

Abstract — The increasing automation is an evident trend in

manufacturing industry. The individualization of the products
requires an increasing flexibility of automated manufacturing
systems. Thus, concepts like Flexible Manufacturing Systems
(FMS) gain importance in different manufacturing sectors. More
complex usage scenarios and increasing complexity of the control
tasks require higher intelligence of the manufacturing control
solutions. Such intelligent manufacturing control must be able not
only to execute a predefined control logic, but also be able to
predict the development of the situation, schedule, plan and
optimize the processes in FMS and give hints and
recommendations to the operator concerning the optimization of
usage scenarios. The development of such systems is impossible
without a comprehensive modeling layer describing various
system architectures and manufacturing processes. The following
paper analyses the requirements on the modeling of intelligent
manufacturing control systems and proposes an architecture for
future control solutions.

Index Terms — Flexible Manufacturing Systems (FMS),
manufacturing control, modeling, order processing, optimization,
scheduling

I. MANUFACTURING CONTROL AND ORDER PROCESSING
IN FLEXIBLE MANUFACTURING SYSTEMS

The cost pressure in the manufacturing industry requires an
increasing automation of manufacturing processes particularly
in the area of small and medium-sized batch production.
Relatively compact automated Flexible Manufacturing
Systems (FMS) by now are technically mature enough for the
industrial application and have proven their competitiveness in
different manufacturing sectors [1]. The use of FMS is

Manuscript received July 22, 2007. The work has been supported by the

German Research Foundation (DFG).
Prof. Dr.-Ing. Christian Brecher is head of the Chair of Machine Tools at the

Laboratory for Machine Tools and Production Engineering (WZL), RWTH
Aachen University, 52056 Aachen, Germany, as well as head of the Department
for Production Machines at the Fraunhofer Institute for Production Technology
IPT, Aachen, Germany (e-mail: c.brecher@wzl.rwth-aachen.de).

Dipl. Wirt.-Ing. (RUS) Kamil Fayzullin, M.O.R. is with the Laboratory for
Machine Tools and Production Engineering (WZL), RWTH Aachen
University, 52056 Aachen, Germany (phone: +49 241 80 28230,
fax: +49 241 80 6 28230, e-mail: k.fayzullin@wzl.rwth-aachen.de).

Dr.-Ing. Frank Possel-Dölken is with the Laboratory for Machine Tools and
Production Engineering (WZL), RWTH Aachen University, 52056 Aachen,
Germany (e-mail: f.possel-doelken@wzl.rwth-aachen.de).

Dipl.-Ing. Tilman Buchner is with the Laboratory for Machine Tools and
Production Engineering (WZL), RWTH Aachen University, 52056 Aachen,
Germany (e-mail: t.buchner@wzl.rwth-aachen.de).

especially attractive with respect to small to medium lot size
production of relatively large and frequently changing part
spectrums. Technically, FMS consist of multiple
manufacturing centers, linked by an automated, undirected
material transport and loading / unloading system. The typical
application domains of FMS are metal cutting, such as milling,
turning and sawing, as well as sheet metal processing [2].

The manufacturing technology is one of the major factors
influencing the layout of FMS and their internal logistics.
Differences concern not only the arrangement of the
manufacturing stations, but also the methods and means of
material handling and transport. For instance, parts must be
clamped with fixtures mounted on manufacturing pallets for the
milling process. This determines the classical layout of a FMS
for milling technology, which comprises an automated pallet
storage system, equipped with a guided transport device or a
stacker crane. Pallet loading stations as well as NC-controlled
machining centers are arranged along the pallet storage system
and can be loaded and unloaded automatically. Pallet and
fixture configurations in FMS for milling technology are static,
i.e. pallets and fixtures possess defined places.

Technology requirements of sheet metal processing differ
considerably, thus the design of the corresponding FMS differs
as well. For instance, no fixtures are needed for the sheet metal
processing (e.g. for laser beam cutting) and since the part
geometry varies considerably, storage places on pallets are
assigned dynamically to single parts.

In order to develop unified approaches for FMS control a
comprehensive model description must be found which will be
able to reflect such differing FMS use cases concerning the
structure of the manufacturing system, relations between
components and varying manufacturing processes and
technologies.

The main task of any manufacturing system is the execution
of a defined workflow, which describes the sequence of
operations to be performed in order to transform the raw
material into finished parts. The specific feature of FMS is that
such a workflow is not necessarily determined completely by
the physical layout of the manufacturing system (as is the case
for dedicated transfer lines for instance), but is only partially
constrained by its structure. Workflows in FMS may be flexible
as well and include decision alternatives, so that custom
decisions, e.g. selection of alternative resources, routes, etc.,
can be made on the fly during workflow execution. Another
characteristic property of the FMS is their “multitasking
ability”, i.e. the possibility of execution of multiple workflows

On the Architecture and Models for
Intelligent Manufacturing Control
Christian Brecher, Kamil Fayzullin, Frank Possel-Dölken, Tilman Buchner

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

(or copies of one workflow) in parallel. Both the diversity of
technical cases and operation flexibility explain the particularly
demanding requirements on manufacturing control systems for
FMS. In order to achieve an optimized utilization of the FMS,
advanced control system architectures are required, which will
be able not only to trigger the execution of control commands,
but also to make intelligent control decisions by means of
capacity simulation and prediction of the situation development
in FMS.

A wide variety of custom usage scenarios for FMS require
comprehensive configurability of the control and scheduling
software. Lots of custom rules and constraints may exist
concerning the clamping operations, the material transport and
the storage (ways, delays etc.), the definition of work plans, the
structure of job orders (quantity, mixed part orders etc.), the
lot-sizing, the shift calendars or the scrap parts processing.
Additional restrictions may be stipulated by the shop floor
organization outside the FMS. It must be possible to flexibly
configure such user-specific constraints in the scheduling,
simulation and control process, as well as to express custom
optimization objectives.

Since the whole diversity of practical use cases cannot be
addressed during design-time of the FMS control, configurable
architectures for such systems must be developed which will
allow a flexible adaptation of the manufacturing control system
to custom constraints. Such customization of the manufacturing
control system must be easy and effortless to accomplish, thus
enabling fast changes and rapid ramp-up of the production after
some modifications have been made. The systematic approach
necessitates the generalization of use-cases, which makes it
possible to separate the case-specific and generic
(case-independent) functions. This assures that common
features will be implemented only once and can be just
“referenced” when realizing special cases. The requirements on
the modeling of manufacturing systems were not considered
sufficiently systematically in the past. Therefore, most
PC-based solutions for manufacturing control systems possess
case-specific design aimed to support some certain
manufacturing system configuration. As the simplest approach
certain rules and algorithms are hard-coded in such
architectures, with the drawback that it becomes impossible to
alter any data structures or control rules later without major
changes in the control system’s program structure.

II. SOLUTION APPROACH FOR NEW GENERATION
MANUFACTURING CONTROL SYSTEMS

As a summary of the features described in the previous
section a list of key requirements on manufacturing control
architectures was derived. These key requirements are as
follows:

- workflow-orientation, since the primary task of a control
system is to execute defined workflows. A flexible and

Figure 1: Conceptual components of the of the generic next generation
manufacturing control platform cosmos 4

powerful mechanism must exist in order to enable the user to
describe, manage and execute custom workflows.

- clear separation between use-case-specific and
use-case-independent functionality

- adaptability to different manufacturing system structures
and different manufacturing processes

- rapid and uniform interfacing with the manufacturing
hardware controls (NC, MC, PLC or RC)

- scalability of the manufacturing system (applicability to
manufacturing systems of any size)

- scheduling of operations and predictive optimization of
control decisions based on capacity simulation

- flexibility while defining user-specific control, scheduling
and optimization constraints, rules, algorithms and objectives.

The results from the analysis of these key requirements led to
the development of a new architecture concept for
manufacturing control systems. This architecture, developed at
RWTH Aachen Universty’s Laboratory for Machine Tools and
Production Engineering WZL, is based on the following
conceptual components (Fig. 1):

- workflow engine based on a generic FMS reference model
- highly-expressive object-oriented constraint model
- integrated ontology-oriented meta-modeling approach.
These concepts will be discussed in detail in the next

sections.

A. Workflow-based architecture for
manufacturing control systems
As mentioned before, the main purpose of any

manufacturing system is the execution of a workflow, which
consist of a sequence of operations (possibly with some
alternatives available), transforming some physical object(s),
e.g. raw part(s), from their initial state into a desired final state,
e.g. finished part(s). The workflow idea is widely used to
describe time-variant processes in different areas: the most
common example is the modeling of business processes.
Discrete manufacturing processes in automated manufacturing
show similarities with business processes. As in the case of
business processes any manufacturing workflow possesses
clear start and end points and defines a sequence of actions for
the execution.

Although the general idea is quite similar for both, the
business process modeling and the modeling of manufacturing
processes in automated manufacturing systems, there still exist

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

significant differences concerning the structure of the
corresponding workflows. Thus, reference models aimed to
describe business processes (like BPEL [3], OMG Workflow
Facility Specification [4], WFMC [5], etc.) and existing
Workflow Management Systems (WfMS) are not directly
applicable for the description and execution of manufacturing
processes. The formalization of workflows in automated
manufacturing systems requires the consideration of more
details. In particular the following features are specific to
manufacturing workflows: (i) manufacturing processes result
in the modification of the internal state of any entity within the
manufacturing system; these transformations must be described
by the workflow, (ii) the execution of actions as elements of a
manufacturing workflow demands the interaction with the
controller and the actuator/sensor level and the invocation of
device-specific interfaces, (iii) certain similar or completely
identical series of actions (defined by the capabilities of
manufacturing systems) replicate as elements of more complex
workflows, (iv) the possibility of a parallel or
sequence-dependent execution of multiple workflows increases
the requirements on the synchronization of single operations as
well as planning and optimization of the workflow execution.
A generic formalization of structures of and processes in
manufacturing systems is thus one of the most important basics
for the workflow model for automated manufacturing systems.

1) Reference model to describe manufacturing
systems and processes

A model is a formal representation of the elements and
relations within some domain. Any formal model is built up by
means of certain constructs and rules. The model for the
language defining these constructs and rules is called the
meta-model with respect to the corresponding model. A
meta-model restricts and constitutes the application domain to
be described and thus may possess a different grade of
universality (or inversely: specialization for some certain
domain). An example of a generic or widely applicable
meta-model is the UML. A kind of tradeoff exists between the
universality of the model and its level of detail, the common
dilemma between scale and scope.

The reference model for automated manufacturing systems
must primarily address two major domains: the structure of the
manufacturing system (static) and the general process
description (dynamic). In order to enable its universal usage,
such a meta-model must provide means to describe common or
fundamental system features and an extension mechanism to
describe special cases. A generic formalization for structures of
and processes in manufacturing systems was developed at the
WZL based on their comprehensive analysis and classification.
Processes within flexible manufacturing systems (e.g.
manufacturing, assembly, handling, measuring as well as
material movement and storage) all result in some kind of
transformation of the properties of certain components of a
manufacturing system. Such transformation may basically refer
to the modification of the part geometry or its properties

Figure 2: State/event-based modeling of manufacturing systems

(e.g. processes like forming, separating, assembly, coating or
hardening) or some modification of the mutual arrangement or
location of components of a manufacturing system (e.g.
processes like transportation, placing/removing parts to/from
stock, changing of component layout or orientation). A state of
the manufacturing system results from the superposition of the
states of its single components (see Fig. 2). The classical
approach considering only the capacity of manufacturing
“resources” is not sufficient.

The structural model for automated manufacturing systems
must provide means for the description of its various
components. Each custom manufacturing system possesses
custom components differing by their kind, number, functions
and properties. Such components can be machine tools, work
places, machine tool elements (e.g. spindles), pallets,
workpieces, tools, fixtures, transport devices etc. The
meta-model must provide means for the description of
properties, roles, layout and mutual arrangement of
components within a manufacturing system. The meta-model
developed at WZL solves this problem by introducing an
object-oriented view to the architecture of a manufacturing
system. Therefore it becomes possible to apply well-known
fundamental concepts from the area of software systems
engineering to the description of the physical structure of
manufacturing systems. These are: object-orientation,
classification of entities, generalization of classes as well as
typed class and instance associations. The model of the
manufacturing system thus can be defined by means of two
layers (type and instance layers) as shown in Fig. 3. Physical
dependencies between components (on the instance layer) are
restricted by means of typed relations (relations defined on the
type layer). The type layer thus serves as a template in order to
define possible component types, their relevant states and
possible relations. The instance layer describes actual
individual components of a manufacturing system as well as
their actual relations and states at certain moments of time.

Production processes are defined as a transformation of
relations and properties. Some processes (e.g. assembly or
separation of components) may require a “removal” or
“creation” of new instances of system components.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Figure 3: Modeling of the static structure
of manufacturing systems

The classification of manufacturing processes (by means of a
class layer) makes it possible to distinguish consistently
between such fundamental concepts as process definition and
execution.

2) Workflow reference model for automated
manufacturing systems

The event-driven decision mechanism is the state-of-the-art
concerning the architecture of manufacturing control solutions.
Decisions are mostly made on demand right before their
execution. Often only the actual system state (at the time of
decision making) is taken into account. An execution of a
manufacturing operation is triggered as soon as the actual
system allows, e.g. after a confirmation for a finished previous
operation has been received. Such event-driven processing is
common practice to reduce the complexity of the control
problem, since it helps to eliminate all unknown variables, e.g.
the duration of a certain operation for instance, and makes it
possible to use a rather simple rule-based control logic. The
drawback of event-driven solutions is the lack of foresight, e.g.
a limited planning horizon (normally limited to the next
operation to execute). In contrast to an event-driven
architecture, a predictive shop floor control requires extended
information about the influence of the command execution on
the modification of the manufacturing system’s state. The
planning instance needs information about the rules which
describe if certain decisions and events may or may not take
place. The corresponding temporal information concerning the
single events is required as well (start/end times of certain
actions, their durations etc.). Furthermore, the control logic of
the manufacturing control software must be transparent to the
planning instance, otherwise the “execution as planned” is not
guaranteed. These fundamental observations apply without
regard to the control architecture (central or distributed).

The reference model introduced in the previous section
enables a semantic description of the manufacturing system
structure and processes on the shop floor level. For the purpose
of actual command execution the information must be
forwarded from the shop floor level via cell level to the
controller level. Modern device controls (NC, MC, PLC or RC)
are themselves relatively complex systems and in most cases
enable a comprehensive parameterization of the command
execution, mostly in form of custom control programs (e.g.
G-code or PLC-code).

Figure 4: Data interfacing gap between
the semantic and execution levels

Unfortunately, due to the decisive differences in the
corresponding data models there is no way to exchange the
semantic information available at the shop-floor level with the
controller level. A model being able to describe both the shop
floor and the controller level in an uniform manner does not
exist as state-of-the-art. Therefore, the information about the
transformation of the manufacturing system’s state must be
somehow mapped to the control programs to be executed (see
Fig. 4). This can be done by means of the semantic interface
model developed at WZL, thus providing the semantic link
between the parameterization of the functions to be executed on
the controller level and their impact on the manufacturing
system state which is relevant for the shop floor level.
Analogous to the classes in object-oriented concepts,
integrating data and functions, the command execution
functionality is encapsulated by components of a
manufacturing system. The component model provides a
possibility to define capability functions, taking other relevant
components as parameters and mapping the transformation of
their properties to calls on a standardized equipment interfaces
(by means of special equipment drivers).

In automated manufacturing systems series of actions are
often replicated as elements of more complex workflows. Thus,
different definitions of workflow boundaries become possible.
Any elementary sequence of operations, e.g. a transport job
executed by a stacker crane or an automated guided vehicle
(AGV), can also be considered as a workflow. In the latter case
it would consist of the following operations: move to source
cell, load pallet, move to destination cell, unload pallet. This
workflow applies to pallets of any type a stacker crane is able to
transport. Such transport jobs may be executed independently
in the system (although they rarely make sense just as
standalone actions) or as a part of a more complex
manufacturing chain. There are many examples for such
repeatable mini-workflows in manufacturing systems
(aggregate operations consisting of multiple simple steps and as
a rule requiring an interaction of multiple devices). Typically
this refers to all logistical operations like material transport,
handling and storage. These will later be called operation
workflows.

Another kind of workflow is the product workflow. These
workflows have the distinct aim of producing a certain amount
of a certain product. Given a custom manufacturing system and
a product to be manufactured on that system, it would be
preferable from the user’s point of view to be able to define a
product workflow on the level of aggregated operations (e.g.
workpiece setup – milling in first setting – transport –

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

workpiece setup change – transport – milling in second setting
– transport to storage) without caring too much about the
execution details of single manufacturing steps. The reason is
obvious: this makes the workflow definitions more flexible
avoiding a redundant definition of detailed sub-workflows. The
idea is analogous to the code reuse as one of the key concepts in
the area of software engineering. The reuse helps to save time
and increase the reliability, since reusable components must be
tested only once, and simplify the reengineering considerably
in the case of changes. The solution with respect to the
manufacturing workplans is to enable a workplan
sub-referencing. In this case operation workflows can be used
as integral parts of product workflows which will avoid the
redundant definition of similar sub-processes. This subdivision
into product and operation workflows is only conceptual, since
it reflects the logical purpose of such workflows. In fact,
depending on the individual manufacturing system, an arbitrary
depth of the workflow referencing hierarchy may be possible.
The atomic building blocks of any workflow (leaf nodes of the
workflow reference graph) are the capability functions of the
manufacturing equipment.

The idea of the developed interfacing mechanism is similar
to the realization of function calls in function-oriented
programming languages. A function provides a signature or an
interface, defining its formal parameters. The call on a function
specifies the association of the actual parameters, if any, with
formal parameters of the function. Thus, applied to workflows,
the concept is as follows: each workflow is seen as a black box
defining operations on distinct abstract instances of typed
system components (actors). In order to describe optional or
alternative actions, a workflow contains a description of its
decision logic and may define certain decision (state) variables
to be referenced in its internal logical expressions.
Furthermore, each workflow possesses an interface which
exposes its signature to the “outer world”. Such a signature
includes formal parameters for actors and initial variables.
“Calls” on such an interface, which is a referenced workflow,
can be performed from any other (referencing) workflow. In
this case a referencing workflow must provide actual parameter
values for the referenced workflow, i.e. component instances
for the actor assignment and initial decision variable values
(see Fig. 5). Calls on referenced workflows may also be done
conditionally depending on the decision variables of the
referencing workflow. The developed interfacing mechanism
makes it possible to integrate workflows of arbitrary
complexity.

Bringing together the concepts described, the overview of
the workflow-based architecture for manufacturing control
systems is shown in Fig. 6. As described, the workflow
sub-referencing mechanism allows a flexible and reliable
definition of workflows. Workflows reference the definitions
of system component types which define properties, relations,
and capability functions (capability modules) of single
components. Capability functions allow the encapsulation of

Figure 5: Workflow referencing mechanism

“physical” abilities of the manufacturing equipment and link
the semantic description of the processes as seen on the shop
floor level with the command execution (controller) level.

So far the discussion was only about the definition of the
workflows. Another issue is the execution of the workflows,
which requires certain intelligence concerning the decisions
available with respect to the variable assignment and the
selection of time moments for certain actions defined in
workplans. In the case of multiple alternatives the assignment
of real system component instances to actors is not unique. In
order to find the best scenario the formulation and solving of an
optimization problem becomes necessary. The benefit of the
described architecture (in contrast to other approaches, where
the complete information is not available, e.g. if the control
logic is separated from the process model) is the logically
complete description of transformations taking place as a result
of the workflow execution. A complete model description is
thus an inevitable condition for planning and predicting events
in automated manufacturing systems and can be used while
defining and solving the optimization problems, dealing with
the workflow execution. The approach used to formulate and
solve such optimization problems will be discussed in the next
section.

Concerning the realization of the workflow-based
architecture, nowadays certain tools and technologies are
available, e.g. frameworks like Microsoft .NET 3.0 Workflow
Foundation or Java Workflow Tooling (JWT). Such
frameworks offer predefined design patterns, e.g. concepts like
activities, workflows, means for their parallel execution and
synchronization etc., thus, simplifying the development of
workflow-driven applications.

B. Comprehensive object-oriented constraint model
Two aspects must be considered in order to realize the

predictive control and optimization. Firstly, a consistent
description of the workflow structure is required, and secondly,
the execution of such workflows requires the formulation and
solving of arising optimization problems. Although the general
concept concerning the workflow description was introduced in
the previous sections, it still was not shown how to describe all
the rules and restrictions concerning the workflow structure.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Figure 6: Workflow-oriented modeling
of the manufacturing control systems

Such rules for conditional transformations of the
manufacturing system’s state may be arbitrarily complex and
concern the modifications of the states and relations of single
system components as well as the precedence of operations.
Some constraints might be global others might refer only to
certain workflows. In order to describe these dependencies, a
generic description language for constraints and rules is
required.

One of the technologies being applicable for describing and
solving complex optimization problems is the Constraint
(Logic) Programming (CP). Its main idea is to describe an
optimization problem by explicitly describing its solution space
through constraints. An optimization problem is described in
this case by means of variables each possessing a non-empty set
of possible values (domain) and functional relations between
these variables, called constraints, and stating which
combinations of values are allowed. One of the key ideas of CP
is that constraints can be used “actively” to reduce the
computational effort needed to solve combinatorial problems
[6]. By means of deductive “constraint propagation” it becomes
possible to eliminate variable values, violating some
constraints, and thus reduce the solution space of the
optimization problem. Additional algorithms, decoupled from
the constraint-based problem formulation can be used in order
to guide the search for optimal solutions in the solution space. It
makes it possible to separate the logical representation of the
problem from the control over the problem solution.

In spite of the described benefits of the constraint
programming, it also has some drawbacks considering its
classical form. The formalization of an optimization problem
requires an identification and definition of decision variables
and linking them by means of functional or logical relations.
This implies a low level of abstraction, since the direct link to
the entities (classes and objects) from the business domain is
getting lost. Object-Oriented Constraint Programming (OOCP)
offers an opportunity to overcome these problems. The idea of

OOCP is to state constraints in terms of classes, objects and
their relations [7]. The idea is very similar to the Object
Constraint Language (OCL) in UML where constraints can be
stated on class properties and relations. A promising approach
is the synthesis of both the OCL and the constraint propagation
[8] in order to enable the application of propagation techniques
to the problems described in terms of object-oriented
constraints. Unfortunately to the best of our knowledge neither
commercial nor freely available software implementations of
an OOCP framework are available at the moment which could
be used both, for generic modeling and the solution of
optimization problems.

Constraint programming allows for a high flexibility while
designing custom search algorithms for optimization problems.
The range of possible actions refers to the order in which
variables are assigned values as well as the order in which
domains of those variables are inspected. While dealing with
classified decision variables (which is the case for OOCP) it
becomes possible to distinguish variables based on their type or
associated properties. The search algorithm in this case of an
OOCP may depend on the class model of the problem. The
drawback of existing constraint systems is the isolated view on
the search algorithms. Existing Constraint Solvers (e.g. ILOG
Solver 6.2) enable only hard-coded definitions of search
heuristics. The favored approach would be to integrate the
search algorithm definition into the constraint meta-model.
This is currently being investigated in our research work.

C. Ontology-based integrated modeling
In the previous sections concepts related to the semantic

structure of meta-models for manufacturing control systems
were examined. As shown, the meta-model as well as models
describing custom cases (custom manufacturing systems and
processes) become very sophisticated. The present section
discusses the organization of the meta-modeling process and
proposes an approach suited for development of configurable
applications.

Usually three main components of any software system can
be distinguished: (i) data tier, (ii) logic tier and (iii) presentation
tier [9]. This applies to any data processing application, since in
any case it is necessary first of all to define the data meta-model
for the application and provide means for storing and assessing
the data (data tier). The business logic (logic tier) which

Figure 7: Classical three-tier architecture

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Figure 8: Classification of applications

encompasses algorithms to process the data is designed based
on an assumption of a certain data structure (see Fig. 7). Thus,
there exists a direct dependency between the data and logic
tiers. All changes in the data meta-model affect the business
logic and require its partial or complete reengineering.

The lifecycle of most software applications is characterized
by two phases: application design phase and operation phase.
As a rule the requirements of the business domain are analyzed
and the architecture and functions of an application are fixed
during the design phase. This refers as well to the data
meta-model of the future application. This classical scheme is
not suitable anymore, if an advanced configurability becomes
one of the major requirements for the future application. The
problem becomes particularly challenging if the scope of the
application (as determined by the addressed business domain)
is rather broad, but still a high configurability during the
operation phase is required (case 4, Fig. 8). In this case an
application transforms to a framework enabling the
customization of end-applications.

The aim of a framework is to describe basic phenomena from
the relevant business domain and to provide the basic common
functions in order to simplify the development of custom,
case-specific applications as much as possible. In contrast to
the classical application the lifecycle of a framework consists of
three phases: (i) framework design, (ii) framework
customization and configuration for some custom application
scenario and (iii) the operation of the customized application.
In relation with the framework idea the development process of
the final application is thus spread over the phases (i) and (ii).
In most cases it requires at least two meta-models to be
developed and managed, one for the framework itself
(meta-model I) and the second one within the framework for
the final application (meta-model II), as shown in Fig. 9, a.
Consequently, a set of rules and concepts describing the data a
final application operates with is defined during the framework
design phase and another one during the framework
customization phase. Due to the separate meta-models it
becomes impossible to examine the formal definition of the
rules and concepts, defined in the meta-model I (reflection),
and to extend them in some way (derivation) from within the
meta-model II.

Related to the manufacturing control software the
meta-model I is given by the formalization presented in the
previous sections. It defines such concepts as a workflow,
workflow referencing, manufacturing component type,

manufacturing component instance, constraint types etc. The
development of a specialized application supposed to control a
certain manufacturing system requires a definition of custom
classes of manufacturing components and custom instances as
well as custom workflows, which are described by custom
constraints (meta-model II). So in this case it would be
advantageous to define some basic constraints which relate to
all entities of some kind (e.g. to introduce a concept of a system
component and admit e.g. an “assignment” relation on
components) within the meta-model I. A meta-model II might
extend this definition restricting the types and the cardinalities
of the system components which can be “assigned” to each
other, defining additional constraints if required.

The proposed solution approach thus strives for the
integration of the meta-model space which will allow a
transparent examining, referencing and extension of concepts
defined on the framework-level during the design of
customized applications. The proposed solution approach is
inspired by the ontology models allowing a hierarchical
referencing of dependent ontologies. The realization provides a
mechanism allowing a definition of the meta-model I and its
subsequent transformation to a program code supporting a
reflective processing of the own meta-model and its extensions.
The abstractions defined in the meta-model thus can be fully
used and extended in derived meta-models, as illustrated in
Fig. 9, b. At the moment, to the best of our knowledge, no other
solutions are available which would support such an integrated
framework development process.

III. REALIZATION

The concepts presented in the previous sections are brought
together in an integrated modeling infrastructure, whose
realization is based on Microsoft DSL Tools [10]. The very
basic meta-model is defined by means of DSL Tools,
introducing such concepts as classes, instances, relations
between classes and instances, expressions, paths and
constraints on class members and relations. This meta-model
mimics the concepts available in UML and OCL with the
difference that it incorporates both the class and the instance

Figure 9: Meta-model integration approach

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Figure 10: Modeler GUI

levels within the same model space. Reflection is thus
essentially possible in all models. In contrast to the UML a
derivation of relations is added to the basic meta-model, which
increases the descriptiveness of the models considerably. The
concepts specific to the business domains addressed, i.e.
manufacturing systems and processes, such as workflows,
manufacturing system components and relevant constraints are
all modeled by means of this basic meta-model.

The developed code generation toolkit allows the generation
of .Net classes (as well as their instantiation) directly from
models. Methods enabling the examining of the meta-model
space (reflection) are added automatically to all generated
classes. The code generation may be done partially for some
model parts. Thus, code can be generated only for those model
elements which belong (from the user’s point of view) to the
meta-model I. A meta-model II is accessible in the same
modeling space but exists only in memory and can be persisted
if necessary.

A GUI providing a visual design of models is possible (using
the designer functionality of MS DSL Tools), see Fig. 10. It
simplifies the editing and understanding of models by the user,
making it possible to visualize the relevant dependencies. A
multi-view interface extension was developed for the DLS
tools, allowing the user to create and manage multiple views on
the same model.

IV. CONCLUSION

The presented paper analyzed the requirements on
architectures and data models of control systems for automated
manufacturing systems. The diversity of practical cases
requires such models to become widely configurable. In order
to improve the effectiveness of use and maximize the utilization
of the manufacturing system a higher intelligence of the control
system is required, thus necessitating a predictive control and
scheduling of operations. The amount and the organization of
the information required for such intelligent predictive control

was analyzed. As a result a comprehensive ontology-model
being able to describe the processes and the architecture of
different manufacturing systems was introduced, which
consists of the integrated component, workflow and constraint
sub-models. The workflow-based architecture enables a
flexible definition of manufacturing processes and their
self-referencing. The mechanism enabling the mapping of the
semantic description of the transformations within the
manufacturing system on the one side and the execution of
commands on the other side was developed. Finally, a
framework architecture for manufacturing control solutions
and a solution for meta-model integration issues were
introduced.

Although the problems discussed were related to Flexible
Manufacturing Systems, some of the concepts described can be
extended to other domains. The workflow orientation clearly
can be applied to the modeling of other systems (business
workflows etc.). Issues related to the framework architecture
and model integration can be furthermore used while designing
other software systems, which require high configurability. The
particular complexity of the considered use-case (integrated
manufacturing control and scheduling for flexible
manufacturing systems) is determined by the combination of
multiple factors: high required configurability of solutions,
complexity and diversity of manufacturing system
architectures, complex workflow structures effecting a
transformation of system components’ properties, high
diversity of constraints and the need to interface the
mechanisms for the command execution with the semantic
description of the transformations.

REFERENCES
[1] G. Hofmann, “Flexible Fertigungssysteme von heute”, in Werkstatt und

Betrieb, vol. 3 (133), 2000, pp. 46-49.
[2] M. Weck, Werkzeugmaschinen. Band 1 – Maschinenarten und

Anwendungsbereiche, 5th ed. Berlin: Springer-Verlag, 1997.
[3] Web Services Business Process Execution Language. Version 2.0.

Committee Draft. OASIS (2006, May 17). Available:
http://www.oasis-open.org/committees/download.php/18714/wsbpel-spe
cification-draft-May17.htm

[4] Workflow Management Facility Specification. Version 1.2. OMG (2000,
April). Available: http://www.omg.org/docs/formal/00-05-02.pdf

[5] D. Hollingsworth, “The Workflow Reference Model 10 Years On”, in
2006 Workflow Handbook, L. Fischer, Ed. Lighthouse Point, FL: Future
Strategies, 2006.

[6] P. Baptiste, C. Le Pape, W. Nuijten, Constraint-Based Scheduling.
Applying Constraint Programming to Scheduling Problems. Norwell,
MA: Kluwer, 2001.

[7] M. Paltrinieri, Some remarks on the design of constraint satisfaction
problems. In A. Borning, Ed., in Second International Workshop on
Principles and Practice of Constraint Programming (PPCP-94), vol. 874
of Lecture Notes in Computer Science. Berlin: Springer, 1994,
pp. 299-311.

[8] G. Renker, A Modeling Framework for Constraints, in Proceedings of
CP-02, vol. 2470. Berlin: Springer, 2002, pp. 773-774.

[9] R.S. Pressman, Software engineering: a practitioner’s approach, 5th ed.
New York, NY: McGraw Hill, 2001.

[10] Microsoft Domain-Specific Language (DSL) Tools. Visual Studio 2005
SDK Version 4.0, February 28, 2007. Available:
http://msdn2.microsoft.com/en-us/library/bb126235(vs.80).aspx

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

