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Abstract — In this paper, the general problem of impedance 

control for a robotic manipulator with a moving flexible base is 
addressed. Impedance control imposes a relation between force 
and displacement at the contact point with the environment. 
The concept of impedance control of flexible base mobile 
manipulator is rather new and is being considered for first time 
using singular perturbation and new sliding mode control 
methods by authors. Initially slow and fast dynamics of robot 
are decoupled using singular perturbation method.  Slow 
dynamics represents the dynamics of the manipulator with 
rigid base. Fast dynamics is the equivalent effect of the 
flexibility in the base. Then, using sliding mode control method, 
an impedance control law is derived for the slow dynamics. The 
asymptotic stability of the overall system is guaranteed using a 
combined control law comprising the impedance control law 
for the slow dynamics and a feedback control law for the fast 
dynamics.   

This proposed Sliding Mode Impedance Controller (SMIC) 
was simulated for an  advanced 10 DOF’s Flexible Base Moving 
Manipulator (FBMM) composed of a 4 DOF’s  manipulator 
and a 6 DOF’s moving base with flexibility. This controller 
provides desired position/force control accurately with 
satisfactory damped vibrations especially at the point of 
contact.   

 
Index Terms— Impedance Control, Moving Base, Flexible 

base, Robot, Mobile Manipulator, Sliding Mode Control 
 

                I.  INTRODUCTION 

obots with moving base such as macro/micro 
manipulators, space manipulators and URV's (underwater 
robotic vehicles) can be used for extending the workspace in 
repair and maintenance, inspection, welding, cleaning, and 
machining operations.  Mobile manipulators have long been 
introduced as a way of expanding the effective workspace of 
robot manipulators.  The assumption of base rigidity in these 
systems however, is often unreal and compliance of the base 
in most cases results in the loss of accuracy and limitations 
in achievable speeds. The source for base flexibility can be 
for example the suspension system and/or the internal 
structural flexibility of the base platform or joint/link 

flexibility associated with a supporting manipulator/crane in 
a macro/micro type manipulator arrangement. 

Mobile manipulators with flexible base can in general be 
land based, space or underwater type vehicles. In mobile 
manipulators, greater momentum and higher frequency 
vibrations produced at contact between end effecter and 
environment provides even more impetus for dealing with 
such flexibilities. Achieving high performance interactive or 
non-interactive manoeuvres in such applications is possible 
only when the flexibility and base motion are both 
considered for in the control synthesis procedure. 
Simultaneous base and manipulator control in the presence 
of such flexibilities may be essential in many cases where 
the base is a floating platform. In which, the manipulator and 
the base motions are coupled (as in underwater ROVs or 
macro/micro space manipulators, Fig. 1) and the base cannot 
be locked in position. In land based configurations, 
simultaneous control of the base and the manipulator can 
enhance the application domain and improve the cycle time 
for both unconstrained and constrained manoeuvres. 

Researchers considered different control methods to 
improve the performance in flexible joint/link robotic 
systems. Modelling of flexible joint manipulators using 
singular perturbation method was first proposed by 
Khorosani and Kokotovic in 1985 [1]. Spong used 
perturbation method for dynamic modelling and control of 
manipulator with joint flexibility [2]. Singular perturbation 
is a unique systematic and mathematical tool for dealing 
with such flexibilities. This technique allows one to extract 
the slow and fast dynamics and formulate a separate control 
strategy for each subsystem. Thikhonov theorem [3] 
provides stability guarantees for the combined system. 
Among other methods, Lew introduced a simple robust 
control strategy for internal damping of mechanical 
vibrations for a manipulator with compliant (non-mobile) 
base [4]. 

As a space application, Finzi studied dynamic modeling 
and control strategies of mobile manipulator in space [5]. 
Hootsmans and Dubowsky addressed the joint motion 
control strategy of a macro/micro manipulator on a large 
mobile manipulator for improving the structural vibrations 
[6]. Torres and Dubowsky proposed a simple damping 
algorithm for errors associated with an elastically mounted 
space manipulator [7]. Mavroidis and Dubowsky proposed 
Inferred End-Point Control for long reach manipulator with 
base vibration [8]. These investigations  are experimental 
and address error compensation of base vibrations without 
any stability and accuracy analysis.  
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Fig. 1. Macro/Micro Mobile Servicing Manipulator  
on the International Space Station 

 
The pioneering work in stiffness /impedance control is by 

Salisbury and Hogen [9,10]. Kazerooni presented a 
frequency domain interpretation and design method, and 
proposed an implementation more suitable for use with 
industrial robots [11]. The problem of impedance control and 
dynamic stability of mobile manipulators (without 
flexibility) has been addressed by Inoue [12]. The concept of 
virtual / generalized impedance was proposed by Lao and 
Donath to avoid obstacles by redundant manipulators [13]. 
Modeling and impedance control of a two- manipulator 
system handling a flexible beam was addressed by Yan and 
Lin [14]. Multiple impedance control of cooperative 
manipulator in space was proposed by Mossavian, 
Papadaouplos and Poulakakis as an approach for handling 
large cargo in space [15]. To reduce contact forces in a 
mobile manipulators, simple damping-based posture control 
has been proposed by Kang and his colleagues [16]. 
Flexibility hasn’t been considered in any of the above 
investigations. 

Position/force control of flexible joint robots using 
singular perturbation method has been proposed by Hu [17]. 
Roy and Whitcomb used adaptive coefficients for force 
control law and he achieved better response using this 
control law [18]. A research group at DLR Aerospace 
Research Centre have studied impedance control of light 
link manipulators with fixed base and joint flexibility. They 
proposed a new approach based on decoupled dynamics of 
torque and position errors [19,23]. Subudhi addressed 
dynamic modeling and control of manipulators with 
combined joints and links flexibilities using singular 
perturbation method [20].   Impedance control of rigid 
mobile manipulator was studied by Tan and his colleagues 
[21] and experimental results were presented with a mobile 
PUMA 560. Hang proposed a fuzzy control law for 
impedance control and was able to achieve a better response 
when impedance parameters were selected based on fuzzy 
rule base [22]. Vossoughi and Karimzadeh addressed the 

general impedance control of a flexible link manipulator 
using singular perturbation method and they presented 
simulation results of impedance control for a 2 DOF 
manipulator with fixed base [24]. 

Vibration of flexible base is according to situations of the 
Perturbation Theorem, because base flexibility of FBMM for 
all applications including suspension system, tyre or 
structural flexibility is less than 0.001 totally 
( 1000K ≥ /N m ).  Therefore, proposed SMIC using 
singular perturbation method can be used for all applications 
of FBMM. 

 
 

II.  DYNAMIC  MODEL 

Consider following general dynamics of flexible moving 
mobile manipulator (FBMM) by (1); 

( ) ( , ) ( ) ( ) ( ),M X X C X X X K X X G X N u ur rτ = + + + +&& & & &

[ , , , ..., , , ...]1 2 1 2
TX y x x θ θ=  

[0, , , ..., , , ...]1 2 1 2
TF Fx xτ τ τ=                       (1) 

Where, y is base flexibility vector, x1 ,x2, … are base 
DOF’s, ,...2,1 θθ are angular movements of manipulator 

links, Fx1 , Fx2, … are applied force to base and ,...2,1 ττ  
are applied torques to links. M, C, K, G, N represent inertia 
matrix, damping and centrifugal and Coriolis_terms matrix, 
stiffness matrix, gravity matrix and matrix of road input to 
base or so on. 

Motion equations are decoupled as below: 
0 11 12 11 12

21 22 21 22

1
0 02

M M C Cy y
M M C C

GKy Ku cur r
G

τ
= +

Θ ΘΘ

− −
+ + +

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

&& &

&& &

&

  

[ , , ..., , , ...]1 2 1 2
Tx x θ θΘ =                                                   (2) 

Where, ru  is road input or corresponding variable as 
input to the base. Now, new parameters µ (base flexibility), 
Q  and ζ (quasi-steady state) will be defined as following 
relations.  

1 / ( ) ,

1( ) ,

K X as K are Scaler

K X as K are Matrix

µ µ

µ µ

=

−=

1.Q y u hr µ ζ−= − =                                                           (3) 

K  is stiffness coefficient or  matrix and 1−M  is inverse 
matrix of M. This matrix is considered for decoupling the 
slow and fast dynamics. h is a scaling factor. 

 1 11 12

21 22

H H
M

H H
− =

⎡ ⎤
⎢ ⎥
⎣ ⎦

                            (4) 

Decoupling relations are as below:  

 

1[ ( ) ] .22 21 11 12 22
1 1[ ( ) ]21 22 21 21

21 1 22 2

H H C h u C Hr

C h u C H h H cur r
H G H G

τ µ ζ

µ ζ ζ

−Θ = − + + Θ −Θ
− −+ + Θ − +

− −

&&& &&

& && &         (5)             
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1 1[ ( ) ]12 11 11 12
1 1[ ( ) ]12 21 22 11 11

11 1 12 2

h H H C h u Cr

H C h u C H h H cur r
H G H G ur

µ ζ τ µ ζ

µ ζ ζ

− −= − + + Θ −Θ
− −+ + Θ − +

− − −

&& & &&

& && &

&&

      (6)           

     
III.   SLOW DYNAMICS 

Slow dynamics is equivalent dynamics with rigid base. In 
this case, flexibility coefficient of base is considered infinite 
parameter and in result, µ  is zero. 0µ =  is substituted in 
relation (6). We defined a new equivalent static parameter 
ζ  in this case. Also, Θτ  is equivalent torque vector for 
slow dynamics.  

             
0

1[ ( ) .11 12 11 11 12 12
( ) ]21 22 11 11 1 12 2

hH H H C u C Hr

C u C H Cu H G H G ur r r

µ

ζ τ

= ⇒
−= − + Θ −Θ
+ Θ + − − −

&&

&& & &&

       (7) 

Finally, slow dynamics of FBMM is specified with 
substituting relation (7) into relation (5) : 

ˆ ˆM̂ C Gτ = Θ + Θ +Θ
&& &                         (8) 

ˆ ˆˆ , ,M C G  are corresponding matrixes for slow dynamics. 
 
 

IV.   FAST DYNAMICS 

Fast dynamics is equivalent dynamic for FBMM with 
flexibility. Perturbation parameter, ε  and new state 
variables are considered as following relations.  

  is scalar  

 is matrix ;T TL D L

D diagonal L D

µ ε µ

µ µ εε µ µ µ

εµ µ µ

⇒ =

⇒ = =

⇒ =

⎧
⎪⎪
⎨
⎪
⎪⎩

1 1,1 2Z h Z hζ ε ζ− −= = &                                                     (9)    

If µ  is matrix, we can use Cholesky decomposition for 
calculatingε .  Dynamic equations of slow and fast 
subsystems can be rewritten as following forms using 
singular perturbation method: 

1 2
[ ( . ) ]2 22 21 11 2 12 2

[ ( . ) ]22 21 2 22 2 21 1

21 21 1 22 2

X X

X H H C Z u C Xr
H C Z u C X H Zr

H Cu H G H Gr

τ ε

ε

=

= − + + −Θ
+ + − +

+ − −

⎧
⎪
⎪
⎨
⎪
⎪
⎩

&

& &

&

&

     (10) 

                                                                          

1 2
[ ( . ) ]2 12 11 11 2 12 2

[ ( . ) ]12 21 2 22 2 11 1 11

11 1 12 2

Z Z

Z H H C Z u C Xr
H C Z u C X H Z H Cur r

H G H G ur

ε

ε τ ε

ε

=

= − + + −Θ
+ + − +

− − −

⎧
⎪
⎪
⎨
⎪
⎪
⎩

&

& &

& &

&&

 (11)                         

Let /s t ε=  be the fast timescale, 1
1 1Z hη ζ−= −  and 

2 2Zη =  be the standard fast state variables. Now, we have 

final form of above relation. We will have following 
relation: 

1
2

2
12 11 1

d

ds
d

H Hfds

η
η

η
τ η

=

= −

⎧
⎪⎪
⎨
⎪
⎪⎩

  fτ τ τ= −Θ Θ                     (12) 

This is a linear state space system for fast dynamics. 
Unforced system is stable because 11H  is a positive definite 

matrix. fτ  can be considered as control input for fast 
dynamics. 

 
 

V.   SLIDING MODE IMPEDANCE CONTROL  
(SMIC) 

General dynamics of FBMM were decoupled using 
singular perturbation method. Singular perturbation method 
is the most important method for decoupling general systems 
including small perturbation parameters. Slow and fast 
dynamics will be controlled and then combined control law 
is proposed. We propose new impedance control method for 
slow dynamics using sliding method control law. Also, 
feedback torque control law is considered for asymptotic 
stability guarantee of fast dynamics.   

Impedance control is a dynamic relation between position 
and force.  Impedance relation indicates desired impedance 
by matrixes , , ,M B K Km m m f : 

( ) ( )

( ) ( )

M e B e K e K em m m f f
e x t x td
e F t Ff d t

+ + = −

= −

= −

&& &

                                  (13) 

fKmKmBmM ,,,  are impedance positive definite 

matrixes and xd , dF  are desired position and force 

vectors.  Now, we consider combined sliding surface as 
following form: 

1 2c cs e F e F Z= + +&                                   (14) 

So, following relation indicates compensating dynamics 
for combined sliding surface related to cZ :    

1 2 3c cZ AZ K e K e K ef= + + +& &                                  (15) 

, ,1 2 3K K K  are compensating positive matrixes. A is 

semi-negative definite matrix .  
It must be considered 0== ss &  for reaching to desired 

sliding mode: 
1( )2 1
1( )2 1

c

c

Z F e F e

Z F e F e

−= − +

−= − +

& && &

&

                                   (16) 

We will have following relation by substituting equation 
(16) into equation (15);  

 
1 1( ). ( ).1 2 2 2 2 2 1 2 2 1

2 3

e F F AF F K e F K F AF F e

F K ef

− −+ − + + − =

= −

&& &
   (17) 

3,2,1 KKK  are specified by comparison between two 
relations (17) and (13) as desired impedance relations; 
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1 1 1
1 2 2 1

1 1 1 1
2 2 2 1 2

1 1
3 2

K F M K AF Fm m

K F M B F F AFm m

K F M Km f

− − −= +

− − − −= − +

− −=

                  (18) 

Sliding mode law was defined as following relation: 
( ) . ( ) . 0c c c c c

ts F s k sat s s s dtα β= − = − − − ∫&                 (19) 

Where k,,βα  are positive definite and diagonal 
matrixes. Function sat is as below: 

( ) / 1
( )

/ / 1
sign s sc csat sc s sc c

φ
φ φ

>
=

≤

⎧
⎨
⎩

                               (20) 

This function causes to prevent the chattering 
specification of real state variables. Chattering 
coefficient,φ , is a positive definite vector for reducing the 
rate of sliding surface variable. 

 
 

VI.  IMPEDANCE CONTROL OF SLOW DYNAMICS 

Now, we propose new sliding mode impedance control for 
slow dynamics. We specify tracking error and then we will 
achieve desired acceleration vector of links and base.  

( )

e x xd
e J xd
e J J x d

= −

⇒ = Θ Θ −

⇒ = Θ + Θ −

&& &

& & &&&& &&

                                                       (21) 

 Using sliding mode control law, desired acceleration 
vector is given by following relation:                                                                                       

( ) . ( ) . 1 2
( ( ) ) ( )1 2

1( )

s F s k sat s s e F e F Z

J J x F J x F Z F sd d

J Ls J

α= − = − − = + +

⇒ Θ+ Θ − + Θ Θ − + = −

−⇒ Θ = − + Θ

&& && &

& && & &&& &

&& & &

         (22) 

Where,   
( )2 2 1 1 2 2 2 3

( )

Ls F AZ F K e F F K e F K ef
x F sd

= + + + +

− +

&

&&
            (23)                               

J is corresponding Jacobian Matrix of FBMM slow 
dynamics and tJJ ∂∂= /& .  1−J  is pseudo-inverse Jacobian 
matrix  for redundant manipulator and is considered by 
following relation. 

11 )( −− += EkJJJJ m
TT                                                   (24) 

TJ  is matrix transpose of J and mk and E are identity 
scale factor and matrix for redundancy management of 
FBMM. 

Control torque/force vector has been given as following 
relation by substituting equation (22) into equation (8); 
 1 1ˆ ˆˆ ˆ( )MJ Ls C MJ J Gslowτ τ − −= = − + − Θ +Θ

&&            (25)                   

            VII.  CONTROL LAW OF FAST DYNAMICS 

Now we have two reduced order subsystems in (8) and 
(12). Torque control law is used for stability guarantee and 
vibration damping.  It is considered feedback control law as 
following form for vibration damping control of link torques 
and base control forces: 

[ , ]1 2

f K pfast
T

τ τ η

η η η

= −

=

=
                                   (26) 

We can consider nonlinear observer for indicating the 
vector η  by measurable state variables, y  and y&  using 
strain gauge sensors and accelerometer.  

 

VIII.  COMBINED CONTROL METHOD, SMIC 

Combined control method is considered as following 
relation using singular perturbation theorem.  

slow fastτ τ τ= +                                   (27) 

This relation provides desired impedance and vibration 
damping and stability guarantee of FBMM. According to 
Tikhonov's Theorem, real state variables converge to the 
slow/fast state variables with the order of ε  as following 
relations: 

( ), ( )1 1 2 2
1 ( ), ( )1 1 2 2

X X O X X O

Z h O Z O

ε ε

ζ η ε η ε

= + = +

−= + + = +
                             (28) 

As a result of singular perturbation method and Tikhonov's 
Theorem, if slow and fast dynamics are stable, stability of 
combined dynamics will be proved.  

 

IX.  SMIC FOR A FBMM MODEL 

Complete and advanced model of FBMM is considered 
with application of welding, cleaning or so on. FBMM 
model is 10 DOF’s Flexible Base Mobile Manipulator (FBMM) 
composed of a 4 DOF’s manipulator and 6 DOF’s moving base 
with tyre flexibility or springs of suspension system. Non-
holonomic constraint was considered for manipulator’s base. 
Steering is possible by torque control of rear wheels. Model has 
been shown in Fig. 2.  Also, [ ]rl bθ θ ψ  are dependent 
state variables. Where, state variables including fast and 
slow variables are; 

Slow DOF’s:  

1 2 3 4

1 2 3 4

x yb b b

or rl

ψ θ θ θ θ

θ θ θ θ θ θ

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

 

Fast DOF’s: [ ]bbbz ϕθ                                             (29) 
 

A)  Motion Equations of 10 DOF’s FBMM 

Motion equations of this model were derived using two 
dynamic methods, Lagrange Method and Direct Path 
Method (DPM). They were compared, simulated and 
confirmed. We provided two general packages; FBMMLAG 
and FBMMDPM using MAPLE software for driving motion 
equations and exporting to the SIMULINK, MATLAB for 
dynamic and control simulation. 

B) FBMM specifications 

20bm kg= , 1a m= ,  0.5b m=  

5 , 5 , 3 , 21 2 3 4m kg m kg m kg m kg= = = =  
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2 , 2 , 1.5 , 11 2 3 4L m L m L m L m= = = =  
2 2 21.67 . , 6.67 . , 8.3 .Ib kg m Ib kg m Ib kg mx y z= = =
2 2 2

1 2 3
2

4

1.67 . , 1.67 . , 0.56 . ,

0.17 .
L L L

L

I kg m I kg m I kg m

I kg m

= = =

=
  

                                                                         (30) 
C)  Initial conditions 

[ ]1 2 3 4 ( 0)

0 0 0 0 0 0 0
3 9 9

x y zb b b b b b tθ ϕ ψ θ θ θ θ

π π π

==

=
⎡ ⎤
⎢ ⎥⎣ ⎦

          (31) 

D)    Equivalent Stiffness of suspension system or tyres 

( ) 1 2K z K z Kb b= +  
21000 / ,1K N m= 10000 /2K N m=              (32)  

 
E )  Desired Position and Force  

Desired path is the motion of FBMM in direction x and y. 
Then End Effecter of manipulator will contact the wall with 
stiffness K=1000 N/m in direction y at the specified point. 
Desired End Effecter trajectory on the wall is a linear path as 
welding or cleaning process.  Also, principle angles 
(orientation) of End Effector (Fourth link) on the wall, 

1bψ θ+ and 2 3 4θ θ θ+ + , must be constant and remained 
85 and 0 degree as uniform application. Desired y position 
and force on the wall were selected as yd =4.5 m and Fdy = 
2.5 N. In this simulation, it is assumed that tangential and 
friction forces on the wall’s surface are negligible.      

1 2

1 2 3 4

x y zend end end end end

x y ze e eb

θ θ

ψ θ θ θ θ

=

= + + +

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

1 2 .

85 0 0.1 4.5 0.25

x y zend end end end end des

xtime m xtime

θ θ =

= −

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦
o

                             

2.5yF Nd =                                                                     (33) 

 

Fig. 2. Advanced FBMM model DOF's: 
[ ]1 2 3 4x y zb b b b b bθ φ ψ θ θ θ θ  

 

X.  SIMULATION RESULTS 

Simulation results are shown for sample 10 DOF’s FBMM 
under SMIC.  New proposed impedance control (SMIC) is 
used for reaching to specified and desired impedance 
(position, orientation and force). Fig. 3 shows position & 
principle angels of End Effector and Contact force. Base 
flexibility of FBMM for all applications including 
suspension system, tyre or structural flexibility is less than 
0.001 totally ( 1000K ≥ /N m ). Therefore, proposed SMIC 
using singular perturbation method can be used for all 
applications of FBMM.   

Fig.3(a) shows that Y motion of End Effector was 
provided at 4.5 meter on the wall after contact. Principle 
angels of End Effector are shown in Fig. 3.  Principle angles 
of End Effector ( 1bψ θ+ , 2 3 4θ θ θ+ + ) on the wall are fixed 
on desired value 85 and 0 degree by SMIC. They were 
shown in Fig. 3(b,c) and were provided before contact 
moment at 2.88 sec.  This figure shows that all desired 
position and force are provided by SMIC. Finally, Fig. 4 
shows that three dimensional motion of End Effector before 
and after contact. So, SMIC provided all desired position, 
orientation and force (impedance) for a real advanced 
FBMM model for industrial processes.  Results show that 
SMIC provides desired path and contact force accurately as 
defined impedance parameters.  

 
XI.  CONCLUSION 

The demand of Flexible Base Mobile Manipulator 
(FBMM) has risen in recent years and the applications are 
many and varied. This research proposed new Combined 
Sliding Mode Impedance Control (SMIC) for FBMM using 
singular perturbation method. FBMM applications include 
robotic manipulator mounted on the mobile vehicle in space, 
under water or on the land. These applications include 
position/force control requirements so on welding, cleaning, 
machine tooling, construction, finishing and inspection. 
Meanwhile, assumption of rigid base is unreal for all kind of 
FBMM. Impact value of mobile manipulators depends to 
both base motion and links masses which cause greater 
vibration on the flexible base at the contact point.  

As new concept, combined control of slow and fast 
dynamics (SMIC) is proposed for impedance control using 
new application of sliding mode control law and singular 
perturbation method. SMIC guarantees asymptotic stability 
of FBMM. Of course, this new method of impedance control 
can be used as general impedance control method for every 
kind of FBMM.  

10 DOF’s FBMM model was considered including of a 4 
DOF’s  manipulator and a 6 DOF’s moving base with flexibility. 
SMIC provides desired path, orientation and contact force 
between End Effector and environment. It guaranties 
stability of slow and fast dynamics. Also it causes to damp 
any high frequency and domain vibration at the contact point 
completely. Contact force was damped at the contact point 
rapidly. 
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(a) x coordinate of End Effector 
(Desired Y=4.5 m) 

(b) Net angular movement of Link 4 
(End Effector, desired ang.=0 degree) 

(c) Net angular movement of Link 4 
(End Effector, desired ang.=85 degree) 

 
 
 
 
 
 
 

(d) Contact force between End Effector 
and wall (desired force=2.5 N) 

 
Fig. 3. Position/principle angels of End Effector  and 

contact force 

    
 

 
Fig. 4. 3D motion of End Effector 
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