
 
 

 

  
Abstract— The main purpose of this paper is to present of how 

to use heuristic approaches, especially genetic algorithms, to a 
scenario manipulation in two-stage stochastic programming. 
Algorithms developed for two-stage stochastic linear programs 
usually require a solution of large-scale linear and nonlinear 
programs because the deterministic reformulations of original 
programs are based on empirical or sampling discrete probability 
distributions, i.e. on so-called scenario sets. As these sets are often 
huge, the reformulated programs must be simplified, and 
therefore, the scenario set reduction techniques are required. 
Hence, randomly selected reduced scenario sets are often 
employed. Related confidence intervals for the optimal objective 
function values have been derived and are often presented as tight 
enough. However, there is also demand for goal-oriented scenario 
manipulations. Traditional deterministic techniques are limited 
by the size of scenario set. Therefore, this paper introduces a 
possibility how to modify scenario sets by using heuristic 
algorithms. As an example, the search of absolute lower and 
upper bounds by using genetic algorithm is presented and further 
enhancements are discussed. The proposed technique is 
implemented in C++ and GAMS and then tested on real-data 
examples. 
 

Index Terms— Stochastic programming, scenarios, worst case 
analysis, heuristic and genetic algorithms. 
 

I. BASIC CONCEPTS OF STOCHASTIC PROGRAMMING 
We denote a mathematical program as 

( ){ }Cf ∈∈ xxminarg? . Then, we naturally obtain an 

underlying program ( ) ( ){ }ξxξx Cf ∈∈ ,minarg? , as we 
replaced several original constant parameters by random 
elements. There is ξ , a random vector defined on the 

probability space ( )Ρ,,ΣΞ , and IRIR: →×Ξnf , is a 

measurable function for each decision nIR∈x  that must 
belong to the feasible set C. To be able to solve optimization 
problem correctly, the deterministic reformulation must be 
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further specified. Usually, we cannot wait for observation sξ , 
and we must decide here-and-now. In this case, we have to 
utilize suitable HN-reformulation and we have chosen the most 
typical one: 

( ) ( ){ }a.s.,minarg? ξxξxξ
x

CfE ∈∈ , (1) 

where E denotes expectation functional and abbreviation a.s. 
means almost surely. However, there are also different 
approaches to random parameter modeling, see, e.g., [6] for 
details. 

It is difficult to solve the stochastic program (1) in the case 
when the random vector has the continuous probability 
distribution. Then, the approximation techniques based on 
discretization are used, see [6]. So, we focus on a finite support 
case. For the discrete random vector ξ , instead of solution 
difficulty related to multidimensional integration to compute E, 
we have to deal with the computational complexity caused by 
the HN-reformulation size. Particularly, E  is computed 
explicitly as we may denote ( )s

s Pp ξξ ==  and write the 
expectation as a sum. Therefore, the SB-reformulation is a 
large nonlinear program: 
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The main problem is of how to choose suitable realizations 
sξ  called scenarios when only incomplete information about 

the probability distribution is available. The scenario-related 
techniques are discussed in the paper [3], an interesting 
approach is proposed in [5]. 

II. TEST EXAMPLES 
A scenario-based (SB), two-stage stochastic linear program, 

modeling a principal part of a melt control process in a suitable 
furnace (cupola, induced, or electric-arc) is chosen as an 
example for further computations because it allows to use real 
world data and can be easily modified, see [13] for details. 
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where x  is a tonnage of 1n  charge materials and sy  
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represents a tonnage of 2n  alloying materials. Symbols 2l  and 

2u  describe a minimum and maximum tonnage of m  
considered elements after alloying. Then, 1A  is a matrix 
containing the known proportions ija  of ith element in jth 

charge material and 2A  is a matrix containing information 

about alloying materials. { }sξξ ,,1 K=Ξ  is a finite support of 

distribution ξ  that is composed of scenarios sξ  (or shortly s ), 

and ( ) Ss
s

Pp ss ,,1,1
K==== ξξ . The random utilization 

of elements in the charge melt is therefore defined by s
1T . The 

alloying utilization is described by the unit matrix I  that stays 
in front of 2A . The overall expected cost of repeated similar 
melts is minimized, therefore, c  and q  are vectors 
representing costs per ton for input materials. The discussed 
melt control model development is described in [10]-[14]. The 
developed techniques are related to material engineering 
approaches in [7] and [8]. 

Utilization matrix s
1Τ  has a diagonal form and we denote 

333222111 ,, tttt ssss === ττ , and 444 tt = . Firstly, we assumed 
only two random diagonal elements to simplify the results 
analysis. As the next step, we have assumed all diagonal 
elements random. The largest problem solved with real data 
dealt with 16 random elements of the diagonal of utilization 
matrix. We assign remaining utilization 7.03 =t  and 14 =t . 

We denote ( )T
21,ττ=τ  and we assume that 

( )866.0;734.01 U≈τ  and ( )998.0;902.02 U≈τ  are 
independent random variables with continuous discrete 
probability distribution (for next computations: 

( )733.0;672.03 U≈τ  and ( )000.1;972.04 U≈τ ). Then, sτ  are 
realizations of τ . Input data in Table I is significantly modified 
in comparison with [17] and [19] as we generalized the 
previous simple recourse case, see Table I. 

III. SAMPLING TECHNIQUES 

We want to compute the optimal HN-solution HN
minx  and 

related objective function value HN
minz . One possible way is to 

approximate it and reduce a program size with random 
sampling. We denote a random sample from ξ  as 

[ ] [ ] [ ]( )T1. ,, νξξξ K= . There are [ ]sξ  random variables 

identically distributed as ξ  and they are stochastically 
independent. The realization of this random sample is usually 

denoted as [ ] [ ] [ ]( )T1. ,, sss
νξξξ K= . We often simplify our notation 

as follows: [ ] ( )T1
. ,, νsss ξξξ K= . For computational purposes, 

we may easily replace ( ){ }ξx,fEξ  (and hence ( ){ }ξx,QEξ  for 

two-stage programs) by the realization of a sample mean 

( )∑ =
ν

ν 1 ,1
s

sf ξx  (and ( )∑ =
ν

ν 1 ,1
s

sQ ξx  for two-stage programs): 
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 (4) 

Randomly generated observations of ξ  may then serve to 
compute the estimate of the objective (and recourse) function. 
Therefore, scenarios are selected by random procedure. Then, 
the scenarios sξ  are used to build a scenario tree, and this 
reduced program is solved instead of the original one. 
However, its blindfold and exaggerated use can lead to 
misleading results. So, in addition, Monte Carlo techniques 
may be necessary to obtain an estimate of how good is such a 
simplification. Then, repeated computations inform us about 
the result stability and sensitivity, see the piece-wise linear line 
in the middle of Fig. 1. The reduction of the objective function 
estimate variance is also illustrated. 

Morton, Mak, and Wood prove in [9] the following 
inequalities: 

{ } { } ( ){ }ξx;HN
min

1
minmin fEzzEE ξ
ν

ξ
ν

ξ ςς =≤≤≤ + , (5) 

where x  is any feasible solution from C . They assume that a 

random sample from ξ  denoted as [ ] [ ] [ ]( )T1. ,,
uνξξξ K=  is 

available and the ς  denotes a random optimal objective 
function value depending on the random sample. They have lν  
random samples, each having size ν , therefore 

[ ] [ ] [ ]( )T1. ,,:,,14 νν iiili ξξξ KK ==∀ . They use inequalities (5) 
and the central limit theorem to derive the following bounds: 
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{ } ( ){ }≤≤≤≤ ξxς ξξ ;HN
minmin fEzE ν  (6) 
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The symbol 21 α−t denotes the 21 α−  quantile of ( )1;0N  

distribution. Symbols ( )lls ν  and ( )uus ν  denote usual 

estimates of standard deviations νς minvar  and ( )ξx;var f . 

Hence, we may set α , then substitute observations [ ]
s
.ξ  and 

[ ]
s
i .ξ  in the formula (6), and we obtain reliable bounds. 

IV. EXTREME SCENARIO SETS 
We may see that for our melt control example, a resulted 

sequence of optimum objective values for different samples is 
on Figure 1 (the line in the middle). The aforementioned 
bounds in this case are also very promising. However, still one 
question remains. Are they so good because of small influence 
of randomness or only ‘dangerous’ scenarios are not 
participating in our samples? 

So, in this case, we may try to realize the worst case analysis 
based on so called extreme scenario sets, generally defined as 
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follows (see [12] and [14]): 
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Because the objective function convexity with respect to ξ  
is not guaranteed in general case, this problem might be quite 
difficult to solve. Because of the problem size, it is also 
impossible to consider all scenarios as Rosa and Takriti in [15] 
and try to exclude certain scenarios computing the whole 
optimization program that sets their probabilities to zero. 

V. ALGORITHMS 
The basic idea of a genetic algorithm (GA) is quite simple. 

GA works not only with one solution in time but with the whole 
population of solutions. The population contains many 
(ordinary several hundreds) individuals – bit strings 
representing solutions. The mechanism of GA involves only 
elementary operations like strings copying, partially bit 
swapping or bit value changing. GA starts with a population of 
strings and thereafter generates successive populations using 

the following three basic operations: reproduction, crossover, 
and mutation. Reproduction is the process by which individual 
strings are copied according to an objective function value 
(fitness). Copying of strings according to their fitness value 
means that strings with a higher value have a higher probability 
of contributing one or more offspring to next generation. This 
is an artificial version of natural selection. Mutation is an 
occasional (with a small probability) random alteration of the 
string position value. Mutation is needed since, in spite of 
reproduction and crossover effectively searching and 
recombining the existing representations, they occasionally 
become overzealous and lose some potentially useful genetic 
material. The mutation operator prevents such an irrecoverable 
loss. The recombination mechanism allows mixing of parental 
information while passing it to their descendants, and mutation 
introduces innovation into the population. When you submit 
your final version, after your paper has been accepted, prepare 
it in two-column format, including figures and tables. 

In spite of simple principles, the design of GA for successful 
practical using is surprisingly complicated. GA has many 
parameters that depend on the problem to be solved. In the first, 
it is the size of population. Larger populations usually decrease 
the number of iterations needed, but dramatically increase the 
computing time for each of iteration. The factors increasing 

  Elements   Solution 
St. Alloys C Mn Si Cr Bounds Prices EV  
t j T

2
T
1 ,: AAi  b c, q EV

minx  UPLO
min

−x  

1 Iron 5 0.947 3.124 0 ∞ 60.0 0.73713 0.67858 
1 Spinput 0 4.737 21.429 10 ∞ 129.0 0.03000 0.03000 
1 FeSi-1 0 0 64.286 0 ∞ 130.0 0.00000 0.00000 
1 FeSi-2 0 0 60.000 0 ∞ 122.0 0.01103 0.01437 
1 Alloy-1 0 63.158 25.714 0 ∞ 200.0 0.00712 0.00664 
1 Alloy-2 0 9.474 42.857 20 ∞ 260.0 0.00000 0.00000 
1 Alloy-3 0 34.737 35.714 8 ∞ 238.0 0.00000 0.00000 
1 SiC 18.75 0 42.857 0 0.01 160.0 0.00000 0.00000 
1 Steel-1 0.5 0.947 0 0 0.1000 42.0 0.10000 0.10000 
1 Steel-2 0.125 0.316 0 0 0.1000 40.0 0.01472 0.07041 
1 Steel-3 0.125 0.316 0 0 0.1000 39.0 0.10000 0.10000 
2 A-C 100 0 0 0 ∞ 800 0.007 0.00457 
2 A-Mn 2 70 10 4 ∞ 1500 0.005 0.00130 
2 A-Si 1 0 60 0 ∞ 1900 0.001 0.0005 
2 A-Cr 1 6 1 40 ∞ 4000 0.001 0.0007 

 2I  3 1.35 2.7 0.3     

 Mix 3.75 1.421 3.857 0.3     

 ( )ξET1  0.8 0.95 0.7 1     

 melt result 3 1.35 2.7 0.3  minz  67.556  

 2u  3.5 1.65 3.0 0.45  { }minzE  83.176 69.5702 

Table I 

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



 
 

 

demands on the size of population are the complexity of the 
problem being solved and the length of the individuals. Every 
individual contains one or more chromosomes containing value 
of potential solution. Chromosomes consist of genes. The gene 
in our version of GA is a structure representing one bit of 
solution value. It is usually advantageous to use some 
redundancy in genes and so the physical length of our genes is 
greater than one bit. This type of redundancy was introduced by 
Ryan [20]. 

To prevent degeneration and the deadlock in local extreme 
the limited lifetime of individual can be used. Limited lifetime 
is realized by the “death” operator [21], which represents 
something like continual restart of GA. This operator enables 
decreasing of population size as well as increasing the speed of 
convergence. It is necessary to store the best solution obtained 
separately – the corresponding individual need not to be always 
present in the population because of the limited lifetime. 

Many GAs are implemented on a population consisting of 
haploid individuals (each individual contains one 
chromosome). However, in nature, many living organisms have 
more than one chromosome and there are mechanisms used to 
determine dominant genes. Sexual recombination generates an 
endless variety of genotype combination that increases the 
evolutionary potential of the population. Because it increases 
the variation among the offspring produced by an individual, it 
improves the change that some of them will be successful in 
varying and often-unpredictable environments they will 
encounter. Using diploid or “multiploid” individuals can often 
decrease demands on the population size. However the use of 
multiploid GA with sexual reproduction brings some 
complications, the advantage of multiploidity can be often 
substitute by the “death” operator and redundant genes coding. 

New individuals are created by operation called crossover. In 
the simplest case crossover means swapping of two parts of two 
chromosomes split in randomly selected point (so called one 
point crossover). In GA we use the uniform crossover on the bit 
level is used. 

The strategy of selection individuals for crossover is very 
important. It strongly determines the behavior of GA. For 
grammatical evolution the ranking selection with elite brings 
satisfactory results. 

Genetic algorithms commonly use heuristic and stochastic 
approaches. From the theoretical viewpoint, the convergence of 

heuristic algorithms is not guaranteed for the most of 
application cases. That is why the definition of the stopping 
rule of the GA brings a new problem. It can be shown [22], that 
while using a proper version of GA the typical number of 
iterations can be determine. 

GAs we use have the following scheme: 
1. Generation of the initial population: At the beginning 

the whole population is generated randomly, the 
members are sorted by the fitness (in descendent order).  

2. Mutation: The mutation is applied to each gene with the 
same probability, all GAs we used use pmut = 0.05. The 
mutation of the gene means the inversion of one 
randomly selected bit in the gene. 

3. Death: Classical GA uses two main operations – 
crossover and mutation (the other operation should be 
migration). In GA described in this paper, we use the 
third operation – death. Every individual has the 
additional information – age. A simple counter that is 
incremented in each of GA iteration represents the age. 
If the age of any member reaches the preset lifetime 
limit LT, this member "dies" and is immediately 
replaced by a new randomly generated member. The age 
is not mutated nor crossed over. The age of new 
individuals (incl. individuals created by crossover) is set 
to zero. Lifetime limit in our application is set to 5. 

4. Sorting by the fitness. 
5. Crossover: Uniform crossover is used for all genes 

(each bit of the offspring gene is selected separately 
from corresponding bits of both parents genes).  

6. When a stopping rule is not satisfied, go to step 2. 
In crossover, we do not replace all members of the 

population. The crossover generates the number of individuals 
corresponding to the quarter of the population only. Created 
individuals are sorted into the corresponding places in the 
population according to their fitness in such a way that the size 
of the population remains the same. Newly created individuals 
of low fitness do not have to be involved in the population. 

So, we assume that components of discrete random vector ξ  
are independent random variables with finite supports. We 
suggest a usual algorithm for general case of finite marginal 
supports iΞ . Evolutionary and genetic algorithms were already 
used in stochastic programming by Berland in [1] and a group 
of authors [18]. The changing set of scenarios S  (7) is 
considered as a population. For each member of this 
population, the objective function value is computed by 
running an external program in GAMS [2] that allows various 
modifications of the model (3). Therefore, for given S  and the 
optimal solution minx  (similarly for maxx  and (8)) of (7), we 

calculate ( ){ sf ξx ;min . Then the population is ordered by 
fitness values, and usual operations as reproduction, crossover, 
and mutation are realized. 

Main search algorithm. At the end of this section, we 
describe the basic loop of main algorithm that searches extreme 
scenario sets: 

Fig. 1 - Development of various objective function 
values computed by GA 
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1. During initialization, a main program controlling the 
whole computational process is started. It reads 
optimization engine name (GAMS [2] in our example), 
main source filename, included filename with scenarios, 
filename for melt control results, filename for GA input, 
number of scenarios, dimension, and distribution of τ . 

2. The main program calls the optimization engine, and it 
solves the SB-program. Input data for GA is generated; 
it includes fitness values related to scenarios.  

3. Then, the GA starts and generates a new set of scenarios. 
4. When a stopping rule is not satisfied, continue by step 2. 

VI. RESULTS AND FURTHER RESEARCH 
We have applied the aforementioned main algorithm 

together with GAMS source for (3) and discussed GA. As a 
result we obtained a sequence of randomly selected scenario 
sets together with sequences of searched pairs of extreme sets. 
Figure 1 presents the development of related objective function 
values (see [7] and [8]) for the case of diagonal with 4 random 
elements and implemented genetic algorithm. It is clearly 
visible, how the modified GA quickly searches for the both 
bounds. The aforementioned confidence intervals are 
significantly tighter even in the case of increased confidence 
level, hence may be interpreted as too optimistic for the 
situation when the worst case analysis is the goal. The 
algorithm proved the significant improvement in comparison 
with [19].  

Further research will be focused on postoptimality analysis 
realized with respect to the original set of scenarios. Mainly, the 
cases where the incomplete recourse [6] appears to be very 
important, will be studied. We assume that the deeper 
understanding of the whole algorithm behaviour will lead to the 
used GA improvement.  

The used test problems are derived from the underlying 
linear programs, therefore, the proposed technique will be 
applied to nonlinear programming engineering applications, 
e.g., in reliable structural design. 
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