
 
 

 

  
Abstract—  this paper introduces a model for finding the optimal 

replacement policy for Condition Based Maintenance (CBM) of a 
system when the information obtained from the gathered data 
does not reveal the system's exact degradation state. 
Subsequently, optimal observation interval is found when the 
collection of data is costly. The proposed model uses the 
Proportional Hazards Model (PHM) introduced by D. R. Cox to 
model the system’s failure rate. The PHM takes into 
consideration the system's degradation state as well as its age. 
Since the acquired information is imperfect, the degradation 
state of the system is not precisely known. Bayes' rule is used to 
estimate the probability of being in any of the possible states. The 
system's degradation process follows a Hidden Markov Model 
(HMM). By using dynamic programming, the system's optimal 
replacement policy and its long-run average operating cost are 
found. Based on the total long-run average cost, the optimal 
interval and the corresponding replacement criterion are 
specified. A numerical example compares the systems when the 
observation is free and when it is costly, and finds the optimal 
observation interval and cost. 
 

Index Terms— Condition Based Maintenance (CBM), Costly 
Observations, Imperfect Information, Proportional Hazard Model 
(PHM). 
 

I. INTRODUCTION 
For a system subjected to a Condition Based Maintenance 

(CBM) program, inspections are performed to obtain proper 
information about the degradation state of the system.  In this 
paper, the information acquired during the inspections does not 
reveal the exact degradation state of the system but represents 
some data which are stochastically related to the system's 
degradation state [11], [13]. These data are used to calculate the 
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probability of being in a certain degradation state. The hidden 
degradation state of the system is described by a Markov Chain. 
In CBM studies, several models have been used to take into 
account the system's degradation state. One of these models is 
the Proportional Hazards Model (PHM), introduced by [4], 
which has been widely used in medical studies. Recently, an 
increasing application of the PHM to the CBM is reported [10], 
[1]. According to the PHM, the system's failure rate (also called 
hazard rate) is estimated based on its age as well as its 
degradation state. In this paper the PHM is used to calculate the 
optimal replacement policy and long-run average cost for a 
system with imperfect information.  

Afterwards, the unrealistic assumption of non-costly 
observation is relaxed and corresponding optimal replacement 
policy and total long-run average cost are found. In the CBM 
modeling, if the observations are taken at no cost, the optimal 
observation interval is zero i.e. the best choice is to monitor the 
system continuously. That's because the higher frequency of 
observations will provide more frequent information about the 
degradation state of the system with no extra cost. 
Consequently, this will reduce the likelihood of performing 
unnecessary preventive replacements, hence, will result in a 
more cost effective maintenance system. When there is 
considerable cost for collecting and analyzing the observations, 
an optimal observation interval that minimizes the total 
maintenance cost including the observations cost should be 
applied. In reality, in many cases, observations require 
personnel and equipment, and sometimes it is necessary to stop 
or suspend the operations when collecting the observations [9]. 
Also some tests for analysis and extraction of useful information 
may be needed; therefore some costs are associated to the 
collection and analysis of observations. Finding the optimal 
total long-run average cost of the maintenance system with 
costly observations leads to comparison and selection of the 
optimal observation interval amongst several possible 
observation intervals. The replacement criterion that 
corresponds to the optimal total long-run average cost is then 
obtained.  

This paper consists of four more sections. In section 2 a brief 
literature review of the principle models in replacement 
optimization is presented. Section 3 deals with the assumptions, 
the details of the proposed model and the optimal solution. 
Section 4 presents a numerical example. The conclusion and the 
areas of further researches are presented in section 5. 
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II. LITERATURE REVIEW 
Reference [9] investigated the maintenance policy for a 

system whose exact degradation state is known through the 
observations. The objective is to find the optimal replacement 
criteria and observation interval that minimizes the long-run 
average cost of the whole maintenance system. Reference [3] 
considered a system with perfect information which reveals 
exactly the system's degradation state. The objective is to 
determine the next observation schedule, based on the 
observations' information up to date.  Reference [7] modeled a 
CBM policy where both the replacement threshold and the 
observation schedule are decision variables. It is allowed to 
have irregular observation periods. Reference [8] considered a 
system revealing perfect information with an obvious failure 
which is detected as soon as it happens. Reference [2] 
considered an optimal observation time with a hidden failure 
being detected through observation. A pre-defined threshold 
for the failure is assumed and associated costs are considered 
for the observations, repairs and replacements. Reference [12] 
considered a replacement problem for a system with perfect 
observation using PHM while the observations are non-costly. 

III. PROBLEM FORMULATION 
This paper presents a deteriorating system subjected to 

random failure. The degradation state of the system is 
represented by a finite set of non-negative integers, i.e. by state 

space { }1,2,,...,S N= . State 1 indicates the best possible 

state for the system which means that the system is new or like 

new. The degradation state process ( ){ }1,2,...,X t N= , is a 

discrete time homogeneous Markov chain with N  
unobservable states. All N  degradation states are working 
states and do not include the failure state which is a non-working 
state.  Figure 1 shows the Markov transition process between 
degradation states along with transition from each degradation 
state to the failure state. ijp  is the probability of going from 

degradation state i  to the degradation state j  during one 
observation period knowing that the system has not failed yet, 
despite the fact that if  is the probability of going from 

degradation state i  to the failure state. The circles represent the 
states. 

 
Figure 1: Markov process transition and transition to failure 

The degradation states of the system are not observable 
except at the time 0t =  when the degradation state of the 
system is certainly 1. The transition matrix P  is an upper 
triangular matrix, i.e. 0 ijp =  for ij <  and 

( ) ( )( )Pr | ,ijp X t j X t i T t= + ∆ = = > + ∆ , 

0, , 2 ,...t = ∆ ∆  otherwise. T  is a random variable 
representing the system's failure time. The system indicators 
are observed at times; , 2 ,...t = ∆ ∆ . The indicators obtained 

can take a value in a finite set of M  non-negative integers, 

i.e. { }1,2,..., Mθ ∈ Θ = . It is supposed that a value of θ  is 

observed with a known probability jq θ , when the degradation 

state of the system is j . Q  represents the stochastic matrix 
which specifies these probabilities, i.e. 

 ,  ,  jQ q j Sθ θ = ∈ ∈Θ  .  

The failure is not considered as a degradation state. It is a 
condition that causes the system to cease functioning and is 
outwardly obvious. If the failure happens, it is immediately 
recognized and the only possible action is “Failure 
Replacement”. Otherwise, at any observation point, we can 
decide whether to perform “Preventive Replacement” or “Do-
Nothing”. Failure Replacement and Preventive Replacement 
renew the system and return it to state 1 and period 0k = . 
The cost for preventive replacement is C , while a failure 
replacement costs 0,, >+ CKCK . Both actions, Failure 
Replacement and Preventive Replacement, are instantaneous. 

The system's failure rate is following the PHM. In the PHM 

the failure rate ( ) ( ) ( )0, k kh t X h t Xψ=  is a product of two 

independent functions, where ( ).0h  is a function of the 

system's age only and ( ).ψ  is a function of the system's 

degradation state only. ( )kX X k= ∆  is the degradation 

state of the system at period k  and ∆  is the fixed observation 
interval. We assume that degradation state of the system 
remains unchanged during each period and each degradation 
state transfer is assumed to take place at the end of each 
period, just before observation point. 

The objective is to find the optimal replacement policy that 
minimizes the long-run average cost per unit time for the 
replacement system and consequently the optimal observation 
interval. 

A. Alternative state space  

Since the degradation state of the system is not observable 
we introduce an alternative state space called the conditional 

probability distribution of the system's degradation state, kπ  
which is defined as: 
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probability of being in degradation state i  at k th observation 
point. 

B. Alternative state's transition 

At the k +1st observation point, after observingθ , the prior 

conditional distribution of the system kπ , is updated 

to ( )θπ 1+k
j  which is calculated by using the Bayes’ formula 

as: 

( )1 1

1 1
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This updated conditional distribution carries all the history 
of the observations and the performed actions since the last 
replacement. At any replacement, the observation period’s 
counterk , will be reset to 0 and the conditional probability 

distribution of the system degradation state will be set to 0π . 

C. Decision space 

The decision space of the model is  { }∞,0 , where 0  means 
“Replace the system immediately”, and ∞  means “Do-Nothing 
until the next observation point or replace at the failure time, if 
the failure takes place before the next observation point”. 

D. Dynamic Programming Formulation (non costly 
observations)  

Let ( )kkV π,  denote the minimum cost from period k  until 
next renewal point, where the updated conditional distribution 
of the system degradation state is kπ : 

( ) ( ) ( ){ }0, min 0, , , ,k kV k C V W k gπ π π= +  where 

( )0,0 πVC +  is the expected cost in case of preventive 

replacement and ( )gkW k ,,π  is the expected cost of leaving 
the system to work until the next observation point.  

( )
( ) ( ) ( )

( )( ) ( ) ( )

0

1

1

, ,

0, 1 , , , ,

1, Pr | , , ,

k

k k

M
k k k

W k g

K C V R k g k

V k k R k
θ

π

π π τ π

π θ θ π π+

=

=

   + + − ∆ − ∆   
 

+ + ∆  
∑

where ( ) ( )( )0, , exp ( ) )k k t
k k

R k X h s dsπ ψ
∆+

∆
∆ = − ∫  and 

( ) ( )
0

, , , ,k
kk R k X t dtτ π

∆

∆ = ∫  are respectively the 

probability that the system is still working during the k + 1st 
period and the mean sojourn time of the system during k + 1st 
period when the system state conditional probability 
distribution at the k th period kπ , is known (see [6]). g  is 
average cost of maintenance policy per unit time over an 

infinite horizon. ∑∑
= =

=
N

i

N

j
jij

k
i

k qp
1 1

)|Pr( θππθ  is 

probability of observing θ  at k + 1st observation epoch. 

( )∆,, kkg πτ  is expected cost of the overlapped time of two 
consecutive renewal period when the first renewal period has 
ended with a failure replacement as shown in Figure 2. 

 
Figure 2: Observations after a failure replacement 

Reference [6] proved the existence of optimal stopping-time, 

( ) ( ){ }.inf 0 : 1 , , , ,k k
gT k K R k g kπ τ π= ∆ ≥ − ∆ ≥ ∆    

and the optimal decision ( ), ka k π  at observation point k  

with conditional probability distribution of degradation state 
kπ . 

( )
( ) ( )
( ) ( )

1 , , , ,

1 , , , ,

if 
,

0 if 

k k

k k

k
K R k g k

K R k g k
a k

π τ π

π τ π
π

− ∆ < ∆

− ∆ ≥ ∆

  ∞  = 
   

 

Next section presents the formulation leading to the 
optimum long-run average cost *g . 

E. Optimal long-run average cost 

Reference [5] found the long-run average cost per unit of 

time 
( )

( )min

Pr
,

g gT

g

C K T T

E T T
φ

+ >
=  where stopping-time is gT , 

T  is the time to failure, Pr( )gT T>  is the probability of a 

failure replacement, and min ( , )gE T T   is the expected length 

of a replacement cycle. They proved that the stopping-time 

*gT , where * min gTg φ= , minimizes gTφ  and the value of 

*g  is the unique solution of gTg φ= .  

( ) ( )0,0Pr πQTTg =>  and min ( , )gE T T ( )00,W π=  

where: 
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and  

( )1

1

1 ( , , )

( 1, )Pr( | , ) ( , , )

j

M
j j j

B R j

Q j j R j
θ

π

π θ θ π π+

=

= − ∆ +

+ ∆∑
  

where 

( ) ( ) ( ){ }| 1 , , , ,gt r R K R r g rπ π τ π+  = ∆ ∈ − ∆ = ∆  . 

The tools presented so far are used to determine the optimal 
replacement policy and long-run average cost of a system where 
no cost is considered for the observations and the observation's 
interval is prefixed at ∆ .  

F. Dynamic Programming Formulation (costly observations)  

Now we assume that each observation costs IC  and restate 

the ( )kkV π,  as follow: 

( ) ( ) ( ){ }0, min 0, , , , ,k k
I IV k kC C V W k g Cπ π π= + +  

where ( )00,IkC C V π+ +  is the renewal period's total cost 

(replacement and observations' cost) at -thk  observation 
point if the system is replaced preventively. 

 ( ), , ,k
IW k g Cπ  is the renewal period's total cost at k th 

observation point if no action takes place and is given as: 

( )
( ) ( )

( )( ) ( ) ( )

( )

0

1

1

, , ,

0, 1 , ,

1, Pr | , , ,

, ,

k
I

k
I

M
k k k

k
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kC K C V R k

V k k R k

g k

θ

π

π π

π θ θ π π

τ π

+

=

=

   + + + − ∆   
 

+ + ∆ 
 

− ∆

∑
  

where ( )00,ikC K C V π + + +   represents the renewal 

period's total cost if the decision is "Do-nothing" and the 
system fails during the next observation period. By solving the 
dynamic programming, we have shown that stopping time and 
decision criterion is similar to that of non-costly observations. 
Even when the observations are costly the system has to be 
replaced based on following decision criterion: 

( )
( ) ( )
( ) ( )

if 1 , , , ,

0 if 1 , , , ,
,

k k

k k

k
K R k g k

K R k g k
a k

π τ π

π τ π
π

∞ − ∆ < ∆

− ∆ ≥ ∆

    = 
   

 

Nevertheless, if the observation interval can be altered, on 
one hand, there is a constant cost that is paid at every 
observation epoch, so more frequent observation costs more. 
On the other hand, more frequent observations provide more 
information that can lead to a more cost effective replacement 
policy. This means that the optimal observation interval can be 
selected between several possible (applicable) observation 
intervals. The measure that helps us to select the optimal 
observation interval is the minimum total long-run average cost 
which is the long-run average cost of replacement and 
observations. In next section we calculate this measure. 

G. Total long-run average cost and optimal observation 
interval 

In this part we introduce a method to calculate the 

minimum total long-run average cost by letting *gT
C  

and *gT
P  represent the expected total cost and 

expected length of the renewal period associated with a 
replacement policy in which the optimal time to 
replacement is *gT  and *g  represents the minimum 

long-run average cost of replacement. The total long-
run average cost per unit of time then is 

( )
( )

*
*

*
*

*

min

Pr

,

g

g

I

T
g

T
g

C K T TC C
G

E T TP

+ >
= = +

∆
 where C , K  

and IC  are the replacement cost, failure cost and 

observation cost respectively. ( )*Pr gT T>  is the 

probability of a failure replacement when the optimal 

replacement policy is applied and ( )*min ,gE T T  is the 

expected length of a renewal cycle when the optimal 
replacement policy is in use. To calculate the total long-run 
average cost per unit of time, one needs to use the tools 
provided earlier in this paper to find the optimal long-run 
average cost of the replacement *g , with out taking into 

consideration the observation cost, then using *g , the 
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optimal stopping time of the replacement system  *gT , is 

obtained. ( )*Pr gT T>  and ( )*min ,gE T T  are calculated 

using *gT . Finally the amount of *G  is calculated. 

We assume that the optimal observation interval is to be 
chosen from a finite set of L  possible observation 
intervals , 1,2,...,i i L∆ = . The optimal observation interval is 

the one with the minimum total long-run average cost 
calculated based on the result of this section.  

In the following section we solve a replacement example 
without any considerable observation cost and a prefixed 
observation interval, later we add a considerable cost for the 
observations and assume two possible observation intervals 
and we find the optimal observation interval, minimum long-run 
average cost and the corresponding optimal replacement 
criteria. 

IV. NUMERICAL EXAMPLE  
We use the example presented by 0[6] and adapt it to our 

case of costly observations. In this example, it is assumed that 
system has a two parameter Weibull like behaviour with 
baseline distribution hazard function having the following 

parameters: 
1

0( ) , 0t
h t t

β

β

β
α

−

= ≥ , 1, 2α β= =  

and ( ) ( )0.5 1tX
tX eψ −= . The system has two possible 

degradation states }2,1{  with the transition probability 

matrix 1
0.4 0.6
0 1

P
 

=  
 

 when the observation interval is 

1 0.5∆ = . θ , the observed value of the system's indicator, 
can take three possible values. The indicator value and the 
system's degradation state are related by the probability 

distribution
0.6 0.3 0.1
0.2 0.4 0.4

Q
 

=  
 

. 5=C  and 2=K  

represent the replacement cost and the failure cost of the 
system consecutively. The long-run average cost of 
replacement, based on the provided method, is found to be 

*
1 8.67g =  and the optimum stopping time of the system is : 

( ) ( ){ }*
1

inf 0;2 1 , ,0.5 8.67 , ,0.5k k
gT k R k kπ τ π= ≥ − ≥    

Now assume that observation cost 1IC =  is applied for 
each observation to obtain the system's indicator value. We 
also assume that the there is another possible observation 
interval 2 0.6∆ =  with corresponding degradation state 

transition matrix 2
0.3 0.7
0 1

P
 

=  
 

. We are interested in 

finding the optimal replacement interval and corresponding 
replacement criteria. The following table shows the final result 
of the method applied on the data. 

T ABLE 1: COSTLY OBSERVATION COMPARISON 

i  i∆  *
ig  iG  

1 0.5 8.67 10.67 
2 0.6 8.73 10.39 

Whereas the long-run average cost of replacement for the 
shorter observation interval, 1 0.5∆ =  is smaller, the total 

long-run average cost 2G , corresponding 2 0.6∆ = , is the 
optimal one. It means that we will pay less totally, if we 
observe the system by observation interval equal to 0.6 and 
apply the corresponding stopping-time: 

( ) ( ){ }*
1

inf 0;2 1 , ,0.6 8.73 , ,0.6k k
gT k R k kπ τ π≥ − ≥ =    

V. CONCLUSION 
For a system which is subjected to a CBM program, 

inspections are performed to obtain proper indicators about 
the degradation state of the system and decide on an optimal 
replacement policy. In many practical cases, the observations 
do not reveal the exact system degradation state. In this work 
we have considered a model to find the optimal replacement 
policy and minimum long-run average cost of a system 
subjected to a random degradation process while the 
information obtained from the system is imperfect. Later we 
have relaxed the assumption of non-costly observation and 
found the optimal replacement policy and the total long-run 
average cost of the system replacement and observations. This 
procedure leads to the optimal observation interval. The 
solved example shows how observation cost can influence the 
total long-run average cost of the system and the optimal 
observation interval which in turn will affect the optimal 
replacement policy.  

The introduced developments in CBM methodology help 
the practitioners to find the optimal observation interval of a 
system based on the total long-run average cost as well as the 
corresponding replacement policy that optimizes the total long-
run average cost of the replacement and observations.  
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