

Abstract— The main purpose of this paper is to present of how

to use heuristic approaches, especially genetic algorithms, to a
scenario manipulation in two-stage stochastic programming.
Algorithms developed for two-stage stochastic linear programs
usually require a solution of large-scale linear and nonlinear
programs because the deterministic reformulations of original
programs are based on empirical or sampling discrete probability
distributions, i.e. on so-called scenario sets. As these sets are often
huge, the reformulated programs must be simplified, and
therefore, the scenario set reduction techniques are required.
Hence, randomly selected reduced scenario sets are often
employed. Related confidence intervals for the optimal objective
function values have been derived and are often presented as tight
enough. However, there is also demand for goal-oriented scenario
manipulations. Traditional deterministic techniques are limited
by the size of scenario set. Therefore, this paper introduces a
possibility how to modify scenario sets by using heuristic
algorithms. As an example, the search of absolute lower and
upper bounds by using genetic algorithm is presented and further
enhancements are discussed. The proposed technique is
implemented in C++ and GAMS and then tested on real-data
examples.

Index Terms— Stochastic programming, scenarios, worst case
analysis, heuristic and genetic algorithms.

I. BASIC CONCEPTS OF STOCHASTIC PROGRAMMING
We denote a mathematical program as

(){ }Cf ∈∈ xxminarg? . Then, we naturally obtain an

underlying program () (){ }ξxξx Cf ∈∈ ,minarg? , as we
replaced several original constant parameters by random
elements. There is ξ , a random vector defined on the

probability space ()Ρ,,ΣΞ , and IRIR: →×Ξnf , is a

measurable function for each decision nIR∈x that must
belong to the feasible set C. To be able to solve optimization
problem correctly, the deterministic reformulation must be

Manuscript received July 22 2007. This work has been supported by the
Czech Ministry of Education in the frame of MSM 0021630529 Intelligent
Systems in Automation and by the GA CR project: 103/05/0292 and the CQR
research center of the Czech Republic.

J. Roupec is with the Institute of Automation and Computer Science, Faculty
of Mechanical Engineering, Brno University of Technology, Technicka 2, 616
69 Brno, Czech Republic (phone: +420 54114 3346; e-mail:
roupec@fme.vutbr.cz).

P. Popela is with the Institute of Mathematics, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2, 616 69 Brno, Czech
Republic (e-mail: popela@fme.vutbr.cz).

further specified. Usually, we cannot wait for observation sξ ,
and we must decide here-and-now. In this case, we have to
utilize suitable HN-reformulation and we have chosen the most
typical one:

() (){ }a.s.,minarg? ξxξxξ
x

CfE ∈∈ , (1)

where E denotes expectation functional and abbreviation a.s.
means almost surely. However, there are also different
approaches to random parameter modeling, see, e.g., [6] for
details.

It is difficult to solve the stochastic program (1) in the case
when the random vector has the continuous probability
distribution. Then, the approximation techniques based on
discretization are used, see [6]. So, we focus on a finite support
case. For the discrete random vector ξ , instead of solution
difficulty related to multidimensional integration to compute E,
we have to deal with the computational complexity caused by
the HN-reformulation size. Particularly, E is computed
explicitly as we may denote ()s

s Pp ξξ == and write the
expectation as a sum. Therefore, the SB-reformulation is a
large nonlinear program:

() ()
⎭
⎬
⎫

⎩
⎨
⎧

∈Σ∈
Ξ∈Ξ∈

ss
s Cfp

s
s

ξxξx
ξξx
I,minarg? . (2)

The main problem is of how to choose suitable realizations
sξ called scenarios when only incomplete information about

the probability distribution is available. The scenario-related
techniques are discussed in the paper [3], an interesting
approach is proposed in [5].

II. TEST EXAMPLES
A scenario-based (SB), two-stage stochastic linear program,

modeling a principal part of a melt control process in a suitable
furnace (cupola, induced, or electric-arc) is chosen as an
example for further computations because it allows to use real
world data and can be easily modified, see [13] for details.

()
() {

}Ss

Q

Qp

sss

ssss

S

s

s
s

x

s

,,1,0,,

,min;

0;minarg?

2211

2211
T

1

T

K=≥≥+

≥+=

⎭
⎬
⎫

⎩
⎨
⎧

≥+∈ ∑
=

yxuyAxAT

lyAxATyqξx

xξxxc

y
 (3)

where x is a tonnage of 1n charge materials and sy

Scenario Generation And Analysis by Heuristic
Algorithms

Jan Roupec, and Pavel Popela

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

represents a tonnage of 2n alloying materials. Symbols 2l and

2u describe a minimum and maximum tonnage of m
considered elements after alloying. Then, 1A is a matrix
containing the known proportions ija of ith element in jth

charge material and 2A is a matrix containing information

about alloying materials. { }sξξ ,,1 K=Ξ is a finite support of

distribution ξ that is composed of scenarios sξ (or shortly s),

and () Ss
s

Pp ss ,,1,1
K==== ξξ . The random utilization

of elements in the charge melt is therefore defined by s
1T . The

alloying utilization is described by the unit matrix I that stays
in front of 2A . The overall expected cost of repeated similar
melts is minimized, therefore, c and q are vectors
representing costs per ton for input materials. The discussed
melt control model development is described in [10]-[14]. The
developed techniques are related to material engineering
approaches in [7] and [8].

Utilization matrix s
1Τ has a diagonal form and we denote

333222111 ,, tttt ssss === ττ , and 444 tt = . Firstly, we assumed
only two random diagonal elements to simplify the results
analysis. As the next step, we have assumed all diagonal
elements random. The largest problem solved with real data
dealt with 16 random elements of the diagonal of utilization
matrix. We assign remaining utilization 7.03 =t and 14 =t .

We denote ()T
21,ττ=τ and we assume that

()866.0;734.01 U≈τ and ()998.0;902.02 U≈τ are
independent random variables with continuous discrete
probability distribution (for next computations:

()733.0;672.03 U≈τ and ()000.1;972.04 U≈τ). Then, sτ are
realizations of τ . Input data in Table I is significantly modified
in comparison with [17] and [19] as we generalized the
previous simple recourse case, see Table I.

III. SAMPLING TECHNIQUES

We want to compute the optimal HN-solution HN
minx and

related objective function value HN
minz . One possible way is to

approximate it and reduce a program size with random
sampling. We denote a random sample from ξ as

[] [] []()T1. ,, νξξξ K= . There are []sξ random variables

identically distributed as ξ and they are stochastically
independent. The realization of this random sample is usually

denoted as [] [] []()T1. ,, sss
νξξξ K= . We often simplify our notation

as follows: [] ()T1
. ,, νsss ξξξ K= . For computational purposes,

we may easily replace (){ }ξx,fEξ (and hence (){ }ξx,QEξ for

two-stage programs) by the realization of a sample mean

()∑ =
ν

ν 1 ,1
s

sf ξx (and ()∑ =
ν

ν 1 ,1
s

sQ ξx for two-stage programs):

() ()
⎭
⎬
⎫

⎩
⎨
⎧ ∈== ∑∑ =

=

νν
νν

νν 1
1´

minmin ,1min;1
s

s

s

s Cffz xξxξx
x

 (4)

Randomly generated observations of ξ may then serve to
compute the estimate of the objective (and recourse) function.
Therefore, scenarios are selected by random procedure. Then,
the scenarios sξ are used to build a scenario tree, and this
reduced program is solved instead of the original one.
However, its blindfold and exaggerated use can lead to
misleading results. So, in addition, Monte Carlo techniques
may be necessary to obtain an estimate of how good is such a
simplification. Then, repeated computations inform us about
the result stability and sensitivity, see the piece-wise linear line
in the middle of Fig. 1. The reduction of the objective function
estimate variance is also illustrated.

Morton, Mak, and Wood prove in [9] the following
inequalities:

{ } { } (){ }ξx;HN
min

1
minmin fEzzEE ξ
ν

ξ
ν

ξ ςς =≤≤≤ + , (5)

where x is any feasible solution from C . They assume that a

random sample from ξ denoted as [] [] []()T1. ,,
uνξξξ K= is

available and the ς denotes a random optimal objective
function value depending on the random sample. They have lν
random samples, each having size ν , therefore

[] [] []()T1. ,,:,,14 νν iiili ξξξ KK ==∀ . They use inequalities (5)
and the central limit theorem to derive the following bounds:

[]() []() []() []() ()
≤−

⎭
⎬
⎫

⎩
⎨
⎧

∈⎜
⎜
⎝

⎛ −

==
∑∑

l

ll

s
iisi

il

st
CfP

l

i ν

ν
νν

ανν
21

1
..

1
a.s.;1min1

.

ξxξξx
ξx

{ } (){ }≤≤≤≤ ξxς ξξ ;HN
minmin fEzE ν (6)

[]() ()
α

ν

ν
ν

αν
−≈⎟

⎟

⎠

⎞
+≤ −

=
+∑ 1;1 21

1 l

ll

s
s

u

st
f ξx .

The symbol 21 α−t denotes the 21 α− quantile of ()1;0N

distribution. Symbols ()lls ν and ()uus ν denote usual

estimates of standard deviations νς minvar and ()ξx;var f .

Hence, we may set α , then substitute observations []
s
.ξ and

[]
s
i .ξ in the formula (6), and we obtain reliable bounds.

IV. EXTREME SCENARIO SETS
We may see that for our melt control example, a resulted

sequence of optimum objective values for different samples is
on Figure 1 (the line in the middle). The aforementioned
bounds in this case are also very promising. However, still one
question remains. Are they so good because of small influence
of randomness or only ‘dangerous’ scenarios are not
participating in our samples?

So, in this case, we may try to realize the worst case analysis
based on so called extreme scenario sets, generally defined as

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

follows (see [12] and [14]):

() ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈∑
∈=⊂ S s

ss
nSS s

Cf
S ξΞ

ξxξx I;1minmin
;

 (7)

() ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈∑
∈=⊂ S s

ss

nSS s
Cf

S ξΞ
ξxξx I;1minmax

;
 (8)

Because the objective function convexity with respect to ξ
is not guaranteed in general case, this problem might be quite
difficult to solve. Because of the problem size, it is also
impossible to consider all scenarios as Rosa and Takriti in [15]
and try to exclude certain scenarios computing the whole
optimization program that sets their probabilities to zero.

V. ALGORITHMS
The basic idea of a genetic algorithm (GA) is quite simple.

GA works not only with one solution in time but with the whole
population of solutions. The population contains many
(ordinary several hundreds) individuals – bit strings
representing solutions. The mechanism of GA involves only
elementary operations like strings copying, partially bit
swapping or bit value changing. GA starts with a population of
strings and thereafter generates successive populations using

the following three basic operations: reproduction, crossover,
and mutation. Reproduction is the process by which individual
strings are copied according to an objective function value
(fitness). Copying of strings according to their fitness value
means that strings with a higher value have a higher probability
of contributing one or more offspring to next generation. This
is an artificial version of natural selection. Mutation is an
occasional (with a small probability) random alteration of the
string position value. Mutation is needed since, in spite of
reproduction and crossover effectively searching and
recombining the existing representations, they occasionally
become overzealous and lose some potentially useful genetic
material. The mutation operator prevents such an irrecoverable
loss. The recombination mechanism allows mixing of parental
information while passing it to their descendants, and mutation
introduces innovation into the population. When you submit
your final version, after your paper has been accepted, prepare
it in two-column format, including figures and tables.

In spite of simple principles, the design of GA for successful
practical using is surprisingly complicated. GA has many
parameters that depend on the problem to be solved. In the first,
it is the size of population. Larger populations usually decrease
the number of iterations needed, but dramatically increase the
computing time for each of iteration. The factors increasing

 Elements Solution
St. Alloys C Mn Si Cr Bounds Prices EV
t j T

2
T
1 ,: AAi b c, q EV

minx UPLO
min

−x

1 Iron 5 0.947 3.124 0 ∞ 60.0 0.73713 0.67858
1 Spinput 0 4.737 21.429 10 ∞ 129.0 0.03000 0.03000
1 FeSi-1 0 0 64.286 0 ∞ 130.0 0.00000 0.00000
1 FeSi-2 0 0 60.000 0 ∞ 122.0 0.01103 0.01437
1 Alloy-1 0 63.158 25.714 0 ∞ 200.0 0.00712 0.00664
1 Alloy-2 0 9.474 42.857 20 ∞ 260.0 0.00000 0.00000
1 Alloy-3 0 34.737 35.714 8 ∞ 238.0 0.00000 0.00000
1 SiC 18.75 0 42.857 0 0.01 160.0 0.00000 0.00000
1 Steel-1 0.5 0.947 0 0 0.1000 42.0 0.10000 0.10000
1 Steel-2 0.125 0.316 0 0 0.1000 40.0 0.01472 0.07041
1 Steel-3 0.125 0.316 0 0 0.1000 39.0 0.10000 0.10000
2 A-C 100 0 0 0 ∞ 800 0.007 0.00457
2 A-Mn 2 70 10 4 ∞ 1500 0.005 0.00130
2 A-Si 1 0 60 0 ∞ 1900 0.001 0.0005
2 A-Cr 1 6 1 40 ∞ 4000 0.001 0.0007

 2I 3 1.35 2.7 0.3

 Mix 3.75 1.421 3.857 0.3

 ()ξET1 0.8 0.95 0.7 1

 melt result 3 1.35 2.7 0.3 minz 67.556

 2u 3.5 1.65 3.0 0.45 { }minzE 83.176 69.5702

Table I

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

demands on the size of population are the complexity of the
problem being solved and the length of the individuals. Every
individual contains one or more chromosomes containing value
of potential solution. Chromosomes consist of genes. The gene
in our version of GA is a structure representing one bit of
solution value. It is usually advantageous to use some
redundancy in genes and so the physical length of our genes is
greater than one bit. This type of redundancy was introduced by
Ryan [20].

To prevent degeneration and the deadlock in local extreme
the limited lifetime of individual can be used. Limited lifetime
is realized by the “death” operator [21], which represents
something like continual restart of GA. This operator enables
decreasing of population size as well as increasing the speed of
convergence. It is necessary to store the best solution obtained
separately – the corresponding individual need not to be always
present in the population because of the limited lifetime.

Many GAs are implemented on a population consisting of
haploid individuals (each individual contains one
chromosome). However, in nature, many living organisms have
more than one chromosome and there are mechanisms used to
determine dominant genes. Sexual recombination generates an
endless variety of genotype combination that increases the
evolutionary potential of the population. Because it increases
the variation among the offspring produced by an individual, it
improves the change that some of them will be successful in
varying and often-unpredictable environments they will
encounter. Using diploid or “multiploid” individuals can often
decrease demands on the population size. However the use of
multiploid GA with sexual reproduction brings some
complications, the advantage of multiploidity can be often
substitute by the “death” operator and redundant genes coding.

New individuals are created by operation called crossover. In
the simplest case crossover means swapping of two parts of two
chromosomes split in randomly selected point (so called one
point crossover). In GA we use the uniform crossover on the bit
level is used.

The strategy of selection individuals for crossover is very
important. It strongly determines the behavior of GA. For
grammatical evolution the ranking selection with elite brings
satisfactory results.

Genetic algorithms commonly use heuristic and stochastic
approaches. From the theoretical viewpoint, the convergence of

heuristic algorithms is not guaranteed for the most of
application cases. That is why the definition of the stopping
rule of the GA brings a new problem. It can be shown [22], that
while using a proper version of GA the typical number of
iterations can be determine.

GAs we use have the following scheme:
1. Generation of the initial population: At the beginning

the whole population is generated randomly, the
members are sorted by the fitness (in descendent order).

2. Mutation: The mutation is applied to each gene with the
same probability, all GAs we used use pmut = 0.05. The
mutation of the gene means the inversion of one
randomly selected bit in the gene.

3. Death: Classical GA uses two main operations –
crossover and mutation (the other operation should be
migration). In GA described in this paper, we use the
third operation – death. Every individual has the
additional information – age. A simple counter that is
incremented in each of GA iteration represents the age.
If the age of any member reaches the preset lifetime
limit LT, this member "dies" and is immediately
replaced by a new randomly generated member. The age
is not mutated nor crossed over. The age of new
individuals (incl. individuals created by crossover) is set
to zero. Lifetime limit in our application is set to 5.

4. Sorting by the fitness.
5. Crossover: Uniform crossover is used for all genes

(each bit of the offspring gene is selected separately
from corresponding bits of both parents genes).

6. When a stopping rule is not satisfied, go to step 2.
In crossover, we do not replace all members of the

population. The crossover generates the number of individuals
corresponding to the quarter of the population only. Created
individuals are sorted into the corresponding places in the
population according to their fitness in such a way that the size
of the population remains the same. Newly created individuals
of low fitness do not have to be involved in the population.

So, we assume that components of discrete random vector ξ
are independent random variables with finite supports. We
suggest a usual algorithm for general case of finite marginal
supports iΞ . Evolutionary and genetic algorithms were already
used in stochastic programming by Berland in [1] and a group
of authors [18]. The changing set of scenarios S (7) is
considered as a population. For each member of this
population, the objective function value is computed by
running an external program in GAMS [2] that allows various
modifications of the model (3). Therefore, for given S and the
optimal solution minx (similarly for maxx and (8)) of (7), we

calculate (){ sf ξx ;min . Then the population is ordered by
fitness values, and usual operations as reproduction, crossover,
and mutation are realized.

Main search algorithm. At the end of this section, we
describe the basic loop of main algorithm that searches extreme
scenario sets:

Fig. 1 - Development of various objective function
values computed by GA

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60 70 80
no. of iteration

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

1. During initialization, a main program controlling the
whole computational process is started. It reads
optimization engine name (GAMS [2] in our example),
main source filename, included filename with scenarios,
filename for melt control results, filename for GA input,
number of scenarios, dimension, and distribution of τ .

2. The main program calls the optimization engine, and it
solves the SB-program. Input data for GA is generated;
it includes fitness values related to scenarios.

3. Then, the GA starts and generates a new set of scenarios.
4. When a stopping rule is not satisfied, continue by step 2.

VI. RESULTS AND FURTHER RESEARCH
We have applied the aforementioned main algorithm

together with GAMS source for (3) and discussed GA. As a
result we obtained a sequence of randomly selected scenario
sets together with sequences of searched pairs of extreme sets.
Figure 1 presents the development of related objective function
values (see [7] and [8]) for the case of diagonal with 4 random
elements and implemented genetic algorithm. It is clearly
visible, how the modified GA quickly searches for the both
bounds. The aforementioned confidence intervals are
significantly tighter even in the case of increased confidence
level, hence may be interpreted as too optimistic for the
situation when the worst case analysis is the goal. The
algorithm proved the significant improvement in comparison
with [19].

Further research will be focused on postoptimality analysis
realized with respect to the original set of scenarios. Mainly, the
cases where the incomplete recourse [6] appears to be very
important, will be studied. We assume that the deeper
understanding of the whole algorithm behaviour will lead to the
used GA improvement.

The used test problems are derived from the underlying
linear programs, therefore, the proposed technique will be
applied to nonlinear programming engineering applications,
e.g., in reliable structural design.

REFERENCES
[1] N. J. Berland, Stochastic Optimization and Parallel Processing. PhD

thesis, University of Bergen, 1993.
[2] A. Brooke, D. Kendrick, and A. Meeraus. Release 2.25 GAMS A User's

Guide. The Scientific Press. Boyd & Fraser Publishing Company, 2nd
edition, 1992.

[3] J. Dupačová, G. Consigli, and S. W. Wallace, “Scenarios for multistage
stochastic programs,” Annals of Operations Research, 100: 25–53, 2000.

[4] W. H. Evers, “A new model for stochastic linear programming,”
Management Science, 13:680–693, 1967.

[5] K. Hoyland and S. W. Wallace, Generating scenario trees for multi stage
problems. Technical Report 4/97, Department of Industrial Economics
and Technology Management, Norwegian University of Science and
Technology, Trondheim, 1996.

[6] P. Kall and S. W. Wallace, Stochastic Programming. John Wiley and
Sons, Chichester, 1994.

[7] Z. Karpíšek. “Heterogenity characteristics of cast iron alloying elements,”
Folia Fac. Sci. Nat. Univ. Masarykianae, Mathematica, 7:31–36, 1998.

[8] F. Kavička, K. Stránský, J. Stětina, V. Dobrovská, J. Dobrovská, and B.
Velička. “Contribution to optimization of continuous casting of steel,”
Acta Metallurgica Slovaca, 5:367–370, 1999.

[9] W. K. Mak, D. P. Morton, and R. K. Wood, “Monte Carlo bounding
techniques for deterministic solution quality in stochastic programs,”.
Operations Research Letters, 24:47–56, 1999.

[10] P. Popela, “A multistage blending problem with an expert estimate of
parameters” (in Czech), in Proceedings of 3μ Conference on Modern
Mathematical Methods, Ostrava, Czech Republic, 1994, pp 101–105.

[11] P. Popela and R. Setnička, Analysis of steel production (in Czech).
Technical report, ŽĎAS, Žďár nad Sázavou, Czech Republic, 1995.

[12] P. Popela, “Advanced scenario tuning in stochastic programming,” in
Proceedings of Czech-Slovak-Japan Workshop, Bratislava, Slovakia,
1998, pp. 307–310.

[13] P. Popela, “Application of stochastic programming in foundry,” Folia
Fac. Sci. Nat. Univ. Masarykianae Brunensis, Mathematica, 7:117–139,
1998.

[14] P. Popela, An Object-Oriented Approach to Multistage Stochastic
Programming: Models and Algorithms, PhD thesis, Charles University,
Prague, 1998.

[15] C. H. Rosa and S. Takriti, A minimax formulation for stochastic programs
using scenario aggregation, Technical report, SABRE Dec. Technol. and
IBM T. J. Watson Center, July 17 1997.

[16] Y. Yoshitomi, T. Takeba, S. Tomita, and H. Ikenoue, “Genetic algorithm
approach for solving stochastic programming problems,” in Proceedings
of International Conference on Stochastic Programming, Vancouver,
Canada, 1998.

[17] J. Zeman, Optimization models in metallurgy (in Czech), Master thesis,
Dept. of Math., FME Brno University of Technology, Brno, Czech
Republic, 1998.

[18] J. Sklenar, “Simulation of Queuing Systems in QUESIM,” in Proceedings
of the 2005 European Simulation and Modelling Conference ESM2005,
Riga, Latvia, 2005, pp. 35-37.

[19] P. Popela and J. Roupec, “GA-Based Scenario Set Modification in
Two-Stage Melt Control Problems,” in Proceedings of the 5th
International Conference MENDEL’99, Brno, Czech Republic, 1999,
pp.112–117.

[20] C. Ryan, “Shades. Polygenic Inheritance Scheme,” in Proceedings of the
3th International Conference on Soft Computing MENDEL ’97, Brno,
Czech Republic, 1997. pp. 140 – 147.

[21] J. Roupec, Design of Genetic Algorithm for Optimization of Fuzzy
Controllers Parameters. (In Czech) PhD Thesis. Brno University of
Technology, Brno, Czech Republic, 2001.

[22] J. Roupec, P. Popela, and P. Ošmera, “The Additional Stopping Rule for
Heuristic Algorithms,” in Proceedings of the 3th International
Conference on Soft Computing Mendel ’97, Brno, Czech Republic, 1997,
pp. 135–139.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

