
  

  
Abstract — The increasing automation is an evident trend in 

manufacturing industry. The individualization of the products 
requires an increasing flexibility of automated manufacturing 
systems. Thus, concepts like Flexible Manufacturing Systems 
(FMS) gain importance in different manufacturing sectors. More 
complex usage scenarios and increasing complexity of the control 
tasks require higher intelligence of the manufacturing control 
solutions. Such intelligent manufacturing control must be able not 
only to execute a predefined control logic, but also be able to 
predict the development of the situation, schedule, plan and 
optimize the processes in FMS and give hints and 
recommendations to the operator concerning the optimization of 
usage scenarios. The development of such systems is impossible 
without a comprehensive modeling layer describing various 
system architectures and manufacturing processes. The following 
paper analyses the requirements on the modeling of intelligent 
manufacturing control systems and proposes an architecture for 
future control solutions. 
 

Index Terms — Flexible Manufacturing Systems (FMS), 
manufacturing control, modeling, order processing, optimization, 
scheduling 
 

I. MANUFACTURING CONTROL AND ORDER PROCESSING  
IN FLEXIBLE MANUFACTURING SYSTEMS 

The cost pressure in the manufacturing industry requires an 
increasing automation of manufacturing processes particularly 
in the area of small and medium-sized batch production. 
Relatively compact automated Flexible Manufacturing 
Systems (FMS) by now are technically mature enough for the 
industrial application and have proven their competitiveness in 
different manufacturing sectors [1]. The use of FMS is 
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especially attractive with respect to small to medium lot size 
production of relatively large and frequently changing part 
spectrums. Technically, FMS consist of multiple 
manufacturing centers, linked by an automated, undirected 
material transport and loading / unloading system. The typical 
application domains of FMS are metal cutting, such as milling, 
turning and sawing, as well as sheet metal processing [2]. 

The manufacturing technology is one of the major factors 
influencing the layout of FMS and their internal logistics. 
Differences concern not only the arrangement of the 
manufacturing stations, but also the methods and means of 
material handling and transport. For instance, parts must be 
clamped with fixtures mounted on manufacturing pallets for the 
milling process. This determines the classical layout of a FMS 
for milling technology, which comprises an automated pallet 
storage system, equipped with a guided transport device or a 
stacker crane. Pallet loading stations as well as NC-controlled 
machining centers are arranged along the pallet storage system 
and can be loaded and unloaded automatically. Pallet and 
fixture configurations in FMS for milling technology are static, 
i.e. pallets and fixtures possess defined places. 

Technology requirements of sheet metal processing differ 
considerably, thus the design of the corresponding FMS differs 
as well. For instance, no fixtures are needed for the sheet metal 
processing (e.g. for laser beam cutting) and since the part 
geometry varies considerably, storage places on pallets are 
assigned dynamically to single parts. 

In order to develop unified approaches for FMS control a 
comprehensive model description must be found which will be 
able to reflect such differing FMS use cases concerning the 
structure of the manufacturing system, relations between 
components and varying manufacturing processes and 
technologies. 

The main task of any manufacturing system is the execution 
of a defined workflow, which describes the sequence of 
operations to be performed in order to transform the raw 
material into finished parts. The specific feature of FMS is that 
such a workflow is not necessarily determined completely by 
the physical layout of the manufacturing system (as is the case 
for dedicated transfer lines for instance), but is only partially 
constrained by its structure. Workflows in FMS may be flexible 
as well and include decision alternatives, so that custom 
decisions, e.g. selection of alternative resources, routes, etc., 
can be made on the fly during workflow execution. Another 
characteristic property of the FMS is their “multitasking 
ability”, i.e. the possibility of execution of multiple workflows 
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(or copies of one workflow) in parallel. Both the diversity of 
technical cases and operation flexibility explain the particularly 
demanding requirements on manufacturing control systems for 
FMS. In order to achieve an optimized utilization of the FMS, 
advanced control system architectures are required, which will 
be able not only to trigger the execution of control commands, 
but also to make intelligent control decisions by means of 
capacity simulation and prediction of the situation development 
in FMS. 

A wide variety of custom usage scenarios for FMS require  
comprehensive configurability of the control and scheduling 
software. Lots of custom rules and constraints may exist 
concerning the clamping operations, the material transport and 
the storage (ways, delays etc.), the definition of work plans, the 
structure of job orders (quantity, mixed part orders etc.), the 
lot-sizing, the shift calendars or the scrap parts processing. 
Additional restrictions may be stipulated by the shop floor 
organization outside the FMS. It must be possible to flexibly 
configure such user-specific constraints in the scheduling, 
simulation and control process, as well as to express custom 
optimization objectives. 

Since the whole diversity of practical use cases cannot be 
addressed during design-time of the FMS control, configurable 
architectures for such systems must be developed which will 
allow a flexible adaptation of the manufacturing control system 
to custom constraints. Such customization of the manufacturing 
control system must be easy and effortless to accomplish, thus 
enabling fast changes and rapid ramp-up of the production after 
some modifications have been made. The systematic approach 
necessitates the generalization of use-cases, which makes it 
possible to separate the case-specific and generic 
(case-independent) functions. This assures that common 
features will be implemented only once and can be just 
“referenced” when realizing special cases. The requirements on 
the modeling of manufacturing systems were not considered 
sufficiently systematically in the past. Therefore, most 
PC-based solutions for manufacturing control systems possess 
case-specific design aimed to support some certain 
manufacturing system configuration. As the simplest approach 
certain rules and algorithms are hard-coded in such 
architectures, with the drawback that it becomes impossible to 
alter any data structures or control rules later without major 
changes in the control system’s program structure. 

 

II. SOLUTION APPROACH FOR NEW GENERATION  
MANUFACTURING CONTROL SYSTEMS 

As a summary of the features described in the previous 
section a list of key requirements on manufacturing control 
architectures was derived. These key requirements are as 
follows: 

- workflow-orientation, since the primary task of a control 
system is to execute defined workflows. A flexible and 

 
Figure 1: Conceptual components of the of the generic next generation 
manufacturing control platform cosmos 4 
 
powerful mechanism must exist in order to enable the user to 
describe, manage and execute custom workflows. 

- clear separation between use-case-specific and 
use-case-independent functionality 

- adaptability to different manufacturing system structures 
and different manufacturing processes 

- rapid and uniform interfacing with the manufacturing 
hardware controls (NC, MC, PLC or RC) 

- scalability of the manufacturing system (applicability to 
manufacturing systems of any size) 

- scheduling of operations and predictive optimization of 
control decisions based on capacity simulation 

- flexibility while defining user-specific control, scheduling 
and optimization constraints, rules, algorithms and objectives. 

The results from the analysis of these key requirements led to 
the development of a new architecture concept for 
manufacturing control systems. This architecture, developed at 
RWTH Aachen Universty’s Laboratory for Machine Tools and 
Production Engineering WZL, is based on the following 
conceptual components (Fig. 1): 

- workflow engine based on a generic FMS reference model 
- highly-expressive object-oriented constraint model 
- integrated ontology-oriented meta-modeling approach. 
These concepts will be discussed in detail in the next 

sections. 
 

A. Workflow-based architecture for  
manufacturing control systems 
As mentioned before, the main purpose of any 

manufacturing system is the execution of a workflow, which 
consist of a sequence of operations (possibly with some 
alternatives available), transforming some physical object(s), 
e.g. raw part(s), from their initial state into a desired final state, 
e.g. finished part(s). The workflow idea is widely used to 
describe time-variant processes in different areas: the most 
common example is the modeling of business processes. 
Discrete manufacturing processes in automated manufacturing 
show similarities with business processes. As in the case of 
business processes any manufacturing workflow possesses 
clear start and end points and defines a sequence of actions for 
the execution. 

Although the general idea is quite similar for both, the 
business process modeling and the modeling of manufacturing 
processes in automated manufacturing systems, there still exist 
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significant differences concerning the structure of the 
corresponding workflows. Thus, reference models aimed to 
describe business processes (like BPEL [3], OMG Workflow 
Facility Specification [4], WFMC [5], etc.) and existing 
Workflow Management Systems (WfMS) are not directly 
applicable for the description and execution of manufacturing 
processes. The formalization of workflows in automated 
manufacturing systems requires the consideration of more 
details. In particular the following features are specific to 
manufacturing workflows: (i) manufacturing processes result 
in the modification of the internal state of any entity within the 
manufacturing system; these transformations must be described 
by the workflow, (ii) the execution of actions as elements of a 
manufacturing workflow demands the interaction with the 
controller and the actuator/sensor level and the invocation of 
device-specific interfaces, (iii) certain similar or completely 
identical series of actions (defined by the capabilities of 
manufacturing systems) replicate as elements of more complex 
workflows, (iv) the possibility of a parallel or 
sequence-dependent execution of multiple workflows increases 
the requirements on the synchronization of single operations as 
well as planning and optimization of the workflow execution. 
A generic formalization of structures of and processes in 
manufacturing systems is thus one of the most important basics 
for the workflow model for automated manufacturing systems. 

 
1) Reference model to describe manufacturing  
systems and processes 

A model is a formal representation of the elements and 
relations within some domain. Any formal model is built up by 
means of certain constructs and rules. The model for the 
language defining these constructs and rules is called the 
meta-model with respect to the corresponding model. A 
meta-model restricts and constitutes the application domain to 
be described and thus may possess a different grade of 
universality (or inversely: specialization for some certain 
domain). An example of a generic or widely applicable 
meta-model is the UML. A kind of tradeoff exists between the 
universality of the model and its level of detail, the common 
dilemma between scale and scope. 

The reference model for automated manufacturing systems 
must primarily address two major domains: the structure of the 
manufacturing system (static) and the general process 
description (dynamic). In order to enable its universal usage, 
such a meta-model must provide means to describe common or 
fundamental system features and an extension mechanism to 
describe special cases. A generic formalization for structures of 
and processes in manufacturing systems was developed at the 
WZL based on their comprehensive analysis and classification. 
Processes within flexible manufacturing systems (e.g. 
manufacturing, assembly, handling, measuring as well as 
material movement and storage) all result in some kind of 
transformation of the properties of certain components of a 
manufacturing system. Such transformation may basically refer 
to the modification of the part geometry or its properties 
 

 
Figure 2: State/event-based modeling of manufacturing systems 
 
(e.g. processes like forming, separating, assembly, coating or 
hardening) or some modification of the mutual arrangement or 
location of components of a manufacturing system (e.g. 
processes like transportation, placing/removing parts to/from 
stock, changing of component layout or orientation). A state of 
the manufacturing system results from the superposition of the 
states of its single components (see Fig. 2). The classical 
approach considering only the capacity of manufacturing 
“resources” is not sufficient. 

The structural model for automated manufacturing systems 
must provide means for the description of its various 
components. Each custom manufacturing system possesses 
custom components differing by their kind, number, functions 
and properties. Such components can be machine tools, work 
places, machine tool elements (e.g. spindles), pallets, 
workpieces, tools, fixtures, transport devices etc. The 
meta-model must provide means for the description of 
properties, roles, layout and mutual arrangement of 
components within a manufacturing system. The meta-model 
developed at WZL solves this problem by introducing an 
object-oriented view to the architecture of a manufacturing 
system. Therefore it becomes possible to apply well-known 
fundamental concepts from the area of software systems 
engineering to the description of the physical structure of 
manufacturing systems. These are: object-orientation, 
classification of entities, generalization of classes as well as 
typed class and instance associations. The model of the 
manufacturing system thus can be defined by means of two 
layers (type and instance layers) as shown in Fig. 3. Physical 
dependencies between components (on the instance layer) are 
restricted by means of typed relations (relations defined on the 
type layer). The type layer thus serves as a template in order to 
define possible component types, their relevant states and 
possible relations. The instance layer describes actual 
individual components of a manufacturing system as well as 
their actual relations and states at certain moments of time. 

Production processes are defined as a transformation of 
relations and properties. Some processes (e.g. assembly or 
separation of components) may require a “removal” or 
“creation” of new instances of system components. 
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Figure 3: Modeling of the static structure  
of manufacturing systems 
 
The classification of manufacturing processes (by means of a 
class layer) makes it possible to distinguish consistently 
between such fundamental concepts as process definition and 
execution. 

 
2) Workflow reference model for automated 
manufacturing systems 

The event-driven decision mechanism is the state-of-the-art 
concerning the architecture of manufacturing control solutions. 
Decisions are mostly made on demand right before their 
execution. Often only the actual system state (at the time of 
decision making) is taken into account. An execution of a 
manufacturing operation is triggered as soon as the actual 
system allows, e.g. after a confirmation for a finished previous 
operation has been received. Such event-driven processing is  
common practice to reduce the complexity of the control 
problem, since it helps to eliminate all unknown variables, e.g. 
the duration of a certain operation for instance, and makes it 
possible to use a rather simple rule-based control logic. The 
drawback of event-driven solutions is the lack of foresight, e.g. 
a limited planning horizon (normally limited to the next 
operation to execute). In contrast to an event-driven 
architecture, a predictive shop floor control requires extended 
information about the influence of the command execution on 
the modification of the manufacturing system’s state. The 
planning instance needs information about the rules which 
describe if certain decisions and events may or may not take 
place. The corresponding temporal information concerning the 
single events is required as well (start/end times of certain 
actions, their durations etc.). Furthermore, the control logic of 
the manufacturing control software must be transparent to the 
planning instance, otherwise the “execution as planned” is not 
guaranteed. These fundamental observations apply without 
regard to the control architecture (central or distributed). 

The reference model introduced in the previous section 
enables a semantic description of the manufacturing system 
structure and processes on the shop floor level. For the purpose 
of actual command execution the information must be 
forwarded from the shop floor level via cell level to the 
controller level. Modern device controls (NC, MC, PLC or RC) 
are themselves relatively complex systems and in most cases 
enable a comprehensive parameterization of the command 
execution, mostly in form of custom control programs (e.g. 
G-code or PLC-code). 

 

 
Figure 4: Data interfacing gap between  
the semantic and execution levels 
 

Unfortunately, due to the decisive differences in the 
corresponding data models there is no way to exchange the 
semantic information available at the shop-floor level with the 
controller level. A model being able to describe both the shop 
floor and the controller level in an uniform manner does not 
exist as state-of-the-art. Therefore, the information about the 
transformation of the manufacturing system’s state must be 
somehow mapped to the control programs to be executed (see 
Fig. 4). This can be done by means of the semantic interface 
model developed at WZL, thus providing the semantic link 
between the parameterization of the functions to be executed on 
the controller level and their impact on the manufacturing 
system state which is relevant for the shop floor level. 
Analogous to the classes in object-oriented concepts, 
integrating data and functions, the command execution 
functionality is encapsulated by components of a 
manufacturing system. The component model provides a 
possibility to define capability functions, taking other relevant 
components as parameters and mapping the transformation of 
their properties to calls on a standardized equipment interfaces 
(by means of special equipment drivers). 

In automated manufacturing systems series of actions are 
often replicated as elements of more complex workflows. Thus, 
different definitions of workflow boundaries become possible. 
Any elementary sequence of operations, e.g. a transport job 
executed by a stacker crane or an automated guided vehicle 
(AGV), can also be considered as a workflow. In the latter case 
it would consist of the following operations: move to source 
cell, load pallet, move to destination cell, unload pallet. This 
workflow applies to pallets of any type a stacker crane is able to 
transport. Such transport jobs may be executed independently 
in the system (although they rarely make sense just as 
standalone actions) or as a part of a more complex 
manufacturing chain. There are many examples for such 
repeatable mini-workflows in manufacturing systems 
(aggregate operations consisting of multiple simple steps and as 
a rule requiring an interaction of multiple devices). Typically 
this refers to all logistical operations like material transport, 
handling and storage. These will later be called operation 
workflows. 

Another kind of workflow is the product workflow. These 
workflows have the distinct aim of producing a certain amount 
of a certain product. Given a custom manufacturing system and 
a product to be manufactured on that system, it would be 
preferable from the user’s point of view to be able to define a 
product workflow on the level of aggregated operations (e.g. 
workpiece setup – milling in first setting – transport – 
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workpiece setup change – transport – milling in second setting 
– transport to storage) without caring too much about the 
execution details of single manufacturing steps. The reason is 
obvious: this makes the workflow definitions more flexible 
avoiding a redundant definition of detailed sub-workflows. The 
idea is analogous to the code reuse as one of the key concepts in 
the area of software engineering. The reuse helps to save time 
and increase the reliability, since reusable components must be 
tested only once, and simplify the reengineering considerably 
in the case of changes. The solution with respect to the 
manufacturing workplans is to enable a workplan 
sub-referencing. In this case operation workflows can be used 
as integral parts of product workflows which will avoid the 
redundant definition of similar sub-processes. This subdivision 
into product and operation workflows is only conceptual, since 
it reflects the logical purpose of such workflows. In fact, 
depending on the individual manufacturing system, an arbitrary 
depth of the workflow referencing hierarchy may be possible. 
The atomic building blocks of any workflow (leaf nodes of the 
workflow reference graph) are the capability functions of the 
manufacturing equipment. 

The idea of the developed interfacing mechanism is similar 
to the realization of function calls in function-oriented 
programming languages. A function provides a signature or an 
interface, defining its formal parameters. The call on a function 
specifies the association of the actual parameters, if any, with 
formal parameters of the function. Thus, applied to workflows, 
the concept is as follows: each workflow is seen as a black box 
defining operations on distinct abstract instances of typed 
system components (actors). In order to describe optional or 
alternative actions, a workflow contains a description of its 
decision logic and may define certain decision (state) variables 
to be referenced in its internal logical expressions. 
Furthermore, each workflow possesses an interface which 
exposes its signature to the “outer world”. Such a signature 
includes formal parameters for actors and initial variables. 
“Calls” on such an interface, which is a referenced workflow, 
can be performed from any other (referencing) workflow. In 
this case a referencing workflow must provide actual parameter 
values for the referenced workflow, i.e. component instances 
for the actor assignment and initial decision variable values 
(see Fig. 5). Calls on referenced workflows may also be done 
conditionally depending on the decision variables of the 
referencing workflow. The developed interfacing mechanism 
makes it possible to integrate workflows of arbitrary 
complexity. 

Bringing together the concepts described, the overview of 
the workflow-based architecture for manufacturing control 
systems is shown in Fig. 6. As described, the workflow 
sub-referencing mechanism allows a flexible and reliable 
definition of workflows. Workflows reference the definitions 
of system component types which define properties, relations, 
and capability functions (capability modules) of single 
components. Capability functions allow the encapsulation of 
 

 
Figure 5: Workflow referencing mechanism 
 
“physical” abilities of the manufacturing equipment and link 
the semantic description of the processes as seen on the shop 
floor level with the command execution (controller) level. 

So far the discussion was only about the definition of the 
workflows. Another issue is the execution of the workflows, 
which requires certain intelligence concerning the decisions 
available with respect to the variable assignment and the 
selection of time moments for certain actions defined in 
workplans. In the case of multiple alternatives the assignment 
of real system component instances to actors is not unique. In 
order to find the best scenario the formulation and solving of an 
optimization problem becomes necessary. The benefit of the 
described architecture (in contrast to other approaches, where 
the complete information is not available, e.g. if the control 
logic is separated from the process model) is the logically 
complete description of transformations taking place as a result 
of the workflow execution. A complete model description is 
thus an inevitable condition for planning and predicting events 
in automated manufacturing systems and can be used while 
defining and solving the optimization problems, dealing with 
the workflow execution. The approach used to formulate and 
solve such optimization problems will be discussed in the next 
section. 

Concerning the realization of the workflow-based 
architecture, nowadays certain tools and technologies are 
available, e.g. frameworks like Microsoft .NET 3.0 Workflow 
Foundation or Java Workflow Tooling (JWT). Such 
frameworks offer predefined design patterns, e.g. concepts like 
activities, workflows, means for their parallel execution and 
synchronization etc., thus, simplifying the development of 
workflow-driven applications. 

 

B. Comprehensive object-oriented constraint model 
Two aspects must be considered in order to realize the 

predictive control and optimization. Firstly, a consistent 
description of the workflow structure is required, and secondly, 
the execution of such workflows requires the formulation and 
solving of arising optimization problems. Although the general 
concept concerning the workflow description was introduced in 
the previous sections, it still was not shown how to describe all 
the rules and restrictions concerning the workflow structure. 
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Figure 6: Workflow-oriented modeling  
of the manufacturing control systems 
 
Such rules for conditional transformations of the 
manufacturing system’s state may be arbitrarily complex and 
concern the modifications of the states and relations of single 
system components as well as the precedence of operations. 
Some constraints might be global others might refer only to 
certain workflows. In order to describe these dependencies, a 
generic description language for constraints and rules is 
required. 

One of the technologies being applicable for describing and 
solving complex optimization problems is the Constraint 
(Logic) Programming (CP). Its main idea is to describe an 
optimization problem by explicitly describing its solution space 
through constraints. An optimization problem is described in 
this case by means of variables each possessing a non-empty set 
of possible values (domain) and functional relations between 
these variables, called constraints, and stating which 
combinations of values are allowed. One of the key ideas of CP 
is that constraints can be used “actively” to reduce the 
computational effort needed to solve combinatorial problems 
[6]. By means of deductive “constraint propagation” it becomes 
possible to eliminate variable values, violating some 
constraints, and thus reduce the solution space of the 
optimization problem. Additional algorithms, decoupled from 
the constraint-based problem formulation can be used in order 
to guide the search for optimal solutions in the solution space. It 
makes it possible to separate the logical representation of the 
problem from the control over the problem solution. 

In spite of the described benefits of the constraint 
programming, it also has some drawbacks considering its 
classical form. The formalization of an optimization problem 
requires an identification and definition of decision variables 
and linking them by means of functional or logical relations. 
This implies a low level of abstraction, since the direct link to 
the entities (classes and objects) from the business domain is 
getting lost. Object-Oriented Constraint Programming (OOCP) 
offers an opportunity to overcome these problems. The idea of 

OOCP is to state constraints in terms of classes, objects and 
their relations [7]. The idea is very similar to the Object 
Constraint Language (OCL) in UML where constraints can be 
stated on class properties and relations. A promising approach 
is the synthesis of both the OCL and the constraint propagation 
[8] in order to enable the application of propagation techniques 
to the problems described in terms of object-oriented 
constraints. Unfortunately to the best of our knowledge neither 
commercial nor freely available software implementations of 
an OOCP framework are available at the moment which could 
be used both, for generic modeling and the solution of 
optimization problems. 

Constraint programming allows for a high flexibility while 
designing custom search algorithms for optimization problems. 
The range of possible actions refers to the order in which 
variables are assigned values as well as the order in which 
domains of those variables are inspected. While dealing with 
classified decision variables (which is the case for OOCP) it 
becomes possible to distinguish variables based on their type or 
associated properties. The search algorithm in this case of an 
OOCP may depend on the class model of the problem. The 
drawback of existing constraint systems is the isolated view on 
the search algorithms. Existing Constraint Solvers (e.g. ILOG 
Solver 6.2) enable only hard-coded definitions of search 
heuristics. The favored approach would be to integrate the 
search algorithm definition into the constraint meta-model. 
This is currently being investigated in our research work. 
 

C. Ontology-based integrated modeling 
In the previous sections concepts related to the semantic 

structure of meta-models for manufacturing control systems 
were examined. As shown, the meta-model as well as models 
describing custom cases (custom manufacturing systems and 
processes) become very sophisticated. The present section 
discusses the organization of the meta-modeling process and 
proposes an approach suited for development of configurable 
applications. 

Usually three main components of any software system can 
be distinguished: (i) data tier, (ii) logic tier and (iii) presentation 
tier [9]. This applies to any data processing application, since in 
any case it is necessary first of all to define the data meta-model 
for the application and provide means for storing and assessing 
the data (data tier). The business logic (logic tier) which  
 

 
Figure 7: Classical three-tier architecture 

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



  

 
Figure 8: Classification of applications 
 
encompasses algorithms to process the data is designed based 
on an assumption of a certain data structure (see Fig. 7). Thus, 
there exists a direct dependency between the data and logic 
tiers. All changes in the data meta-model affect the business 
logic and require its partial or complete reengineering. 

The lifecycle of most software applications is characterized 
by two phases: application design phase and operation phase. 
As a rule the requirements of the business domain are analyzed 
and the architecture and functions of an application are fixed 
during the design phase. This refers as well to the data 
meta-model of the future application. This classical scheme is 
not suitable anymore, if an advanced configurability becomes 
one of the major requirements for the future application. The 
problem becomes particularly challenging if the scope of the 
application (as determined by the addressed business domain) 
is rather broad, but still a high configurability during the 
operation phase is required (case 4, Fig. 8). In this case an 
application transforms to a framework enabling the 
customization of end-applications. 

The aim of a framework is to describe basic phenomena from 
the relevant business domain and to provide the basic common 
functions in order to simplify the development of custom, 
case-specific applications as much as possible. In contrast to 
the classical application the lifecycle of a framework consists of 
three phases: (i) framework design, (ii) framework 
customization and configuration for some custom application 
scenario and (iii) the operation of the customized application. 
In relation with the framework idea the development process of 
the final application is thus spread over the phases (i) and (ii). 
In most cases it requires at least two meta-models to be 
developed and managed, one for the framework itself 
(meta-model I) and the second one within the framework for 
the final application (meta-model II), as shown in Fig. 9, a. 
Consequently, a set of rules and concepts describing the data a 
final application operates with is defined during the framework 
design phase and another one during the framework 
customization phase. Due to the separate meta-models it 
becomes impossible to examine the formal definition of the 
rules and concepts, defined in the meta-model I (reflection), 
and to extend them in some way (derivation) from within the 
meta-model II. 

Related to the manufacturing control software the 
meta-model I is given by the formalization presented in the 
previous sections. It defines such concepts as a workflow, 
workflow referencing, manufacturing component type, 

manufacturing component instance, constraint types etc. The 
development of a specialized application supposed to control a 
certain manufacturing system requires a definition of custom 
classes of manufacturing components and custom instances as 
well as custom workflows, which are described by custom 
constraints (meta-model II). So in this case it would be 
advantageous to define some basic constraints which relate to 
all entities of some kind (e.g. to introduce a concept of a system 
component and admit e.g. an “assignment” relation on 
components) within the meta-model I. A meta-model II might 
extend this definition restricting the types and the cardinalities 
of the system components which can be “assigned” to each 
other, defining additional constraints if required. 

The proposed solution approach thus strives for the 
integration of the meta-model space which will allow a 
transparent examining, referencing and extension of concepts 
defined on the framework-level during the design of 
customized applications. The proposed solution approach is 
inspired by the ontology models allowing a hierarchical 
referencing of dependent ontologies. The realization provides a 
mechanism allowing a definition of the meta-model I and its 
subsequent transformation to a program code supporting a 
reflective processing of the own meta-model and its extensions. 
The abstractions defined in the meta-model thus can be fully 
used and extended in derived meta-models, as illustrated in 
Fig. 9, b. At the moment, to the best of our knowledge, no other 
solutions are available which would support such an integrated 
framework development process. 

 

III. REALIZATION 

The concepts presented in the previous sections are brought 
together in an integrated modeling infrastructure, whose 
realization is based on Microsoft DSL Tools [10]. The very 
basic meta-model is defined by means of DSL Tools, 
introducing such concepts as classes, instances, relations 
between classes and instances, expressions, paths and 
constraints on class members and relations. This meta-model 
mimics the concepts available in UML and OCL with the 
difference that it incorporates both the class and the instance  
 

 
Figure 9: Meta-model integration approach 
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Figure 10: Modeler GUI 
 
levels within the same model space. Reflection is thus 
essentially possible in all models. In contrast to the UML a 
derivation of relations is added to the basic meta-model, which 
increases the descriptiveness of the models considerably. The 
concepts specific to the business domains addressed, i.e. 
manufacturing systems and processes, such as workflows, 
manufacturing system components and relevant constraints are 
all modeled by means of this basic meta-model. 

The developed code generation toolkit allows the generation 
of .Net classes (as well as their instantiation) directly from 
models. Methods enabling the examining of the meta-model 
space (reflection) are added automatically to all generated 
classes. The code generation may be done partially for some 
model parts. Thus, code can be generated only for those model 
elements which belong (from the user’s point of view) to the 
meta-model I. A meta-model II is accessible in the same 
modeling space but exists only in memory and can be persisted 
if necessary. 

A GUI providing a visual design of models is possible (using 
the designer functionality of MS DSL Tools), see Fig. 10. It 
simplifies the editing and understanding of models by the user, 
making it possible to visualize the relevant dependencies. A 
multi-view interface extension was developed for the DLS 
tools, allowing the user to create and manage multiple views on 
the same model. 

 

IV. CONCLUSION 

The presented paper analyzed the requirements on 
architectures and data models of control systems for automated 
manufacturing systems. The diversity of practical cases 
requires such models to become widely configurable. In order 
to improve the effectiveness of use and maximize the utilization 
of the manufacturing system a higher intelligence of the control 
system is required, thus necessitating a predictive control and 
scheduling of operations. The amount and the organization of 
the information required for such intelligent predictive control 

was analyzed. As a result a comprehensive ontology-model 
being able to describe the processes and the architecture of 
different manufacturing systems was introduced, which 
consists of the integrated component, workflow and constraint 
sub-models. The workflow-based architecture enables a 
flexible definition of manufacturing processes and their 
self-referencing. The mechanism enabling the mapping of the 
semantic description of the transformations within the 
manufacturing system on the one side and the execution of 
commands on the other side was developed. Finally, a 
framework architecture for manufacturing control solutions 
and a solution for meta-model integration issues were 
introduced. 

Although the problems discussed were related to Flexible 
Manufacturing Systems, some of the concepts described can be 
extended to other domains. The workflow orientation clearly 
can be applied to the modeling of other systems (business 
workflows etc.). Issues related to the framework architecture 
and model integration can be furthermore used while designing 
other software systems, which require high configurability. The 
particular complexity of the considered use-case (integrated 
manufacturing control and scheduling for flexible 
manufacturing systems) is determined by the combination of 
multiple factors: high required configurability of solutions, 
complexity and diversity of manufacturing system 
architectures, complex workflow structures effecting a 
transformation of system components’ properties, high 
diversity of constraints and the need to interface the 
mechanisms for the command execution with the semantic 
description of the transformations. 
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