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Abstract—In this paper we describe a procedure
for parameters identification using an algebraic iden-
tification method for a continuous time constant lin-
ear system. We make a specific application in the
determination of the parameters mass-spring-damper
system. The method is suitable for simultaneously
identifying, both, the spring constant and the damp-
ing coefficient. It is found that the proposed method
is computationally fast and robust with respect to
noises. The identification algorithm has been verified
by simulation results. The estimations are carried out
on-line.
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1 INTRODUCTION

Parameter identification is used to obtain an accurate
model of a real system, and the completed model pro-
vides a suitable platform for further developments of de-
sign, or control strategies investigation. On-line param-
eter identification schemes are actually used to estimate
system parameters, monitor changes in parameters and
characteristics of the system and for diagnostic purposes
related to a variety of areas of technology. The identi-
fication schemes can be used to update the value of the
design parameters specified by manufacturers.

In this article, we use an on-line algebraic method, of
non-asymptotic nature for the estimation of the mass-
spring-damper system. We simultaneously estimate the
spring constant and the damping coefficient. The input
variables to the estimator are the force input to the sys-
tem and the displacement of the mass. The identifica-
tion method is based on elementary algebraic manipula-
tions. This method is based on the following mathemat-
ical tools: module theory, differential algebra and opera-
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tional calculus. They were developed in [1]. A differential
algebraic justification of this article follows similar lines
to those encountered in [2], [3], [4] and also [5]. Let us
recall that those techniques are not asymptotic.

Parameter estimation has been an important topic in sys-
tem identification literature. The traditional theory is
well developed, see [6] and [7]. The most well known
technique for parameter estimation is the recursive least
square algorithm. This paper basically focuses on an on-
line identification method, of continuous-time nature, on
a mechanical system. Our approach uses the model of the
system, that is known almost most of times, the advan-
tages are that it does not need any statistical knowledge
of the noises corrupting the data; the estimation does not
require initial conditions or dependence between the sys-
tem input and output; and the algorithm is computed
on-line.

We mention that the algebraic method has also been ap-
plied in [8] in the area of signal processing applications,
and in [9] in flexible robots estimation with good results.
In this last work it is also demonstrated the algebraic
method independence to the input signal design.

Finally, this estimation method can be applied in a wide
range of applications in which appears the mass-spring-
damper model, such as vibration control [10] , impact
dynamics [11], estimation of contact parameters [12], con-
trol in robotics [13] among others.

This paper is structured as follows: in section 2, the
mass-spring-damper model is introduced and the alge-
braic identification method is presented. After the iden-
tification method is outlined, simulations results are pre-
sented in order to confirm the accuracy of the parameters
estimation. This is accomplished in sections 3. Finally,
section 4 is devoted to concluding remarks and sugges-
tions for future research.

2 MASS-SPRING-DAMPER MODEL
AND IDENTIFICATION PROCE-
DURE

This section is devoted to explain the linear model of the
mass-spring-damper system and the algebraic identifica-
tion method.
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2.1 Mass-Spring-Damper model

Although vibrational phenomena are complex, some ba-
sic principles can be recognized in a very simple linear
model of a mass-spring-damper system. Such a system
contains a mass m [kg] , a spring with spring constant k
[N/m] that serves to restore the mass to a neutral posi-
tion, and a damping element which opposes the motion
of the vibratory response with a force proportional to the
velocity of the system, the constant of proportionality
being the damping constant c [Ns/m]. An ideal mass-
spring-damper system can be described with the follow-
ing formula:

Fs = −kx (1)

Fd = −cv = −c
.
x = −c

dx

dt
(2)

This system of equation is derived by the Newton ´s law
of motion which is

∑
F = ma = m

..
x = m

d2x

dt2
(3)

where a is the acceleration [m/s2] of the mass and x [m]
is the displacement of the mass relative to a fixed point of
reference.The above equation combine to form the equa-
tion of motion, a second-order differential equation for
displacement x as a function of time t[sec]:

m
..
x + c

.
x + kx = F (4)

Rearranging, we have

..
x +

c

m

.
x +

k

m
x =

F

m
(5)

An scheme of the system is depicted in Fig.1.

Figure 1: Mass-spring-damper system scheme.

Next, to simplify the equation, we define the following
parameters: B = c

m , K = k
m and f = F

m , and we obtain
the second order system

..
x + B

.
x + Kx = f (6)

The mass-spring-damper transfer function is then written
as:

G(s) =
x(s)
f(s)

=
1

(s2 + Bs + K)
(7)

In our parameter identification scheme we will compute,
in an algebraic form: B and K from linear identifiability.
From these relation, and due to the fact that m is known,
we have

k = Km (8)

c = Bm (9)

2.2 The Procedure of Algebraic Identifica-
tion

Consider the second order system given in (6). c and k
are unknown parameters and they are not linearly identi-
fiable. Nevertheless, the parameter c

m denoted by B and
the parameter k

m denoted by K are linearly identifiable.

We proceed to compute the unknown system parameters
B and K as follows:

Taking Laplace transforms, of (6) yields,

s2x(s)− sx(0)− .
x(0) + B(sx(s)− x(0)) + Kx(s) = f(s)

(10)

Taking derivative with respect to the complex variable
s,twice, we obtain independence of initial conditions.
Then (10) results in an expression free of the initial con-
ditions

.
x(0) and x(0).

d2

ds2

[
s2x(s)

]
+B

d2

ds2

[
s2x(s)

]
=

d2

ds2
[f(s)−Kx(s)] (11)

The terms of (11) can be developed as:

d2

ds2
[s2x(s)] = 2x + 4s

dx

ds
+ s2 d2x

ds2
(12)

d2

ds2
[sx(s)] = 2

dx

ds
+ s

d2x

ds2
(13)
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Recall that multiplication by s in the operational do-
main corresponds to derivation in the time domain. To
avoid derivation, after replacing the expressions (12, 13,
in equation (11), we multiply both sides of the resulting
expression by s−2. We obtain

B(2s−2 dx

ds
+ s−1 d2x

ds2
) + Ks−2 d2x

ds2
=

s−2 d2f(s)
ds2

− 2s−2 − 4s−1 (14)

In the time domain, one obtains the first equation for the
unknown parameters B and K. It is a linear equation of
the form

Bp11(t)−Kp12(t) = −q1(t) (15)
where p11, p12 and q1 are

p11(t) = −2
∫ (2)

tx +
∫

t2x (16)

p12(t) =
∫ (2)

t2x (17)

q1(t) =
∫ (2)

(t2f − 2x) + 4
∫

tx− t2x (18)

Notation1

The expression (14) is multiplied both sides by s−1 once
more, leads to a second linear equation for the estimates
B, and K.

This linear system can be represented in matrix form as:

PX = Q (19)

where P is a matrix whose coefficients are time depen-
dant, X is the column vector of the unknown parameters,
and Q is a column vector whose coefficients are also time
dependant. It is in general form,

[
p11(t) p12(t)
p21(t) p22(t)

] [
B
K

]
=

[
q1(t)
q2(t)

]
(20)

p21(t) =
∫

p11(t), p22(t) =
∫

p12(t), q2(t) =
∫

q1(t) being,

p21(t) = −2
∫ (3)

tx +
∫ (2)

t2x (21)

p12(t) =
∫ (3)

t2x (22)

q2(t) =
∫ (3)

(t2f − 2x) + 4
∫ (2)

tx−
∫

t2x) (23)

1∫ (n) φ(t) representing the iterated
integral

∫ t
0

∫ σ1
0 ...

∫ σn−1
0 φ(σn)dσn...dσ1 with (

∫
φ(t)) =

(
∫ (1) φ(t)) =

∫ t
0 φ(σ)dσ

The estimates of the parameters K and B can be readily
obtained by solving the following linear equation

K =
[−p21(t)q1(t) + p11(t)q2(t)]
p11(t)p22(t)− p12(t)p21(t)

(24)

B =
[p22(t)q1(t)− p12(t)q2(t)]
p11(t)p22(t)− p12(t)p21(t)

(25)

The time realization of the elements of matrixes P and
Q can be written in a State Space framework via time-
variant linear (unstable) filters in order to make the phys-
ical implementation of the estimator easier in the real
time platform:

p11(t) = x1 (26)
.

x1 = −t3θm(t) + x2
.

x2 = 6t2θm(t) + x3
.

x3 = −6tθm(t)

p12(t) = y1 (27)
.

y1 = y2
.

y2 = t3V (t) + y3
.

y3 = −3t2V (t)

q11(t) = t3θm(t)z1 (28)
.

z1 = −9t2θm(t) + z2
.

z2 = 18tθm(t) + z3
.

x3 = −6θm(t)

p21(t) = ξ1 (29)
.

ξ1 = ξ2
.

ξ2 = −t3θm(t) + ξ3
.

ξ3 = 6t2θm(t) + ξ4
.

ξ4 = −6tθm(t)

where ξ2 = p11

p22(t) = ρ1 (30)
.

ρ1 = ρ2
.

ρ2 = ρ3
.

ρ3 = t3V (t) + ρ4
.

ρ4 = −3t2V (t)
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where ρ2 = p12

q21(t) = ψ1 (31)
.

ψ1 = t3θm(t) + ψ2
.

ψ2 = −9t2θm(t) + ψ3
.

ψ3 = 18tθm(t) + ψ4
.

ψ4 = −6θm(t)

where ψ2 = q11.

The matrix P (t) is not invertible at time t = 0. This
means that no estimation of the parameters is done at
this time. But it is certainly invertible after an arbitrar-
ily small time t = ε > 0, then accuracy estimation of
the motor parameters is obtained in a very short period
of time. In practice we initialize the estimator after the
small arbitrary time interval t = ε in order to assure that
the estimator obtain good estimates. From t = 0 to t = ε
there exist many singularities because of the divisions by
the value zero (see equations (24) and (25), such singu-
larities occur when p11(t)p22(t)− p12(t)p21(t) = 0 in the
K estimator and p11(t)p22(t)− p12(t)p21(t) = 0 in the B
estimator.

Since the available signals θm and V are noisy the es-
timation precision yielded by the estimator in (24)-(25)
will depend on the Signal to Noise Ratio (SNR). We as-
sume that θm and V are perturbed by an added noise
with unknown statistical properties. In order to enhance
the SNR, we simultaneously filter the numerator and de-
nominator by the same low-pass filter. Taking advantage
of the estimator rational form, the quotient will not be
affected by the filters. This invariance is emphasized with
the use of different notations in frequency and time do-
main:

K =
F (s) [−p21(t)q1(t) + p11(t)q2(t)]
F (s)(p11(t)p22(t)− p12(t)p21(t))

(32)

B =
F (s) [p22(t)q1(t)− p12(t)q2(t)]

F (s)(p11(t)p22(t)− p12(t)p21(t))
(33)

Remark 2.1 Invariant low-pass filtering is based on
pure integrations of the form F (s) = 1/sp, p ≥ 1. We
assumed high frequency noises. This hypothesis were mo-
tivated by recent developments in Non-standard Analysis,
towards a new non stochastic noise theory. More details
in [14].

3 SIMULATION RESULTS

This section is devoted to demonstrate the good perfor-
mance of the theoretical algorithm previously explained.
On the one hand, signals without any sort of noise are
used in the implementation to show the time in which an

ideal estimation is obtained. On the other hand, the in-
put signals to the estimator are corrupted with a stochas-
tic noise n(t) with zero mean and standard deviation 10−2

in the measure of the position. Fig.3 depicts the imple-
mentation scheme of the estimator. Note that in estima-
tions without noise the input n(t) is zero. Independence
with respect an specific design of the input to the system
is also demonstrated by using two different inputs to the
system: step input and sinusoidal input.

Figure 2: Implementation scheme of the estimator.

The parameters used in the estimation are depicted in
Table 1.

Table 1: System parameters used in simulations
Parameter Value

m 1 [kg]
c 2 [Ns/m]
k 3 [N/m]

The parameters B = c
m and K = k

m which will be esti-
mated by the estimator will have values of 2 [Ns/(mkg)]
and 3 [N/(mkg)] respectively.

3.1 Estimation without noise in the measure

In this subsection estimation of the system parameters
are obtained by using ideal input signals to the estimator.
In Fig.3(a) the step input to the system is shown. The re-
sponse of the system to this input is depicted in Fig.3(b).
The estimator has such signals as input. The estima-
tion of the parameters B and K are almost immediately
obtained (see Fig.4). At time t = 0.04 [s] we get good es-
timates of the parameters with null error with respect the
ideal values B = 2 [Ns/(mkg)] and K = 3 [N/(mkg)].
Until time t = 0.01 [s] the estimator has been initialized
to zero value. With this estimates and bearing in mind
the mass value m = 1 [kg] from equations 8 and 9 the real
values of k = 3 [N/m] and c = 2 [Ns/m] can be obtained
respectively.

In the simulation with sinusoidal signal as input to the
system are obtained the same results. The sinusoidal
signal has amplitude value of 1 [N ] and frequency value
1 [rad/s]. Fig.5(a) depicts the sinusoidal input to the
system, whereas Fig.5(b) depicts the response of the sys-
tem to such an input. The estimation of the values
B = 2 [Ns/(mkg)] and K = 3 [N/(mkg)] is shown in
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Figure 3: (a) Step input to the system. (b) Response of
the system to step input.
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Figure 4: Estimation of B and K with step input.

Fig.6. In this case, we have initialized the estimator to
value zero within 0.03 [s]. The estimates are obtained at
time t = 0.06 [s] and the values are maintained until the
end of the experiment (see Fig.6).
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Figure 5: (a) Sinusoidal input to the system. (b) Re-
sponse of the system to sinusoidal input.

3.2 Estimation with noise in the measure

In this case the response signals of the system x(t) is cor-
rupted by stochastic noise with zero mean and 10−2 stan-
dard deviation. We consider noise in this signal because
is the only variable to measure in an experimental plat-
form by means of sensors such as accelerometers, vision
system,... The step and sinusoidal inputs to the system
are the same that the used in Section 3.1 (see Fig.3(a)
and Fig.5(a)). The input x(t) corrupted by noise to the
estimator is depicted in Fig.7(a) in the case in which the
input to the system is the step signal, and in Fig.7(b) in
the case in which the input to the system is the sinusoidal
signal. Note that the noise strongly affects the signals.

The estimation of the parameters B and K when the
input f(t) is an step are depicted in Fig.8. The estimator
has been initialized to zero until time t = 1.1 [s] and at
time t = 2.5 [s] the values of B = 2 [Ns/(mkg)] and
K = 3 [N/(mkg)] are obtained. When the input f(t) is
sinusoidal the results are that depicted in Fig.9 with the
same results.
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Figure 6: Estimation of B and K with sinusoidal input.
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Figure 7: (a) Response of the system to step input and
noise in the measure of the mass position. (b) Response
of the system to sinusoidal input and error in the measure
of the mass position.
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Figure 8: Estimation of B and K with step input and
noise in the measure of the mass position.
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Figure 9: Estimation of B and K with sinusoidal input
and noise in the measure of the mass position.
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The difference between the ideal case and this case in
which noise in the measure appears is that the time in
the estimation is different. Whereas in the estimations
without noise the values are obtained in 0.3 [s] after the
initialized zero value, the estimations with noise are car-
ried out in 1.4 [s] after such initialization. Nevertheless,
no error appears every estimation. Further, the different
input signals to the system do not affect the estimated
values.

4 CONCLUSIONS

Parameter identification using an on-line, non asymp-
totic, algebraic identification method for continuous-time
constant linear systems has been proposed for the esti-
mation of unknown parameters of a mass-spring-damper
model.

In this research, an algebraic technic in order to estimate
the physical values of the spring and damper of the sys-
tem is presented. This is based on a bunch of (unstable)
filters that vary on time and which are combined with
classical low pass filters. The resultant expressions are
obtained from derivative algebraic operations, including
the unknown constants elimination through derivations
with respect the complex variable s.

The only input variables to the estimator are the input
force to the system and the displacement of the mass.
Among the advantages of this approach we find:it is in-
dependent of initial conditions; the methodology is also
robust with respect to zero mean high frequency noises
as seen from digital computer based simulations; the es-
timation is obtained in a very short period of time and
good results are achieved; a direct estimation of the pa-
rameters is achieved without translation between discrete
and continuous time domains; and the approach does not
need a specific design of the inputs needed to estimate the
parameters of the plant because exact formulas are pro-
posed. Therefore its implementation in regulated closed
loop systems is direct.
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