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Abstract—In this article, a new method to control a
flexible robotic arm using a conventional motor with
a gear actuator strongly affected by non-linear fric-
tion torque is proposed. This control method does
not require friction compensation and hence the es-
timation of this term because the control scheme is
robust with respect to this effect. On the other hand,
the only variables to measure are the motor shaft and
tip angular positions. Velocity measurements, which
always introduce errors and noises, are not required.
Experimental results are presented.
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1 Introduction

In the 1970′s flexible robots arise as a new sort of robotic
manipulators in engineering. With this new philosophy
new applications appeared, most of all in the aerospace
industry because lighter robots can be driven in satel-
lites using smaller amounts of energy [1]. Flexible robots
are the alternative to rigid robots because of their small
weight and high flexibility. Nevertheless, the vibration
produced in these flexible structures is difficult to con-
trol. Major research effort was made to flexible arms in
the 1980’s. Several papers appeared on this topic: [2], [3]
and [4] are examples of controlling the endpoint position
of a flexible robotic arm. In the years 1986 and 1987,
Harahima [5], Siciliano em et al. [6] used an adaptive
control scheme to account for changes in the loads. But
in the 1990’s the real problems appeared in controlling
flexible manipulators with gear reductions coupled in the
motor shaft. Researchers had to deal with non linearities
such as the friction torque [7]. Robust control schemes
with high gain minimized this effect [8]. Compensation
of the Coulomb’s friction torque accomplished by means
of a feed-forward term in the control law was also used
in [7]. The most modern technics have been applied to
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control flexible arms. Adaptive control [9], sliding control
[10] and neural networks [11] are examples of these. But
the problem with the friction torque goes on nowadays.
In 2006, Cicero et al. in [11] used neural networks to
compensate this friction effect and explains the necessity
of an estimation of this friction model.

In this paper we propose a control method without any
friction compensation model. The proposed output feed-
back control scheme is found to be robust with respect
to the effects of the unknown friction torque and no esti-
mation of it is therefore required. Our control scheme is
truly an output feedback controller since it only uses the
position of the motor and tip. Velocity measurements,
which always introduce errors in the signals and noises
making it necessary the use of suitable low pass filters
sometimes are not required in our control scheme. Be-
cedas et al. in [12] in 2006 − 2007, introduced this con-
trol method for flexible manipulators. This document is
organized as follows: In Section 2 the theoretical model
of the flexible manipulator is described. Section 3 is de-
voted to explain the control method. Section 4 is devoted
to show the experimental results obtained with the con-
trol scheme applied in a real platform. Finally, the main
conclusions of this work are presented in Section 6.

2 Model Description

2.1 Flexible dynamics

A single-link flexible manipulator with tip mass is mod-
eled that can rotate about de Z-axis perpendicular to the
paper, as shown in Fig.1. The beam is considered to be
an Euler-Bernoulli beam and the axial deformation is ne-
glected, so as to the gravitational effect because the mass
of the flexible beam is floating over an air table which al-
lows us to cancel the gravity effect and the friction with
the surface of the table. Because structural damping al-
ways increases the stability margin of the system, a de-
sign without considering damping may provide a valid
but conservative result. We study it under the hypothe-
sis of small deformations with all its mass concentrated
at the tip position because the mass of the load is bigger
than that of the bar, thus the mass of the beam can be ne-
glected. In other words, the flexible beam vibrates with
the fundamental mode, therefore the rest of the modes
are very far from the first one which can be neglected.
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Figure 1: Diagram of a single link flexible arm.

Based on these considerations we propose the following
model for the flexible link:

mL2θ̈t = c (θm − θt) (1)

where m is the unknown mass in the tip position [kg].
L [m] and c = 3EI

L [N ·m] are the length of the flexible
arm and the stiffness of the bar respectively. The stiff-
ness depends on the flexural rigidity EI [N ·m2] and on
the length of the bar L. θm [rad] is the angular position
of the motor gear 1. θt and θ̈t are the unmeasured angu-
lar position and angular acceleration [rad/s2] of the tip
respectively.

2.2 Rigid dynamics

A common electromechanical actuator in many control
systems is constituted by the DC motor. The DC motor
used here is supplied by a servoamplifier with a current
inner loop control. We can write the dynamic equation
of the system by using Newton’s Second law:

ku = J
¨̂
θm + ν

˙̂
θm + Γ̂c(

˙̂
θm) +

Γ
n

(2)

where J is the inertia of the motor
[
kg ·m2

]
, ν is the

viscous friction coefficient [N ·m · s]. ¨̂
θm and ˙̂

θm are the
angular acceleration of the motor

[
rad/s2

]
and the an-

gular velocity of the motor [rad/s] respectively. Γ̂c is the
unknown Coulomb friction torque which affects the mo-
tor dynamics [N ·m]. This nonlinear friction term is con-
sidered as a perturbation, depending only on the sign of
the motor angular velocity. As a consequence, Coulomb’s
friction, when ˙̂

θm 6= 0, follows the model:

Γ̂c · sign( ˙̂
θm) =

{
Γ̂c ( ˙̂

θm > 0)

−Γ̂c(
˙̂
θm < 0)

}
(3)

and, when ˙̂
θm ≈ 0 the dynamics is similar to that on (3)

but, in this case, depending on the sign of the voltage u.
The parameter k is the known electromechanical constant
of the motor servo-amplifier system [Nm/V ]. Γ is the

1We denote by n the reduction ratio of the motor gear, thus
θm = θ̂m/n where θ̂m is motor shaft position.

coupling torque measured in the hub [N ·m] and n is
the reduction ratio of the motor gear. u is the motor
input voltage [V ]. This variable is the control variable of
the system. This is the input to a servo-amplifier which
controls the input current to the motor by means of an
internally PI current controller. This electrical dynamics
can be rejected because this is faster than the mechanical
dynamics of the motor. Thus, the servo-amplifier can be
considered as a constant relationbetween the voltage and
the current to the motor.

2.3 System

The dynamics of the complete system, actuated by a DC
motor is given by the following simplified model:

mL2θ̈t = c (θm − θt) (4)

ku = J
¨̂
θm + ν

˙̂
θm + Γ̂c +

Γ
n

(5)

Γ = c (θm − θt) (6)

Equation (4) represents the dynamics of the flexible
beam, equation (5) represents the dynamics of the DC
motor and equation (6) represents the coupling torque
measured in the hub and produced by the translation of
the flexible beam, which is directly proportional to the
stiffness of the beam and the difference between the po-
sitions of the motor and the tip respectively.

3 Generalized proportional integrator
controller

In Laplace transforms notation, the flexible bar transfer
function, obtained from (4), can be written as follows,

Gb(s) =
θt(s)
θm(s)

=
ω2

0

s2 + ω2
0

(7)

where ω0 =
(
c/(mL2)

)1/2 is the unknown natural fre-
quency of the bar due to the lack of precise knowledge of
m. The coupling torque can be canceled in the motor by
means of a compensation term. In this case the voltage
applied to the motor is of the form,

u = uc +
Γ

k · n (8)

where uc is the voltage applied before the compensation
term. The system in (5) is then given by:

kuc = J
¨̂
θm + ν

˙̂
θm + Γ̂c (9)

The controller to be designed will be robust with respect
to the unknown piecewise constant torque disturbances
affecting the motor dynamics, Γ̂c. Then the perturbation
free system to be considered is the following:

Kuc = Jθ̈m + νθ̇m (10)
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Where K = k/n. To simplify the developments, let A =
K/J, B = ν/J . The DC motor transfer function is then
written as:

Gm(s) =
θm(s)
uc(s)

=
A

s(s + B)
(11)

Fig.2 depicts the compensation scheme of the coupling
torque measured in the hub. The regulation of the load

Figure 2: Compensation of the coupling torque measured
in the hub

position θt(t) to track a given smooth reference trajec-
tory, θ∗t (t), is desired. For the synthesis of the feedback
law we are using only the measured motor position θm

and the measured coupling torque Γ.

3.1 Outer loop controller

Consider the model of the flexible link, given in (4). This
subsystem is flat, with flat output given by θt (See [13]).
The parametrization of θm in terms of θt is given, in
reduction gear terms, by:

θm =
mL2

c
θ̈t + θt =

1
ω2

0

θ̈t + θt (12)

System (12) is a second order system in which to reg-
ulate the tip position of the flexible bar, θt, towards a
given smooth reference trajectory θ∗t (t) is desired, with
θm acting as an auxiliary control input. Clearly, if there
exists an auxiliary open loop control input, θ∗m(t), that
ideally achieves the tracking of θ∗t (t) for suitable initial
conditions, it satisfies then the second order dynamics, in
reduction gear terms (13).

θ∗m(t) =
1
ω2

0

θ̈t
∗
(t) + θ∗t (t) (13)

Subtracting (13) from (12), an expression in terms of the
angular tracking errors is obtained:

ëθt = ω2
0 (eθm − eθt) (14)

where eθm = θm − θ∗m(t), eθt = θt − θ∗t (t). Suppose for
a moment we are able to measure the angular position
tracking error, eθt , then the outer loop feedback incre-
mental controller could be proposed to be the following
PID controller,

eθm = eθt +
1
ω2

0

[
−k2ėθt − k1eθt − k0

∫ t

0

eθt(σ)dσ

]
(15)

In such a case, the closed loop tracking error eθt
evolves

governed by,

e
(3)
θt

+ k2ëθt
+ k1ėθt

+ k0eθt
= 0 (16)

The design parameters {k2, k1, k0}, are then chosen so as
to render the closed loop characteristic polynomial, into
a Hurwitz polynomial with desirable roots. However, in
order to avoid tracking error velocity measurements, we
propose to obtain an integral reconstructor for the angu-
lar velocity error signal ėθt

. We proceed by integrating
the expression (14) once; and, later, by disregarding the
constant error due to the tracking error velocity initial
conditions. The estimated error velocity [ėθt

]e can be
computed in the following form:

[ėθt ]e = ėθt(t)− ėθt(0) = ω2
0

∫ t

0

(eθm(σ)− eθt(σ)) dσ

(17)
The integral reconstructor neglects the possibly nonzero
initial condition ėθt(0) and, hence, it exhibits a constant
estimation error. When the reconstructor is used in the
derivative part of the PID controller, the constant error
is suitably compensated thanks to the integral control
action of the PID controller. Substituting the integral
reconstructor [ėθt ]e (17) by ėθt into the PID controller
(15) and after some rearrangements we obtain:

(θm − θ∗m) =
[
γ1s + γ0

s + γ2

]
(θ∗t − θt) (18)

The tip angular position can not be measured, but it
certainly can be computed from the expression relating
the tip position with the motor position and the coupling
torque (Γ):

Γ = c(θm − θt) = mL2θ̈t (19)

Thus, the angular position θt is readily expressed as,

θt = θm − 1
c
Γ (20)

Fig. 3 depicts the feedback outer loop control scheme.
This is exponentially stable. To specify the parameters,
{γ2, γ1, γ0}, we can choose to locate the closed loop poles
in the left half of the complex plane. All three poles can
be located in the same point of the real line, s = −a,
a being strictly positive, using the following polynomial
equation,

(s + a)3 = s3 + 3as2 + 3a2s + a3 = 0 (21)

Where the parameter a represents the desired location of
the poles. The characteristic equation of the closed loop
system is,

s3 + γ2s
2 + ω2

0(1 + γ1)s + ω2
0(γ2 + γ0) = 0 (22)

Identifying each term of the expression (21) with those of
(22), the design parameters {γ2, γ1, γ0} can be uniquely
specified if ω0 is known.
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3.2 Inner loop controller

The angular position θm, generated as an auxiliary con-
trol input in the previous controller design step, is now re-
garded as a reference trajectory for the motor controller.
We denote this reference trajectory by θ∗mr . The dy-
namics of the DC motor, including the Coulomb friction
term, is given by (9). The design of the controller to be
robust with respect to this torque disturbance is desired.
The following feedback controller is proposed,

eν =
ν

K
[ėθm ]e +

J

K
[−k3 [ėθm ]e − k2eθm (23)

−k1

∫ t

0

eθm(σ)dσ − k0

∫ t

0

∫ σ1

0

(eθm(σ2)) dσ2dσ1]

The following integral reconstructor for the angular ve-
locity error signal [ėθm ]e is obtained.

[ėθm ] =
K

J

∫ t

0

eν(σ)dσ − ν

J
eθm (24)

Replacing [ėθm ]e (24) into (23) and after some rearrange-
ments the feedback control law is obtained as:

(uc − u∗c) =
[
α2s

2 + α1s + α0

s(s + α3)

]
(θ∗mr − θm) (25)

The open loop control u∗c(t) that ideally achieves the open
loop tracking of the inner loop is given by

u∗c(t) = A−1θ̈∗m(t) + BA−1θ̇∗m(t) (26)

The inner loop system in Fig. 3 is exponentially stable.
We can choose to place the closed loop poles in a desired
location of the left half of the complex plane in order to
design the parameters {α3, α2, α1, α0}. As done with the
outer loop, all poles can be located at the same real value
and α3, α2, α1 and α0 can be uniquely obtained equalizing
the terms of the two following polynomials:

(s + p)4 = s4 + 4ps3 + 6p2s2 + 4p3s + p4 = 0 (27)
s4 + (α3 + B)s3 + (α3B + α2A)s2 + α1As + α0A = 0 (28)

where the parameter p represents the common location of
all the closed loop poles, this being strictly positive. Fig.
3 depicts the closed loop control system under which the
outer and inner loop are implemented in practise.

Figure 3: Flexible link dc motor system controlled by a
two stage GPI controller design.

4 Experimental Validation

This section is devoted to experimentally validate the pre-
vious algorithm.

4.1 Experimental Setup Description

Fig.4(a) depicts a picture of the used experimental plat-
form constituted by a three legged metallic structure to
support an Harmonic Drive mini servo DC motor RH-8D-
6006-E036AL-SP(N) which has a reduction ratio charac-
terized by n = 50. The frame makes possible the stably
and free rotation of the motor in the horizontal plane
around the vertical axis of the platform. The parameter
values are: inertia J = 6.87 · 10−5 [kg ·m2], viscous fric-
tion ν = 1.041 · 10−3 [N · m · s] and electromechanical
constant k = 0.21 [N ·m/V ]. With these parameters, A
and B of the transfer function of the DC motor in (11)
can be computed as: A = 61.14 [N/(V · kg · s)], B =
15.15 [N · s/(kg ·m)]. The servoamplifier accepts control
inputs from the computer in the range of [−10, 10] [V ].
The flexible bar is attached to the motor. The load floats
over the surface of an air table, so the gravity effect and
the friction of the load with the surface of the table are
canceled. The values of the flexible beam parameters are:
the length L = 0.5 [m] and diameter d = 3 · 10−3 [m].
The flexural rigidity of the bar is EI = 0.260 [N · m2],
therefore the stiffness is c = 1.585 [N ·m]. The tip load
parameters is a wood disc with mass m = 3 · 10−2 [kg].
With these parameters, the natural frequency of the bar
characterized in transfer function (7) can be computed as:
ω0 = 14.54 [rad/s]. The sensor system is integrated by an
encoder embedded in the motor which allows us to know
the motor position with a precision of 7 · 10−5 [rad]. And
a pair of strain gauges with gage factor 2.16 and resis-
tance 120.2 [Ω]. The sample time in the signals process-
ing is 2 [ms]. In order to obtain the natural frequency
of the system ω0 to validate the one mode model pro-
posed, a torque in the motor shaft was applied. Then
the tip of the beam oscillated. The oscillation is trans-
lated as a peak in the periodogram2 (see Fig. 4(b)).
The estimation provided by the peak of the periodogram,
observed at the abscissa axis is f0 ≈ 2.4 [Hz], this is
ω0 ≈2.4·2π ≈ 15.1 [rad/s]. Note that in the periodgram
only clearly appears one noticeable mode.

4.2 Outer loop design

We locate the poles of the outer loop at −12 in the real
axis, thus we assure that the inner loop is faster than the
outer one. The transfer function of the controller is given
by the following expression:

θm − θ∗m
θ∗t − θt

=
1.044s− 27.82

s + 36
(29)

2Recall that the periodogram of the signal u(t), t = 1, 2, ..., N

is |UN (ω)|2, where UN (ω) = 1√
N

∑N
t=1 UN (2πk/N)ei2πkt/N , k =

1, ..., N represents the discrete Fourier’s transform (DFT) for ω =
2πk/N
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Figure 4: (a) Photograph of the flexible arm platform.
(b) Periodogram of the flexible beam oscillation.

The open loop reference control input θ∗m(t) in (13) is
given by,

θ∗m(t) = 4.7 · 10−3θ̈∗t (t) + θ∗t (t) (30)

θ∗t (t) being the desired (rest-to-rest) reference trajectory
of the angular displacement of the arm tip.

4.3 Inner loop design

Closed loop poles are placed at −110. Then the transfer
function of the controller results:

uc − u∗c
θ∗m − θm

=
1.08 · 103s2 + 8.71 · 104s + 2.40 · 106

s(s + 424.85)
(31)

The feed-forward term in (26) is computed according to,

u∗c(t) = 16.4 · 10−3θ̈∗m(t) + 0.25θ̈∗m(t) (32)

5 Experimental results

Fig.5(a) shows the commanded trajectory (θ∗t ) and the
response of the closed loop system (θt) which is here com-
pared with that of the simulations (such a response is here
denoted by θts). Note that the experimental response θt

perfectly tracks the reference trajectory as done in sim-
ulations; all signals are superimposed. Fig.5(b) depicts
a zoom of the tip position of the flexible arm at the be-
ginning of the trajectory. Note that the tip position
precisely follows the simulated response θts and the error
with respect the reference is almost insignificant. Fig.5(c)
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Figure 5: Experimental tip position trajectory tracking.
(a) Zoom at the beginning of the trajectory. (b) Zoom
at the end of the trajectory.
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Figure 6: Trajectory tracking error. (a) Experimental.
(b) Simulated.
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Figure 7: Control voltage to the DC motor. (a) Experi-
mental. (b) Simulated.
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depicts a zoom of the system trajectory tracking at the
end of the trajectory. There not appears overshoot in the
experimental tracking so as to the simulated one. The
error is minimized when the system reaches the steady
state. Fig.6(a) depicts how the trajectory tracking er-
ror rapidly converges to zero, and thus a quite precise
tracking of the desired trajectory is achieved. The exper-
imental error can be compared with the simulated one
Fig.6(b). The experimental error is corresponded with
the previewed in simulations. Fig.7(a) depicts the exper-
imental input voltage to the DC motor u. Note that this
signal never reaches values which saturate the amplifier
(i.e +10V , −10V ). We can compare this signal with that
of the simulations (see Fig.7(b)) and observe that the
two signals are similar in shape. Obviously the experi-
mental signal is noisier because of the real behavior of
the physical platform. In Fig.8(a) the experimental tra-
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Figure 8: (a) Experimental motor position tracking. (b)
Coupling torque measured by the strain gauges.

jectory tracking of the DC motor is presented. Although,
the objective of the controller is to control the tip posi-
tion of the flexible beam this picture shows that the inner
loop has a good tracking performance. Fig.8(b) depicts
the coupling torque produced in the hub Γ. This signal
is compared with the simulated coupling toque Γs. Al-
though the experimental coupling torque is noisier than
the simulated one, we can observe that the two signals
are similar, they have the same phase and amplitude.

6 CONCLUSIONS

A two stage GPI controller design scheme has been pro-
posed for the regulation and reference trajectory tracking
of a single-link flexible arm. The GPI control scheme here
proposed only requires the measurement of the angular
position of the motor and that of the tip velocity mea-
surements which always introduce noises and errors are
not required. On the other hand the controller proposed
is found to be robust with respect nonlinear friction ef-
fects. Therefore, estimation of these is not required.
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