A. M. Odlyzko, ed., Lecture

Notes in Computer Science 263 (1987), 251-260.

[2] Benaloh, J. C., Leichter, J., Generalized Secret Sharing and Monotone

Functions. Proceedings of CRYPTO 1988: 27-3.

[3] Blakley, G.R., Safeguarding cryptographic keys, In Proc. Nat. Computer

Conf. AFIPS Conf. Proc., pp. 313-317, 1979.vol48.

[4] Blakley, B., Blakley, G.R., Chan, A.H., and Massey, J., Threshold Schemes

with Disenrollment, Advances in Cryptology – CRYPTO ’92, E.Brickell,

Editors, Lecture Notes in Computer Science, Springer-Verlag.

[5] Blundo, C., A note on dynamic threshold schemes, Information Processing

Letters, 55 (1995) 189-193.

[6] Blundo, C., Cresti, A., De Santis, A., Vaccaro, U., Fully Dynamic Secret

Sharing Schemes, Theoretical Computer Science 155 (1996), 407-410.

[7] Blundo, C., De Santis, A., Stinson, D. R., and Vaccaro, U., Graph

decompositions and secret sharing schemes, Journal of Cryptology 8 (1995),

39-64.

[8] Brickell, E.F., Davenport, D.M., On the classification of ideal secret

sharing schemes, Journal of Cryptology 4 (1991) 123-134.

[9] Capocelli, R. M., De Santis, A., Gargano, L., and Vaccaro, U., On the size

of shares in secret sharing schemes, Journal of Cryptology 6 (1993), 157-167.

[10] Cramer, R., Gennaro, R., and Schoenmakers, B., A Secure and Optimally

Efficient Multi-Authority Election Scheme, European Transactions on

Telecommunications, vol. 8, no. 5, pp. 481-490, Sep 1997.

[11] Desmedt, Y., Society and group oriented cryptography: a new concept. In

C. Pomerance, editor, Advances in Cryptology, Proc. Of Crypto ’87 (Lecture

Notes in Computer Science 293), pp.120-127. Springer-Verlag. 1988. Santa

Barbara, California, U.S.A., August 16-20.

[12] Desmedt, Y., Threshold cryptography, In W. Wolfowicz, editor,

Proceedings of the 3rd Symposium on: State and Progress of Research in

Cryptography, pp. 110-122, February 15-16, 1993. Rome, Italy, invited paper.

[13] Fouque, P.A., Poupard, G., and Stern, J., Sharing Decryption in the

Context of Voting or Lotteries, Financial Cryptography 2000.

[14] Gallant, R., Lambert, R., and Vanstone, S., Improving the parallelized

Pollard Lambda search on anomalous binary curves, Mathematics of

Computation, 69:1699-1705, 2000.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

[15] Ito, M., Saito, A., Nishizeki, T., Secret sharing scheme realizing any

access structure, Proc. IEEE Globecom'87 (1987) 99-102.

[16] Karnin, E. D., Greene, J. W., and Hellman, M. E., On secret sharing

systems, IEEE Transactions on Information Theory 29 (1983), 35-41.

[17] Koblitz, N., Elliptic curve cryptosystems, Math. Comp., 48(177) :

203-209, January 1987.

[18] Koblitz, N., Algebraic aspects of cryptography, Algorithms and

Computations in Mathematics, Volume 3, Springer 1999.

[19] Kuhn, K., Struik, R., Random walks revisited: Extensions of Pollard’s rho

algorithm for computing multiple discrete logarithms, Selected Areas in

Cryptography-SAC 2001 Lecture Notes in Computer Science 2259, Editors-

S.Vaudenay and A.Yousef, 212-229, 2001.

[20] Kurosawa, K., Obana, S., and Ogata, W., t-cheater identifiable (k, n)

threshold secret sharing schemes, in "Advances in Cryptology -- CRYPTO

'95", D. Coppersmith, ed., Lecture Notes in Computer Science 963 (1995),

410-423.

[21] Oorschot van, P., Weiner, M., Parallel collision search with cryptanalytic

applications, Journal of Cryptology, 12: 1-28, 1999.

[22] Pollard, J.M., Monte Carlo methods for index computation mod p, Math.

Comp., 32(143): 918-924, July 1978.

[23] Sedgwick, R., Symanski, T., and Yao, A., The complexity of finding cycles

in periodic functions, SIAM Journal on Computing 11: 376-390, 1982.

[24] Seymour, P.D., On secret-sharing matroids, Journal of Combinatorial

Theory Ser. B, 56 (1992) pp. 69–73.

[25] Shamir, A., How to share a secret, Communications of ACM, 22, pp.

612-613, November 1979.

[26] Shor, P.W., Algorithms for quantum computation: discrete log and

factoring, in Proceedings of the 35th Annual Symposium on the Foundations of

Computer Science (IEEE Computer Society, Los Alamitos, 1994), p. 124.

[27] Silverman, J.H., The Arithmetic of elliptic curves, volume 106 of

Graduate Texts in Mathematics, Springer-Verlag, 1986.

[28] Simmons, G.J., How to (really) share a secret, Santa Barbara, California,

U.S.A., Advances in cryptology, Proc. of Crypto ’88 (Lecture Notes in

Computer Science) Springer-Verlag, August 1988.

[29] Simmons, G. J., Prepositioned shared secret and/or shared control

schemes, in "Advances in Cryptology -- EUROCRYPT '89", J.-J. Quisquater

and J. Vandewalle, eds., Lecture Notes in Computer Science 434 (1990),

436-467.

[30] Smart, N., The discrete logarithm problem on elliptic curves of trace one,

Journal of Cryptology, 12:193-196, 1999.

[31] Stinson, D. R., Decomposition constructions for secret sharing schemes,

IEEE Transactions on Information Theory 40 (1994), 118-125.

[32] Tassa, T., Hierarchical threshold secret sharing, M.Naor, editor, Theory

of Cryptography, First Theory of Cryptography Conference, TCC 2004,

Volume 2951 of lecture notes in Computer Science, p.473-490,

Springer-Verlag, 2004.

[33] Teske, E., Speeding up Pollard’s rho method for computing discrete

logarithms, Algorithmic Number Theory-ANTS-III (Lecture Notes in

Computer Science 1423) [82], 541-554, 1998.

[34] Teske, E., On random walks for Pollard’s rho method. Mathematics of

Computation, 70: 809-825, 2001.

[35] Tompa, M., and Woll, H., How to share a secret with cheaters, Journal of

Cryptology 1 (1988), 133-138.

[36] Weiner, M., and Zuccherato, R., Faster attacks on elliptic curve

cryptosystems, Selected Areas in Cryptography-SAC 1998, Lecture Notes in

Computer Science 1556, 190-200, 1999.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

