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Abstract - Interior permanent magnet synchronous motors 

(IPMSMs) are receiving increased attention for high performance 
drive applications because of their high power density, high 
efficiency and flux weakening capability. However, their high 
efficiency characteristic is influenced by applied control 
strategies. Thus much effort has been directed towards the 
efficiency optimization of the IPMSM by minimizing motor 
copper loss .This loss is influenced by machine parameters. Thus 
online estimation of these parameters is essential. On the other 
hand Genetic Algorithm (GA) is a tool for optimization and can 
be used for solving some problems that can be formulate in those 
forms that this algorithm can handle it. In this paper we 
formulate nonlinear state equation of this motor in such form 
that we can use GA for estimating the unknown parameters. 
Simulation results show that the estimated parameters converge 
to correct values after several iterations. 

 
Index Terms— Genetic algorithm; parameter estimation; 

nonlinear system; IPMSM; copper loss; efficiency. 

 

I. INTRODUCTION 

If all model parameters of a linear/nonlinear system are 
known we can use KF/EKF for state estimation. In some 
nonlinear cases EKF diverges. In order to solving this problem 
we must use the other tools for estimation. 

One of these tools is Genetic Algorithm (GA) that uses the 
principles of evolution, natural selection, and genetics to offer 
a method for parallel search of complex spaces. This paper 
describes a GA that can perform on-line adaptive parameter 
estimation for nonlinear systems (IPMSM in this paper).  
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It is a stochastic   process which attempts to find an optimal 
solution for a problem by using techniques that are based on 
Mendel's genetic inheritance concept and Darwin's theory of 
evolution and survival of the fittest. 

This paper introduces a modified approach to adaptive 
parameter and state estimation where a genetic algorithm is 
used to estimate the plant parameters and hence to obtain an 
estimate of the state.  

Parameter and state estimation problem formulate in such a 
form which we can use GA for solving the problem. Finally 
simulate the problem and results will show. The model that we 
used in this paper is the state space model of Interior 
Permanent Magnet Synchronous motor (IPMSM) which is 
nonlinear. 

The remainder of this paper is organized as follows. A base 
10 genetic algorithm is presented in Section 2. IPMSM model 
is discussed in Section 3. In Section 4 formulate nonlinear 
parameter and state estimation problem formulate in such a 
form which we can use GA for solving the problem. Finally 
simulate the problem and results will show. 

 

II. A BASE 10 GA 

In order for the GA to find the optimal solution to a 
particular problem, the parameters that comprise a solution 
must be encoded into a form upon which the GA can operate. 
To borrow a term from biology and genetics, any set of 
parameters which may be a solution to the given problem is 
called a chromosome, and the individual parameters in that 
possible solution are called traits.     Since the GA will most 
likely be implemented on a digital computer, each trait must be 
encoded with a finite number of digits (called genes). The 
more genes in a given trait (or in a chromosome), the longer 
the GA will take for encoding and decoding purposes and in 
other operations, so a reasonable length should be chosen. The 
entire set of chromosomes (that is, the entire set of candidate 
solutions to the given problem) upon which the GA will 
operate is called a population [1]. 

To evolve the best solution candidate (or chromosome), the 
GA employs the genetic operators of selection, crossover, and 
mutation for manipulating the chromosomes in a population. A 
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brief description of these operators follows. The GA uses these 
operators to combine the chromosomes of the population in 
different arrangements, seeking a chromosome that maximizes 
some user-defined objective function (called the fitness 
function). This combination of the chromosomes results in a 
new population (that is, the next generation). The GA operates 
repetitively, with the idea that, on average, the members of the 
population defining the current generation should be as good 
(or better) at maximizing the fitness function than those of the 
previous generation. The most fit member of the current 
generation (that is, the member with the highest fitness 
function result, or "fitness value'') at the time the GA 
terminates is often taken to be the solution of the GA 
optimization problem [1].  

The first genetic operator used by the GA for creating a new 
generation is selection. To create two new chromosomes (or 
children) two chromosomes must be selected from the current 
generation as parents. As is seen in nature, those members of 
the population most likely to have a chance at reproducing are 
the members that are the most fit. The technique used in [2] for 
selection uses a "roulette wheel'' approach [1]. 

Consider a roulette wheel that is partitioned according to the 
fitness of each chromosome. The fitter chromosomes occupy a 
greater portion of the wheel and are more likely to be selected 
for reproduction. In [3], a selection method is chosen so that a 
given segment of the population corresponding to the most fit 
members (that is, the D most fit members) are automatically 
selected for reproducing. Therefore, the least fit members have 
no chance of contributing any genetic material to the next 
generation. Of the D most fit members of the current 
population, parents are randomly chosen, with equal 
probability. The latter method of selection is used in this study 
[1]. 

Once two parents have been selected, the crossover 
operation is used. Crossover mimics natural genetics (that is, 
"inheritance'') in that it causes the exchange of genetic material 
between the parent chromosomes, resulting in two new 
chromosomes. Given the two parent chromosomes, crossover 
occurs with a user defined probability cp . According to [1], if 
crossover occurs, a randomly chosen "cross site'' is 
determined. All genes from the cross site to the end of the 
chromosome are switched between the parent chromosomes, 
and the children are created. Another approach to crossover, 
one that is used in [3] and in this study, is that crossover occurs 
exactly once (that is, 1cp = ) for every trait, with the cross site 
within that trait chosen randomly. That is, all genes between 
the cross site and the end of the trait are exchanged between 
the parent chromosomes. Crossover helps to seek for other 
solutions near to solutions that appear to be good [1]. 

After the children have been created, each child is subjected 
to the mutation operator. Mutation occurs on a gene-by-gene 
basis, each gene mutating with probability pm. If mutation 
does occur, the gene that is to mutate will be replaced by a 
randomly chosen allele (in this case, a randomly chosen value 

between 0 and 9). The mutation operator helps the GA avoid a 
local solution to the optimization problem. If all of the 
members of a population should happen to converge to some 
local optimum, the mutation operator allows the possibility 
that a chromosome could be pulled away from that local 
optimum, improving the chances of finding the global 
optimum.   However, since a high mutation rate results in a 
random walk through the GA search space, pm should be 
chosen to be somewhat small [4]. We have found, however, 
that in some instances in real-time systems, we need a slightly 
higher mutation rate. This is the case since the fitness function 
depends on the dynamically changing state of a system, so the 
locality of an optimum is time-dependent and we must ensure 
that the GA is readily capable of exploring new opportunities 
for maximizing the time-varying fitness functions [1]. 

If a chromosome is generated by crossover and mutation, it 
is possible that one or more of its traits will lie outside the 
allowable range(s). If this occurs, each trait that is out of range 
should be replaced with a randomly selected trait that does fall 
within the allowable range [1]. 

In addition to selection, crossover, and mutation, a fourth 
operator can be used by the GA. This operator, known as 
elitism, causes the single most fit chromosome of a population 
to survive, undisturbed, in the next generation. The motivation 
behind elitism is that after some sufficiently small amount of 
time, a candidate solution may be found to be close to the 
optimal solution. To allow manipulation of this candidate 
solution would risk unsatisfactory performance by the GA. 
Therefore, with elitism, the fitness of a population (seen as the 
fitness of the best member of the population) should be a non 
decreasing function from one generation to the next. If elitism 
is selected, the most fit member of the current generation is 
automatically chosen to be a member of the next generation. 
The remaining members are generated by selection, crossover, 
and mutation [5]. Notice, also, that this allows us to raise the 
mutation probability since we know that we have a good 
solution available. In [3]  as well as in this study, elitism can 
involve more than just one member. That is, a certain number 
rd (possibly more than one) of the most fit members will 
survive in the next generation without manipulation by 
crossover or mutation. If the most fit member would point to a 
local optimum in the GA search space, but a slightly less fit 
member points to the global optimum, they might both survive 
in the next generation with this new form of elitism [1]. 

To initialize the GA, a chromosome length must be chosen, 
along with the length and position of each trait on the 
chromosome. The allowable range for each trait must also be 
specified. The population size (denoted N) must be specified, 
along with the method of generating the first population. The 
individual members may be randomly generated, or they may 
be initialized to some set of ``best guesses''. In this study, a 
randomly generated initial population is always used. In 
addition, pc and pm must be specified. After this initialization, 
the GA can operate freely to solve its optimization problem 
[1]. 
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III. IPMSM MODEL 

Under assumption of linearity of the magnetic circuit a set 
of widely used model for IPMSM based on a synchronous d-q 
reference frame, including copper is presented in figure 1 and 
figure 2 [6,7]: 
 

The model equations are given as follows: 
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Where: 
 

q di i− d- and q-axis components of armature current, 

q dv v− d- and q-axis components of terminal voltage, 

eω Electrical angular speed, 

sR Armature winding resistance, 

mλ Magnetic flux linkage 
 

 
 

Figure 1: d-axis equivalent circuit 
 

 
Figure 2: q-axis equivalent circuit 
 

q dλ λ−  d-axis and q-axis components of armature self-

inductance, 

LT Electro magnetic torque, 

P Number of pole pairs, 

cP Copper loss. 
All states of this machine are measurable and can be used 

for parameter estimation. 
 

IV. PROBLEM FORMULATION 

The above equation can be written in the following form: 
 

( ( )) ( ( ), ( ), ),

( ) ( ( ), ( ), ).

d X t F X t u t t
dt

Y t G X t u t t

=

=                                            (7) 
 

Discrete version of this equation with sampling time sT is: 
 

( 1) ( ( ), ( ), ),
( ) ( ( ), ( ), ).

X k H X k u k k
Y k Z X k u k k

+ =
=                                       (8) 

 
 In IPM synchronous machine all state ( ,  and d q mI I ω ) are 

accessible and we can write the estimator model in the form of 
system model but with unknown parameters. 

 The cost function that must be minimized in the GA is the 
sum of square estimated values of state subtracted from real 
values of state. If the parameter chose such that this cost 
function minimized then the estimated value of system 
parameters is good other than we must run GA such that this 
cost function minimized or near minimization region. 

From the above we define the following cost function: 
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where: 
 

m
ˆ ˆ ˆ,  and d qI I ω  are estimated values of m,  and d qI I ω , k  is 

current time and n  is length of data used in cost function. 
 
 

V.  MODIFIED GA FOR ADAPTIVE PARAMETER ESTIMATION 

    First we convert discrete, continues system equations then 
using above mentioned cost function in GA. In this example, 
GA has (i)Population size is 50, (ii)Generations per each   
iteration is 10, (iii)Mutation function is uniform with rate equal 
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to 0.2, (iv)Crossover function is intermediate with rate equal to 
0.5, (v)Selection function is roulette while . 

Because sometimes the algorithm converge to some values 
(local optimum) that is not correct we modified this algorithm 
with checked this that if the current time is grater than some 
value(such as 30)   and cost value ( (.)J ) is grater than some 
value (such as 0.5 ,this means that the converged parameters is 
not equal or near equal of the real values) and current values of 
estimated parameter subtracted from past estimated parameters 
is smaller than some value (such as 0.01, this means the 
parameters was converged to some value) then we increase the 
mutation rate to some value grater than current value to exit 
this point else algorithm runs with past mutation rate. 

From the estimation theory we know that if the input signal 
was not Persistent Exciting (PE) of sufficient order the 
estimation was not converge to true values so we chose input 
signals (  and d qV V ) such that this condition satisfy. 

 
      

VI. SIMULATION RESULTS 

The results show that this algorithm estimates the 
parameters of nonlinear model with appropriate precision and 
time. 

Simulation results show that if the range of parameters 
where used in GA is small then convergence is faster and 
estimation is more accurate than using wider range for 
parameters. 

 

VII. CONCLUSION 

In this paper first we present the state equation and model of 
IPMSM .We see that this equation is nonlinear in nature. 

 

 
 

Figure 3: d-axis actual and estimated current. 
 

 
Figure 4: q-axis actual and estimated current. 
 

 

 
Figure 5: actual and estimated speed. 

 

 

 
Figure 6: actual and estimated sR . 
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Figure 7: actual and estimated qL . 
 
 

 
Figure 8: actual and estimated dL . 
 

 

 
Figure 9: actual and estimated mλ . 

 
Then describe a base 10 GA and formulate the parameter 

estimation in such away that can be solve with GA. Because 
all state of this machine is measurable we use this 
measurement and estimated values of this states then 
difference of real values from estimated values and use this 
value in cost function we want to minimize, then at each 

iteration GA minimize this cost function and estimate 
parameters at each iteration. After this step we introduce a 
modification in online parameter estimation using GA in order 
to increase precision of the estimation and avoidance wrong 
convergence. Finally we simulate that algorithm using 
MATLAB  

For a typical IPMSM those parameters of this motor will 
present at follow. Simulation results shows that by 
implementing this algorithm we can estimate parameters of 
this motor adaptively and states converge to true values after 
several iterations. This estimator is an alternative for parameter 
(or state) estimation for linear and nonlinear systems similar to 
KF and EKF. In some nonlinear case that EKF diverge we can 
used this algorithm for parameter estimation. 

 

APPENDIX 
Machine Specifications 

 
Rated speed , rpm 1800 
Rated torque, Nm 3.96 
P, No. of pole pairs 2 

,sR Ω  1.93 

,d qL L , mH 42.44,79.57 

mλ ,Wb 0.314 
J, rotor inertia constant, 

Nm/rad/sec  
0.003 
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