
 
 

 

  
Abstract— Fuzzy ART has been proposed for learning stable 

recognition categories for an arbitrary sequence of analogue input 
patterns. It uses a match based learning mechanism to categorise 
inputs based on similarities in their features. However, this 
approach does not work well for neural control, where inputs 
require to be categorised based on the classes which they 
represent, rather than by the features of the input. To address this 
we propose and investigate ReART, a novel extension to Fuzzy 
ART. ReART uses a feedback based categorisation mechanism 
supporting class based input categorisation, online learning, and 
immunity from the plasticity stability dilemma. ReART is used 
for online control by integrating it with a separate external 
function which maps each ReART category to a desired output 
action. We test the proposal in the context of a simulated wireless 
data reader intended to be carried by an autonomous mobile 
vehicle, and show that training time and accuracy are 
significantly better than Fuzzy ART and Back Propagation. 

 
 

Index Terms— Fuzzy ART, ReART, Back Propagation, Online 
Neural Control. 
 

I. INTRODUCTION 
Fuzzy ART is an unsupervised Adaptive Resonance Theory 

(ART) network presented for classifying an arbitrary sequence 
of analogue input patters into stable recognition categories [1], 
[2].  In previous work the use of a standard Fuzzy ART network 
for online neural control was investigated [3]. Further testing 
has revealed several weaknesses which limit its potential for 
online control applications. Therefore, ReART, a modified 
Fuzzy ART network designed to address these limitations, is 
presented here. 

 
Fuzzy ART is made up of two neuron layers. The first layer 

represents its input neurons whereas the second layer 
represents its output categories. Fuzzy ART performs match 
based learning, and therefore the configuration of the output 
layer is dynamically determined based on the diversity of the 
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presented inputs. The decision of creating a new output 
category depends on whether existing categories fail to match 
an input within a defined threshold. Resonance or learning 
occurs only when an input is successfully matched to an 
existing category, or when a new category is created to handle a 
distinctly new input. This approach allows Fuzzy ART to 
overcome the plasticity-stability dilemma [2], meaning, it is 
able to remain stable for known inputs while being plastic 
(adaptable) towards new ones.  

 
The most challenging issue when applying Fuzzy ART for 

online control is its unsupervised classification nature. Based 
on previous experiments, it is revealed that Fuzzy ART often 
classifies similar input patterns together, with no regard to the 
class of input which they actually represent. This behaviour of 
unsupervised ART networks is verified by the work of 
Christopher and Daniel [4]. In the context of neural control this 
poses an issue since it means that a single Fuzzy ART category 
can no longer be mapped to a single output action because a 
single category might actually represent many input classes. 

 
Further, since the classification process in Fuzzy ART is 

match based, it can only be controlled using the vigilance 
threshold. The vigilance value defines the level of similarity 
required for an input to be classified under an existing category. 
However, the vigilance value in Fuzzy ART is global to the 
entire network, and therefore it defines a single category size 
for the network. It is often found that inputs in the real world 
regularly represent input classes with varying sizes.  Some 
input classes can be quite general and large in size, whereas 
others are quite specific and small. The mismatch between the 
category size of an ART network and the class sizes of inputs 
will often result in inefficient, or inaccurate categorising. Work 
presented here demonstrates that issues outlined above can 
emerge in the form of longer convergence times, unstable 
performance, and large than optimal neural configurations, 
when Fuzzy ART is used for neural control. 

 
This paper introduces ReART which uses a feedback based 

learning mechanism to overcome these limitations. The 
feedback mechanism drives the categorisation process by 
monitoring external feedback for each individual category and 
using this information to decide when new categories are 
required. Under this setup the vigilance parameter is typically 
set to a low value to encourage inputs to be classified into an 
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existing category. Although this sometimes results in the 
network classifying different input classes in to a single 
category, such misclassifications are quickly detected when a 
category generates negative feedback. This feedback acts as a 
trigger for a new category to be created. This approach allows 
the network to quickly diagnose and correct misclassifications. 
Furthermore, since the vigilance value does not play a 
prominent role in the classification process the network is able 
to efficiently support input classes of different sizes.  At the 
same time the network is still able to effectively select the best 
category for each input based on the direct access theorem 
which guarantees that if a matching output category, U, exists 
for an input, I, then ART would directly activate U when I is 
presented [5]. This is part of the Winner Take All (WTA) 
activation mechanism built in to Fuzzy ART. Work presented 
here demonstrates that the said modifications allow ReART to 
learn faster relative to Fuzzy ART, with greater accuracy, and 
less number of internal neurons. 

 

II. RELATED WORK 
A review of existing work reveals several ART versions 

which have emerged since the original concept. Some of these 
include Fuzzy ART, ART-2, ART-3, DART, ARTMAP [6], 
ECART, Semi-supervised ART (SMART2) [4], Snap Drift 
learning (P-ART) [7], Flexible Adaptable-Size Topology 
(FAST) [8], Grow and Represent (GAR), and SF-ART.  
Although a majority of ART networks remain unsupervised, 
several attempts have been made at designing supervised and 
reinforced ART networks to cater for different requirements. 

 
ARTMAP presents a supervised ART network capable of 

incremental learning of labelled input patterns. ARTMAP 
comprises two individual ART networks, ART1 and ART2, 
linked by an associative learning network. Input patterns are 
presented to ART1 and their labels are sent to ART2.  When an 
input is presented, ART1 makes a prediction which is 
confirmed by associating it with the winning label of ART2. If a 
wrong prediction is made the network increases the vigilance of 
the winning neuron in ART1 which leads to a different 
candidate being chosen. The process occurs until the correct 
category is chosen. Resonance occurs only when the correct 
candidate is found. 

 
Another approach to supervised ART is investigated in 

SMART2 [4]. SMART2 represents a modified ART2 network 
with a learning mechanism which allows learning only within 
the same class of inputs. This guarantees that similar input 
patterns from different input classes do not interfere in the 
learning processes of each other. To complement this, 
SMART2 also incorporates a mechanism of changing the 
learning rate depending on whether an input is classified 
correctly or not. The learning rate is high for inputs which are 
classified incorrectly. Based on numerical tests SMART2 is 
claimed to outperform ART2 for classification problems [4]. 

 
The Snap Drift algorithm presents a feedback based 

mechanism for improving the clustering process of ART [7]. 
This algorithm is designed for networks operating in 
non-stationary environments where new inputs are regularly 
received. Snap Drift works by altering the learning rate of 
individual ART categories depending on the feedback received 
by the system. This allows the system to snap away when 
performance is low, and drift when performance is high, hence 
the name Snap Drift. The literature indicates that the algorithm 
was successfully applied for generating automated service 
responses in a simulated active computer network [7].  

 
A specific attempt to use an ART based neural network for 

neural control was made by Andres Perez [8]. This work 
investigates an approach of combining a ART based Flexible 
Adaptable Size Topology (FAST) network with a 
reinforcement based action selector.  Even though FAST does 
not employ a supervision mechanism, this work is significant 
here since it demonstrates the possibility of using ART for 
neural control. The literature indicates that the ART based 
neural controller was used for navigation control on a robot [8]. 

 

III. REINFORCED ART (REART) 
In contrast to previous work, ReART uses a new feedback 

based mechanism to drive the entire categorisation process. 
ReART architecture is similar to that of Fuzzy ART. The 
network consists of two neuron fields F1 and F2 (see Fig. 1).  
F1 consists of the input neurons whereas F2 represents the 
dynamic category field. 

The ReART learning algorithm can be summarised as 

follows:  
 

i1   .    .     .      i3    .    .     .    im   
 

input pattern i 

feedback 

F1

F2

output u 
 

  u1         uj     .   .    .    un 

adaptive weights
W 1 . .  m, 1 . . .n 

net activity T 

F1 output S 

Fig. 1. Architecture of the ReART network 
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ρ ≈ 0 (set a low vigilance value) 
while (i not empty) 
{ 
    present input ic (ic = complement coded i) 
    compute activation value Ti for all categories 
    select category with max Ti as winner Uj 
    set Uj output to 1 
    receive feedback fi 
     
    if (fi is high)  
         adapt weights of Uj with new input  
         (same as Fuzzy ART, wj = U(ic,wj)) 
         update performance of Uj, Ujp = fi 
    else  
           add 1 to Uj error count, Uje ++  
                 if (Ujp is high and Uje is low)  
             (means poor current performance,  
                 good previous performance, and  
                 a low error count)  
                 then high probability of a new category 
           endif 
        if (Ujp is high and Uje is high) 
             (means poor current performance,  
                 good previous performance, and  
                 a high error count)  
                 then high probability of removing category Uj 
         endif 
   endif 
} 
 
 
Inputs presented to the network are complement coded to 

avoid category proliferation [1]. A complement coded input 
pattern, ic, is passed up through adaptive weights, w1...n, which 
creates an activation value, Ti, at each output category. The 
category with the maximum Ti value is selected as the winner. 
Fuzzy ART rules are used for the calculation of Ti.  However, 
unlike in Fuzzy ART, ReART encourages the first winner to be 
the final selection of the network. This is enforced by selecting 
a low vigilance value which discourages the network from 
initiating a re-search for a better match. This approach allows 
ReART to construct categories based on input classes rather 
than by the similarity of input features. This is the primary 
difference between Fuzzy ART and ReART. Furthermore, 
unlike in Fuzzy ART, ReART does not perform weight 
adaptation at this stage. Weight adaptations are only performed 
when external feedback is received. 

 
ReART receives feedback based on the model outlined in 

Fig. 2. The figure illustrates how ReART is coupled with a 
separate map function to construct a functional neural 
controller, and how ReART receives feedback. The feedback 
received by ReART is short-term, meaning it is received on the 
basis of each action, and therefore it can be easily associated 
with each individual classification. This information is used for 
three main purposes: for weight adaptation, for deciding 

whether to create a new category, or to decide whether to 
remove an existing category. 

 
Each individual class of input generally has its own desired 

output, and consequently a misclassified input rarely generates 
its desired output, and hence would not result in a positive 
feedback. Therefore, ReART learning is done only when an 
input classification receives positive feedback indicating that it 
was classified under the correct category. This speeds up the 
learning process by reducing the probability of inputs from 
different input classes interfering with each others learning. 

 
The process of creating a new category is triggered when 

performance of an existing category is consistently low, or 
when a trend change is detected. Consistently low performance 
is a clear indicator of a single category attempting to classify 
inputs from two or more input classes. Similarly, a category 
with a history of positive feedback unexpectedly generating 
negative feedback normally indicates a new input class 
interfering with the learning of an existing category. ReART 
responds to misclassification by creating a new category tuned 
at classifying inputs which are causing the problem. This is the 
primary growth mechanism in ReART, and it is designed to 
create new output categories when new input classes are 
detected. 

 
The decision of creating a new category is probabilistic. The 

probability of a new category being created is greatest as soon 
as a misclassification is detected, but decreases over time. 
Conversely the probability of removing a category is lowest 
when a misclassification is detected, but increases if 
performance does not improve over time. This approach offers 
a poorly performing category the chance to recover by 
separating its negative feedback generators into a separate 
category, but if performance does not improve the probability 
of it being removed approaches a maximum over time. This 
allows ReART to permanently remove categories which are 
struggling to improve. This is effective at removing poorly 
positioned categories which sometimes form between the 
boundaries of one or more input classes. The probabilistic 
approach for adding and removing categories is chosen to 
compensate for noise which might temporarily influence 
feedback. 

 

IV. NUMERICAL EVALUATION OF REART 
The numerical evaluation of ReART was performed using 

the control architecture illustrated in Fig. 2. The figure outlines 
how ReART integrates with an external map function to 
achieve a functional neural controller. At a higher level the 
system works by ReART creating categories and the map 
function associating them with appropriate output actions. Both 
networks are driven by external feedback, and operate 
independently of each other. All outputs of the map function 
are either 1 or 0. The map function discovers desired output 

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



 
 

 

combinations for each ReART category based on a trial and 
error approach. Identical configurations of the map function 
were used for all experiments; hence its detailed workings are 
not discussed. Further information can be found here [3]. 
 

Several experiments were carried out to evaluate ReART. It 
was compared against two other neural network architectures: 
Fuzzy ART (using the same configuration as in Fig. 2); and 
Back Propagation (BP) [9]. The control problem simulated for 
the experiments is illustrated in Fig. 3. The selected control task 
is a neural based management of wireless communication on a 
mobile data reader. The objective of the controller is to 
optimize the power consumption of the wireless reader by 
managing communication distance, avoiding radio 
interference, adapting to host conditions, and by detecting 

errors. To achieve this, the network uses four inputs, and up to 
eight output combinations. The input set includes the Radio 
Signal Strength Indicator (RSSI), Bit Error Rate (BER), Data 
Rate (DR), and the Transmitter Power Level (TPL); all values 
monitored from the wireless reader. Possible output behaviours 
include, moving the reader closer to the transmitter, enforcing 
temporary radio silence, staying neutral (meaning continue 
current transmission), logging errors, and other possible 
combinations of the above. 

 

A dataset of 1200 input sets was recorded form a live 
environment. The dataset captured five distinct input classes. 
Each input class was assigned with a desired output action 
based on real world considerations. The desired output patterns 
were used to generate feedback for the ReART controller, and 
to calculate the Mean Square Error for BP. Feedback for 
ReART was binary, positive feedback was provided when an 
action was correct, and negative feedback otherwise. 
Experiments were run exhaustively, and all results were 
averaged over 500 independent runs. 75% of the dataset was 
used for training and 25% was reserved for testing. A 5% noise 
component was introduced to both datasets. To simulate 
realistic conditions inputs were presented to the network in 
their natural order, each run starting at a random point in the 
training dataset. 

 

V. RESULTS AND ANALYSIS 
Fig. 4 compares the performance of ReART with BP and 

several Fuzzy ART configurations using different vigilance 
values. Results clearly illustrate ReART outperforming both 
BP and Fuzzy ART under tested conditions. ReART achieves 
an accuracy of over 90% within an average of 1 epoch, 
whereas to achieve the same BP requires an average 12.78 
epochs, and the best Fuzzy ART configuration requires an 
average of 17.23 epochs. The BP configuration used for the 
experiment was selected after testing a range of configurations 
and therefore is believed to be optimal for the specified 
problem. 

i1    .   .       .   .    im  
 

input pattern i 

output action a 
 

a
1    .    .    .   a

n  
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Fig. 2. Neural controller constructed using ReART 
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Table. I 
 

 
Network Type Max 

Training 
Accuracy 
Achieved 

When Max 
Accuracy 

Occurs (Avg. 
epoch) 

When >=90 
Accuracy 

Occurs (Avg. 
epoch) 

When >=95 
Accuracy 

Occurs (Avg. 
epoch) 

When ≈100 
Accuracy 

Occurs (Avg. 
epoch) 

Testing 
Accuracy 

Avg. No of 
Categories 

Avg. No of 
Categories with 
multiple input 

classes 
         

ReART 100% 71.30 1.00 2.48 11.86 98.42% 6.57 0.0 

BP (4-5-3) 100% 1580.75 12.78 21.32 81.25 99.84% 5.00 0.0 

Funzzy ART (0.2) 76.01% 27.88 Never Never Never 73.24% 2.97 2.3 

Funzzy ART (0.4) 77.22% 41.61 Never Never Never 74.92% 5.75 2.9 

Funzzy ART (0.6) 85.25% 64.28 Never Never Never 82.54% 12.42 3.7 

Funzzy ART (0.8) 94.67% 129.59 17.23 Never Never 92.83% 31.92 4.6 

 
 
 

The accuracy recorded in Fig. 4 indicates the number of 
correct actions observed for the most recent 100 inputs. An 
accuracy of 90 literally indicates 90 correct actions and 10 
incorrect ones within the last 100 inputs. The axis indicating 
accuracy in Fig. 4 is scaled between 70 and 100 to improve 
clarity. The notation BP (I, H, O) is used to identify a BP 
network with, I, input neurons, H, hidden neurons and, O, 
output neurons, and the notation Fuzzy ART (ρ) is used to 
identify a Fuzzy ART network with a vigilance value of ρ.  

 
ReART, compared with BP is able to learn faster. Table. I 

reveals that both ReART and BP are able to reach a training 

accuracy near 100%, but ReART achieves this several 

magnitudes faster than BP. The extra training allows BP to 
generalise better as indicated by the higher BP testing accuracy 
of 99.84%, compared to the 98.42% of ReART. BP also uses 
relatively fewer internal neurons to achieve a similar level of 
accuracy; however, it is common knowledge that identifying 
the correct BP configuration is not straight forward. 
 

A comprehensive comparison of ReART with Fuzzy ART is 
provided in Table. I. Figures here demonstrate the difficulties 
in selecting a global vigilance value to fit an entire dataset. Four 
separate Fuzzy ART configurations with different vigilance 
values were tested. No configurations were discovered which 
were able to efficiently classify the inputs correctly. Fuzzy 
ART (0.8) achieves the best accuracy of 92.83% but uses 
approximately 32 categories.  In contrary Fuzzy ART (0.2) 
creates approximately 3 categories but fails to exceed an 
accuracy of 76.01%.  

 
In Fuzzy ART the lower vigilance values struggle to 

precisely separate input patterns belonging to different input 
classes, whereas the higher vigilance values do a better job but 
results in multiple categories representing single input classes. 
This is clearly indicated by column nine of Table. I which 
identifies the number of categories which were classifying 
multiple input classes at the end of the training. The percentage 
of such categories in the network has a direct relationship with 
the network vigilance and its performance. Fuzzy ART (0.2) 
had almost 77% of its clusters classifying multiple input classes 
with a maximum accuracy of 73.24%, whereas Fuzzy ART 
(0.8) had 14% of its clusters classifying multiple input classes 
with a maximum performance of 92.83%. Based on these 
results it is clear that none of the tested Fuzzy ART 
configurations were able to match the performance of ReART 
which achieved a training accuracy of 100% with only 6 to 7 
categories. 

In addition to its ability to learn quickly with high accuracy, 
the ReART based controller is also able to address the plasticity 
stability dilemma. The plasticity stability dilemma outlines a 
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problem which prevents most neural networks from learning 
new inputs while preserving previously gathered knowledge. 
Even a popular and robust control mechanism such as BP is 
inherently troubled by this problem. Fig. 5 illustrates a 
comparison of BP and ReART when presented with the 
plasticity stability dilemma. Here each network was initially 
allowed to train for 100 epochs. At the 100 epoch mark 50 new 
input patterns were introduced to the dataset. New patterns 
represented a new input class with its own desired output 
action. Both networks were then trained for an additional 100 
epochs. The performance response of both networks is 
presented in Fig. 5. The axis indicating network accuracy is 
scaled between 70 and 100 to improve clarity. 

 
Results indicate ReART to handle new inputs with greater 

effectiveness than BP. The introduction of new inputs causes 
ReART accuracy to temporarily drop to 97%, but recovers 
quickly within few epochs to an approximate 100%. The 
ReART network responded to the new input class by creating a 
new category to classify it. This allows it to learn a new input 
with minimum impact on its existing knowledge and accuracy. 
BP performance under identical conditions is less effective. BP 
is able to reach an initial accuracy of 96% to 97% with 100 
epochs of training. The introduction of new inputs to BP causes 
its accuracy to drop to 94%, but unlike in ReART the accuracy 
fails to recover beyond this during the rest of the 100 epochs of 
training. The BP network recovers to its original accuracy 
approximately after 175 to 195 additional epochs of training. 
The result is as expected since BP learning does not necessarily 
cater for network adaptability. 

VI. CONCLUSION 
Several limitations restricting the use of Fuzzy ART and 

other unsupervised ART networks in neural control were 
demonstrated. Fuzzy ART was modified to develop ReART, a 
feedback based ART network capable of addressing these 
limitations. ReART was utilized to construct a neural controller 
capable of online learning. The ReART based controller was 
compared through numerical testing with BP, and an identical 
Fuzzy ART based controller. Results indicate ReART 
outperform both BP and Fuzzy ART for the presented control 
problem. ReART learns several magnitudes faster than BP, and 
provides a similar level of training accuracy. Further, ReART 
learns faster, with greater accuracy and less internal categories 
than Fuzzy ART.  It also avoids the Fuzzy ART problem of 
classifying multiple input classes under a single category.  The 
ReART based controller also overcomes the plasticity stability 
dilemma, and is able to learn new inputs with a minimum 
impact on existing knowledge and accuracy.  

 
Further work is planned on testing ReART for classifying 

more complex datasets to confirm whether the fast learning 
mechanism is able to cope with more subtle categorisations. In 
addition, it is also to be tested using real feedback from a live 
environment with potentially greater noise and feedback errors. 
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