
Application of DESA Design Method in
Object-Oriented Software Systems

Yee Soon Lim and Martin G. Helander

Abstract—To reduce complexity in software systems it is
essential to minimize the functional dependencies in them.
Functional dependency can be caused by the internal logic
(model) of the system as well as the user interface. It is then vital
to locate the source of the dependency, so that it can be removed.
Our method “Design Equations for Systems Analysis”, or DESA,
offers an opportunity to accomplish this. It allows separate
examination of the model and the user interface when evaluating
functional dependencies. This study investigates this potential of
DESA in identifying coupled relationships. We used an
object-oriented game application as a case study. DESA was
found to effectively reduce the complexity of object-oriented
software systems.

Index Terms—DESA, functional dependency, model and user
interface subsystems, object-oriented design, software system
complexity.

I. INTRODUCTION
A software system is inherently complex due to many

dependencies between the various components that constitute
the software. The dependencies between components impede
maintenance, modification, and extension, which are
constantly required in software systems. To minimize these
dependencies, object-oriented design, which is a prevalent
software design method, can be employed [1]. C++ and Java
are programming languages that conform to this method, and
have the potential to increase the modularity of software
systems. Modularity is defined as a particular design structure,
in which parameters and tasks are interdependent within units
(modules) and independent across them [2].

However powerful in increasing software modularity,
object-oriented design alone will not reduce software
complexity [3], [4]. This is because in object-oriented design,
software concerns are intuitively separated into distinct
entities – often based on experience. However, to reduce
complexity software concerns must also be explicitly
separated into functions. A minimally complex software
system will allow functions to be modified or added
independently, without disrupting other functions. This will
then ease maintenance, modification, and extension [3]. Such
functional independence is not ensured in object-oriented
design – for example, one class may contain two or more
functions, which are highly inter-dependent, as dependencies

are not controlled within a class. Therefore, object-oriented
design may still produce complex software systems. In other
words, object-orientation offers the necessary but not the
sufficient conditions for reducing complexity. A software
design method that overcomes this shortcoming is presented in
the following subsection.

A. Complementing Object-Oriented Design with Axiomatic
Design

ADOSS (Axiomatic Design of Object-oriented Software
Systems) is a software design method that minimizes
dependencies between functions of an object-oriented
software system [5]. It utilizes axiomatic design which is a
method that minimizes dependencies between functions of a
complex system [6]. The procedure of ADOSS is summarized
in the following paragraphs.

ADOSS employs a V model [7] for software design (Fig. 1).
The left side of the model represents a top-down approach in
building the software hierarchy, in which axiomatic design is
employed; the right side represents a bottom-up approach in
building the object-oriented model, in which object-oriented
design is employed. The V model comprises the following
detailed steps:

1. Define FRs of the software system – identify customer

needs of the system, and map them into FRs (functional
requirements). Each FR can represent an object.

2. Mapping between domains and the independence of
software functions – map every FR into a DP (design
parameter). DPs are design solutions in the form of data
or input for objects.

3. Decomposition of FRs and DPs – FRs are decomposed,
and the results are mapped into DPs again. This
decomposition process is repeated until all DPs are
explicit enough to be implemented. The resultant

Manuscript received May 20, 2007.
Y. S. Lim is with the Nanyang Technological University, Singapore

(phone: +65 9653 9640; e-mail: yeesoon@ntu.edu.sg).
M. G. Helander is with the Nanyang Technological University, Singapore

(e-mail: martin@ntu.edu.sg).

Fig. 1. V model: software design model of ADOSS

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

decomposition hierarchies of FRs and DPs represent the
software system architecture.

4. Definition of modules / complete design matrix – a design
matrix is constructed to provide a gestalt representation of
the relationship between the FRs and the DPs (Fig. 2).
Each row of the matrix constitutes a module of the
software system. Hence, a module explicitly represents an
FR – unlike object-oriented design where a module
represents a class or a real entity. As a result, high
modularity implies minimal dependencies between FRs,
which implies low complexity.

5. Identify objects, attributes, and operations – the FR-DP
pairs in the completed design matrix are translated into
object-oriented design classes which comprise data and
methods.

The ADOSS software design method was employed in the

development of a commercial software system called Acclaro
[8]. Acclaro is an interactive and general-purpose software
package for designers who practice axiomatic design.

B. Shortcoming of ADOSS (Axiomatic Design of
Object-oriented Software Systems)

An object-oriented software system can be decomposed into
two subsystems: model and user interface [9]. The model
subsystem comprises objects that are responsible for the
internal logic of the system. The user interface subsystem
comprises objects that are responsible for displaying model
state to the user, and for getting user input to the model.

In ADOSS, both the model subsystem and the user interface
subsystem are denoted as DPs (design parameters), which are
intended to fulfill various FRs (functional requirements). For
example, the first 4 DPs in Fig. 2 denote the model, while DP5
denotes the user interface. Hence, when constructing the
design matrix to evaluate functional dependencies, the model
is examined jointly with the user interface. This particular
procedure is inappropriate for three reasons.

First, an FR of a software system is often fulfilled by both
the model and the user interface, in collaboration. For example,
if an FR is to allow a user to configure image size, the user
interface will be responsible for enabling user to input the size,
and the model will be responsible for getting the user input
from the user interface and know the input value. Therefore,
each FR should have two semantically different DPs – one to
denote the model, and the other to denote the user interface.

Second, since an FR is often fulfilled by both the model and
the user interface, a dependency between two FRs can be
caused by either the model or the user interface, or both. It is
essential to identify the source of this dependency to
effectively remove it. Therefore, the model and the user
interface should be examined separately when evaluating
functional dependencies. This is further justified in the case
study presented in section II.

Third, the model is independent of the user interface, but
the latter is dependent on the former. This unidirectional
dependency is inevitable, which result in all user interface DPs
being dependent on all model DPs. Therefore, if the model is
examined jointly with the user interface, the design matrix will
be cluttered with many inconsequential Xs, as shown in the
last row of the design matrix in Fig. 2. By examining the
model and the user interface separately, these inconsequential
Xs will be eradicated.

C. Complementing Object-Oriented Design with DESA
DESA (Design Equations for Systems Analysis) is a design

method, which has been demonstrated to be effective in
minimizing functional dependencies within human-machine
systems, by examining both the internal structure and the user
interaction of the systems [10], [11]. Since DESA builds on
axiomatic design, it can complement object-oriented design in
an approach similar to ADOSS (Axiomatic Design of
Object-oriented Software Systems). However, there are two
fundamental differences between DESA and ADOSS.

First, DESA utilizes a user-centered design model (Fig. 3),
where user goals (UGs) are mapped into FRs (functional
requirements), followed by DPs (design parameters), and
finally into user actions (UAs). This is different from the
ADOSS’ V-model (Fig. 1), where customer attributes are
mapped into FRs, and finally into DPs.

Second, DESA has two DP domains: model domain and
user interface domain. This allows separate examination of the
model and the user interface when evaluating functional
dependencies. In contrast, ADOSS has only one DP domain
that contains both the model DPs and the user interface DPs.
Therefore, DESA has the potential to overcome the
shortcoming of ADOSS presented in the preceding subsection.
This potential was further investigated via a case study, in
which DESA was employed to evaluate functional
dependencies within an object-oriented application termed as
Nim Game.

Requirement
Specification

Internal
Structure
Design

User
Interface
Design

Functional
Requireme-

nts (FRs)

Design
Parameters,

Model
(DPms)

Goal
Domain

Requirement
Domain

Model
Domain

Action
Domain

Design
Parameters,

UI
(DPuis)

Interaction
Design

User Interface
Domain

User
Actions
(UAs)

User
Goals
(UGs)

Fig. 3. DESA design model

X 0 0 0 0

X X 0 0 0

X X X 0 0

0 0 X X 0

X X X X X

FR1 Manage
design workflow

FR2 Provide deci
sion-making envm

FR3 Provide
efficient data I/O

FR4 Provide utility
function

FR5 Support ease
of use

DP1 Design roadmap

DP2 Provide decision
-making criterion

DP3 Data manager

DP4 Plug-in software

DP5 Graphical user
interface (GUI)

Fig. 2. Design matrix of the Acclaro software at first-level decomposition [8]

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

II. CASE STUDY
The Nim Game application was obtained from a textbook

that introduces object-oriented software design in Java
programming language [9]. In this application, a user player
takes turn with a computer player to remove sticks from a pile
of sticks, via a graphical user interface. The player who
removes the last stick loses. The user is able to configure the
game by specifying the number of sticks to begin with and
which player plays first. The application will display the
number of sticks left in the pile, display the number of sticks
last taken by each player, and report the winner when the
game is over.

Fig. 4 shows the screenshots of Nim Game. The “Configure
Game” dialog will be displayed when user select “New Game”
in the “Game” menu. The “Game Over” option pane will be
displayed after the last stick is removed.

A. Nim Game Specification using DESA Design Model
DESA design model, as shown in Fig. 3, was employed to

aid mapping of Nim Game’s user goals to its functionality, to
its model specification, to its user interface specification, and
to its user actions.

The first-level UGs (user goals), in the UG decomposition
hierarchy, were:

UG1 = Configure game
UG2 = Take turns with computer to remove sticks
UG3 = View game state

These UGs were then mapped into FRs (functional

requirements) of the application:

FR1 = Allow configuration of game
FR2 = Take turns with user to remove sticks
FR3 = Display game state

The difference between the UGs and the FRs is in the point

of view – the UGs were explicitly specified from the point of
view of user, while the FRs were explicitly specified from the
point of view of the application.

The FRs were mapped into DPms (model design parameters)
of the application:

DPm1 = Game
DPm2 = Player -- Pile::remove()::sticks to take
DPm3 = Game -- Game

Each fully specified DPm contains three types of

information: the class responsible for fulfilling the functional
requirement, the class method that implements the
responsibility, and the data of concern. For example, in DPm2,
Pile is the class responsible for fulfilling FR2, remove is Pile’s
method that removes sticks, and sticks to take is the data of
concern. Besides concrete classes, the DPms may also
comprise abstract classes or interfaces.

Each DPm can have a few responsibilities, and they were
separated using the symbol “--”. For example, in DPm2, Player

is the interface responsible for determining the number of
sticks to remove and then command a Pile object to remove
them, while Pile is the class responsible for removing these
sticks. However, Player’s method was not specified at this
stage because the types of players and their strategies were yet
unknown. This implies that FR2 had to be decomposed into
second-level FRs. Due to similar reasons, FR1 and FR3 were
also decomposed.

The responsibilities of each DPm were listed for
documentation purpose, and they were specified in <type of
object>:<responsibility> format:

DPm1 = Game: get initialization data from controller
DPm2 = Interface player: determine number of sticks to take

and command pile to remove sticks
Pile: remove sticks

DPm3 = Game: notify observers when game changes state
Game: know game state information

The DPms were mapped into DPuis (user interface design

parameters) of the application:

DPui1 = ConfigurationDialog::ConfigurationDialog() --
ConfigurationPanel::okPanel() --
Anonymous::actionPerformed(), NimController

DPui2 = NimInterface -- NimInterface --
NimController::sticks to take

DPui3 = NimInterface -- NimInterface -- NimInterface

The DPuis and the DPms have similar specification syntax.
However, they are different from a semantic perspective – the
DPms are responsible for implementing the internal logic of
the application, while the DPuis are responsible for
implementing the user interface.

The responsibilities of each DPui were also listed for
documentation purpose:

DPui1 = View: display dialog for user to input initialization
data

Fig. 4. Screenshots of Nim Game application

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Controller: listen to "OK" button of dialog for
initialization data

Controller: pass initialization data to game
DPui2 = View: display components for interface player to

remove sticks
Controller: listen to components for number of

sticks to remove
Controller: pass number of sticks to remove to

interface player
DPui3 = View: display components for user to view game

state
View: observe game to update state changes
View: query game state and write it to components,

when game changes state

The DPuis were then mapped into UAs (user actions), which
are actions that a user has to perform to achieve the UGs:

UA1 = Interact with "Configure Game" dialog that pops up
after clicking on "New Game" menu item of
"Game" menu. Click on "OK" button after
configuration

UA2 = When text field of "Computer takes" panel is
highlighted, wait for computer to remove sticks.
When text field of "User takes" panel is highlighted,
interact with remove stick panel

UA3 = View panels that display game state

The first-level user goals and functional requirements were
decomposed, and the mapping process was repeated. The
decomposition ended at second-level, because the DPms, DPuis,
and UAs had been fully and clearly specified. Table I shows
the first and second-level UGs, FRs, DPms, DPuis, and UAs.

B. Dependency Analysis of Nim Game
Design matrices of Nim Game were constructed to obtain a

gestalt representation of dependencies within the application.
Based on DESA design model (Fig. 3), four matrices were
constructed: UG-FR matrix, FR-DPm matrix, DPm-DPui matrix,
and DPui-UA matrix. The implications of these matrices are
discussed in the following paragraphs.

Fig. 5 shows the UG-FR matrix of Nim Game. ‘X’
represents has mapping, ‘0’ represents no mapping, and a
blank square represents inconsequential parent-child mapping.
Absence of off-diagonal ‘X’ implies that user goals were
mapped to functional requirements in a one-to-one mapping;
there were no one-to-many mappings or many-to-one

mappings. Therefore, the functional requirements did not
cause any dependencies between the user goals, since each
user goal was satisfied by an independent functional
requirement. Such functional specification with a diagonal
matrix is optimal, since it signifies a one-to-one relationship.

The FR-DPm matrix of Nim Game is similar to its UG-FR
matrix shown in Fig. 5, but the implications are different. In
the FR-DPm matrix, an off-diagonal ‘X’ represents a
dependency between two FRs caused by their DPms. Two FRs
are concluded to be dependent when modification of one of
their DPms affects the other DPm. For example, since DPm2.1
and DPm2.2 have similar methods and data of concern, which
is to determine number of sticks to take and command a Pile
object to remove them, they are likely to share software code.
If one class, Player, is used to contain these two similar
methods, there will be no access restrictions between them,
which will result in many cross-references. Modifying DPm2.1
will affect DPm2.2, and vice versa. Hence, FR2.1 and FR2.2
will be inter-dependent on each other, which are indicated by
the two off-diagonal ‘X’s in Fig. 6. The model is the source of
this inter-dependency, not the user interface.

Since different classes, IndependentPlayer and
InteractivePlayer, were used to contain the similar methods
between DPm2.1 and DPm2.2, the inter-dependency is absent
in the application (Fig. 7). In fact, none of the DPms cause
dependencies between the FRs, which result in the full
FR-DPm matrix being diagonal.

The functional dependencies mentioned in the preceding
paragraphs are different from client-server dependencies. A
client object is dependent on a server object, because the
former invokes the methods of the latter. For example, in
DPm2.1, class IndependentPlayer is the client, while class Pile
is the server, because an IndependentPlayer object invokes the
remove method of a Pile object and passes sticks to take as the

Fig. 5. UG-FR design matrix of Nim Game

FR2.1: Determine no.
of sticks to remove
FR2.2: Allow user to
remove sticks

DPm2.1: IndependentPlayer::takeTurn()
-- Pile::remove()::sticks

DPm2.2: InteractivePlayer::setNumberTo
Take()-takeTurn()-- Pile::remove()::sticks

Fig. 7. Absence of off-diagonal ‘X’s imply that DPm2.1 and DPm2.2 do not
cause any dependency between FR2.1 and FR2.2

FR2.1: Determine no.
of sticks to remove
FR2.2: Allow user to
remove sticks

DPm2.1: Player::computerTakeTurn() --
Pile::remove()::sticks
DPm2.2: Player::setNumberToTake()-
userTakeTurn() -- Pile::remove()::sticks

Fig. 6. The two off-diagonal ‘X’s imply that DPm2.1 and DPm2.2 cause an
inter-dependency between FR2.1 and FR2.2

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

argument. Hence, IndependentPlayer is dependent on Pile –
IndependentPlayer’s code that invokes remove depends on
how remove is specified in Pile. Such client-server
dependency is not denoted in the design matrices.
Nevertheless, other tools, such as the dependency structure
matrix [12], [13], can be employed to analyze client-server
dependencies [14], [15].

The DPm-DPui matrix has an implication similar to the
FR-DPm matrix presented in the preceding paragraphs. In the
DPm-DPui matrix, an off-diagonal ‘X’ represents a dependency
between two FRs caused by their DPuis – modification of one
DPui affects the other DPui. For example, Nim Game has to
display three types of game state information: sticks left in
pile, sticks last taken by computer, and sticks last taken by
user (Fig. 4). Hence, the user interface subsystem has to
display three almost identical panels on the graphical user
interface, which contain the game state information. To avoid
duplicate code when programming these panels, we can
program one class Panel, and then create three instances of
Panel during run-time. However, having to modify “sticks left
in pile” panel implies that the other two panels will experience
identical modification, and vice versa. This is undesirable
because “display sticks last taken” and “display sticks left in
pile” are different functions, FR3.1 and FR3.2 respectively
(Table I) – it is likely to have to modify one without changing
the other. As a result, FR3.1 and FR3.2 are inter-dependent,
which is represented by the two off-diagonal ‘X’s in Fig. 8.
The user interface is the source of this inter-dependency, not
the model.

This inter-dependency can be avoided by using a class
ReportPanel to model the “sticks left in pile” panel, and a
separate class PlayerPanel to model the other two panels (Fig.
9). This is actually the design employed in the application. In
reality, none of the DPuis cause dependencies between the FRs,
which result in the full DPm-DPui matrix being diagonal.

The DPui-UA matrix has an implication different from the
two preceding matrices, FR-DPm matrix and DPm-DPui matrix.
An off-diagonal ‘X’ in the matrix represents a dependency
between two UGs (user goals) caused by their UAs (user
actions) – when users execute one of the UA, the other UA
will be affected. This affects the users of the application,

instead of the designers. Such source of dependency is more
common among process control applications, where user
interactions may be coupled [11], [16]. The DPui-UA matrix of
Nim Game is diagonal.

III. CONCLUSION
DESA is effective in reducing the complexity of

object-oriented software systems, as it minimizes the
functional dependencies. Functional dependency can be
caused by either the model subsystem or the user interface
subsystem, or both, and DESA can locate the cause.
Furthermore, DESA can aid object-oriented software designers
to identify a suitable collection of classes for various software
systems, and to allocate appropriate responsibilities to the
classes by using functional independence as the criterion.

REFERENCES
[1] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing

Object-Oriented Software (Book style). Englewood Cliffs, NJ:
Prentice-Hall, 1990.

[2] C. Y. Baldwin and K. B. Clark, Design Rules, Vol. 1: The Power of
Modularity (Book style). Cambridge, MA: The MIT Press, 2000.

[3] N. P. Suh, Axiomatic Design: Advances and Applications (Book style).
New York, NY: Oxford University Press, 2001, ch. 5, pp. 239–298.

[4] T. Oktay, “Axiomatic design of shop floor programming software,” in
Proceedings of the 4th International Conference on Axiomatic Design,
ICAD2006, Florence, Italy.

[5] S. H. Do and N. P. Suh, “Object-oriented software design with axiomatic
design,” in Proceedings of the 1st International Conference on Axiomatic
Design, ICAD2000, Cambridge, MA.

[6] N. P. Suh, The Principles of Design (Book style). New York, NY:
Oxford University Press, 1990.

[7] B. El-Haik, “The integration of axiomatic design in the engineering
design process,” 11th Annual RMSL Workshop, May 12 1999, Detroit,
MI.

[8] S. H. Do and N. P. Suh, “Axiomatic design of software systems,” CIRP
Annals, vol. 49, no. 1, pp. 95–100, 2000.

[9] J. Nino and F. Hosch, An Introduction to Programming and Object
Oriented Design using Java (Book style). New Jersey, NJ: John Wiley &
Sons, 2005.

[10] M. G. Helander, “Using design equations to identify sources of
complexity in human-machine interaction,” Theoretical Issues in
Ergonomics Science, vol. 8, no. 2, pp. 123–146, 2007.

[11] S. Lo and M. G. Helander, “Use of axiomatic design principles for
analysing complexity of human-machine systems,” Theoretical Issues in
Ergonomics Science, vol. 8, no. 2, pp. 147–169, 2007.

[12] D. V. Steward, “The design structure system: a method for managing the
design of complex systems,” IEEE Transactions in Engineering
Management, vol. 28, no. 3, pp. 71–84, 1981.

[13] S. D. Eppinger, “A planning method for integration of large-scale
engineering systems,” in Proceedings of the 11th International
Conference on Engineering Design, ICED97, Tampere, Finland.

[14] K. Sullivan, Y. Cai, B. Hallen, and W. Griswold, “The structure and
value of modularity in software design,” in Proceedings of the 8th
European Software Engineering Conference held jointly with 9th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/FSE’01, Vienna, Austria.

[15] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using dependency
models to manage complex software architecture,” in Proceedings of the
20th ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA’05, Broadway, NY.

[16] K. J. Vicente, Cognitive Work Analysis: toward Safe, Productive, and
Healthy Computer-Based Work (Book style). Mahwah, NJ: Lawrence
Erlbaum Associates, 1999.

[17] S. Lo and M. G. Helander, “Method for analyzing the usability of
consumer products,” in Proceedings of the 3rd International Conference
on Axiomatic Design, ICAD2004, Seoul, Korea.

DPm3.1: Player::takeTurn()
-- AbstractPlayer::setSticksT
aken()-sticksTaken()::sticks

DPm3.2: Game::play() --
Game::sticksLeft(),
Pile::sticks()::sticks

DPui3.1: Panel::Panel() --
PlayerView::PlayerView() --
PlayerView::update()::sticks

DPui3.2: Panel::Panel() --
NimController::initializeGame()
-- NimInterface::update()::sticks

Fig. 9. The two off-diagonal ‘X’s imply that DPui3.1 and DPui3.2 cause an
inter-dependency between FR3.1 and FR3.2

DPm3.1: Player::takeTurn()
-- AbstractPlayer::setSticksT
aken()-sticksTaken()::sticks

DPm3.2: Game::play() --
Game::sticksLeft(),
Pile::sticks()::sticks

DPui3.1: PlayerPanel::PlayerPan
el() -- PlayerView::PlayerView() --
PlayerView::update()::sticks

DPui3.2: ReportPanel::ReportPanel
()-- NimController::initializeGame
()--NimInterface::update()::sticks

Fig. 8. Absence of off-diagonal ‘X’s imply that DPui3.1 and DPui3.2 do not
cause any dependency between FR3.1 and FR3.2

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

TA
B

LE
 I

D
EC

O
M

PO
SE

D
 U

G
S,

 F
R

S,
 D

P m
S,

 D
P u

iS
, A

N
D

 U
A

S

U
G

s (
U

se
r

G
oa

ls
)

FR
s (

Fu
nc

tio
na

l
R

eq
ui

re
m

en
ts

)
D

P m
s (

D
es

ig
n

Pa
ra

m
et

er
s,

M
od

el
)

D
P u

is
(D

es
ig

n
Pa

ra
m

et
er

s,
U

I)

U
A

s (
U

se
r A

ct
io

ns
)

1
C

on
fig

ur
e

ga
m

e
A

llo
w

co

nf
ig

ur
at

io
n

of

ga
m

e

G
am

e
Co

nf
ig

ur
at

io
nD

ia
lo

g:
:C

on
fi

gu
ra

ti
on

D
ia

lo
g(

)
--

Co

nf
ig

ur
at

io
nP

an
el

::
ok

Pa
ne

l(
)

--

An
on

ym
ou

s:
:a

ct
io

nP
er

fo
rm

ed
()

,
N

im
Co

nt
ro

lle
r

In
te

ra
ct

 w
ith

 "
C

on
fig

ur
e

G
am

e"
 d

ia
lo

g
th

at
 p

op
s u

p
af

te
r c

lic
ki

ng
 o

n
"N

ew

G
am

e"
 m

en
u

ite
m

 o
f "

G
am

e"
 m

en
u.

C

lic
k

on
 "

O
K

"
bu

tto
n

af
te

r c
on

fig
ur

at
io

n
1.

1
Sp

ec
ify

nu

m
be

r
of

st

ic
ks

 to
 st

ar
t

A
llo

w

sp
ec

ifi
ca

tio
n

of

nu
m

be
r o

f
st

ic
ks

 to
 st

ar
t

G
am

e:
:G

am
e(

)
--

Pi

le
::

Pi
le

()
::

st
ar

ti
ng

 s
ti

ck
s

Co
nf

ig
ur

at
io

nP
an

el
::

st
ic

ks
Pa

ne
l(

)
--

Co

nf
ig

ur
at

io
nP

an
el

::
st

ar
ti

ng
St

ic
ks

()
 -

-
An

on
ym

ou
s:

:a
ct

io
nP

er
fo

rm
ed

()
,

N
im

Co
nt

ro
lle

r:
:s

et
St

ar
ti

ng
St

ic
ks

()
-

in
it

ia
liz

eG
am

e(
):

:s
ta

rt
in

g
st

ic
ks

En
te

r n
um

be
r o

f s
tic

ks
 to

 st
ar

t i
n

te
xt

fie

ld
 o

f "
N

um
be

r o
f s

tic
ks

 to
 st

ar
t w

ith
"

pa
ne

l

1.
2

Se
le

ct

us
er

pl

ay
s

fir
st

 o
r

no
t

A
llo

w
 se

le
ct

io
n

of
 u

se
r p

la
ys

fir

st
 o

r n
ot

G
am

e:
:G

am
e(

):
:f

ir
st

 p
la

ye
r

Co
nf

ig
ur

at
io

nP
an

el
::

fi
rs

tP
la

ye
rP

an
el

()
 -

-
Co

nf
ig

ur
at

io
nP

an
el

::
fi

rs
tP

la
ye

rP
an

el
()

 -
-

An
on

ym
ou

s:
:a

ct
io

nP
er

fo
rm

ed
()

,
N

im
Co

nt
ro

lle
r:

:s
et

U
se

rP
la

ys
Fi

rs
t(

)-

in
it

ia
liz

eG
am

e(
):

:f
ir

st
 p

la
ye

r

C
lic

k
on

 "U
se

r p
la

ys
 fi

rs
t"

 ra
di

o
bu

tto
n

or
 "

C
om

pu
te

r p
la

ys
 fi

rs
t"

 ra
di

o
bu

tto
n

2
Ta

ke
 tu

rn
s

w
ith

co

m
pu

te
r

to

re
m

ov
e

st
ic

ks

Ta
ke

 tu
rn

s w
ith

us

er
 to

 re
m

ov
e

st
ic

ks

Pl
ay

er
 -

-
Pi

le
::

re
m

ov
e(

):
:s

ti
ck

s
to

 t
ak

e
N

im
In

te
rf

ac
e

--
 N

im
In

te
rf

ac
e

--

N
im

Co
nt

ro
lle

r:
:s

ti
ck

s
to

 t
ak

e
W

he
n

te
xt

 fi
el

d
of

 "
C

om
pu

te
r t

ak
es

"
pa

ne
l i

s h
ig

hl
ig

ht
ed

, w
ai

t f
or

 c
om

pu
te

r
to

 re
m

ov
e

st
ic

ks
. W

he
n

te
xt

 fi
el

d
of

"U

se
r t

ak
es

" p
an

el
 is

 h
ig

hl
ig

ht
ed

,
in

te
ra

ct
 w

ith
 re

m
ov

e
st

ic
k

pa
ne

l
2.

1
A

llo
w

co

m
pu

te
r

to

re
m

ov
e

st
ic

ks

D
et

er
m

in
e

nu
m

be
r o

f
st

ic
ks

 to
 re

m
ov

e

In
de

pe
nd

en
tP

la
ye

r:
:t

ak
eT

ur
n(

)
--

Pi

le
::

re
m

ov
e(

):
:s

ti
ck

s
to

 t
ak

e
Au

to
m

at
ed

A

ut
om

at
ed

2.
2

R
em

ov
e

st
ic

ks

A
llo

w
 u

se
r t

o
re

m
ov

e
st

ic
ks

In

te
ra

ct
iv

eP
la

ye
r:

:s
et

N
um

be
rT

oT
a

ke
()

-t
ak

eT
ur

n(
)

--

Pi
le

::
re

m
ov

e(
):

:s
ti

ck
s

to
 t

ak
e

N
im

In
te

rf
ac

e:
:b

ut
to

nP
an

el
()

 -
-

N
im

In
te

rf
ac

e:
:b

ut
to

nP
an

el
()

 -
-

N
im

Co
nt

ro
lle

r:
:a

ct
io

nP
er

fo
rm

ed
()

::
st

ic
ks

 t
o

ta
ke

C
lic

k
on

 "
Ta

ke
 1

" b
ut

to
n,

 "
Ta

ke
 2

"
bu

tto
n,

 o
r "

Ta
ke

 3
" b

ut
to

n

3
V

ie
w

ga

m
e

st
at

e
D

is
pl

ay
 g

am
e

st
at

e
G

am
e

--
 G

am
e

N
im

In
te

rf
ac

e
--

 N
im

In
te

rf
ac

e
--

 N
im

In
te

rf
ac

e
V

ie
w

 p
an

el
s t

ha
t d

is
pl

ay
 g

am
e

st
at

e

3.
1

V
ie

w
 n

um
be

r
of

 s
tic

ks
 l

as
t

ta
ke

n

D
is

pl
ay

 n
um

be
r

of
 st

ic
ks

 la
st

ta

ke
n

Pl
ay

er
::

ta
ke

Tu
rn

()
 -

-
Ab

st
ra

ct
Pl

ay
er

::
se

tS
ti

ck
sT

ak
en

()
-

st
ic

ks
Ta

ke
n(

):
:s

ti
ck

s
la

st
 t

ak
en

Pl
ay

er
Pa

ne
l:

:P
la

ye
rP

an
el

()
 -

-
Pl

ay
er

Vi
ew

::
Pl

ay
er

Vi
ew

()
 -

-
Pl

ay
er

Vi
ew

::
up

da
te

()
::

st
ic

ks
 la

st
 t

ak
en

V
ie

w
 te

xt
 fi

el
d

of
 "

C
om

pu
te

r t
ak

es
"

pa
ne

l a
nd

 te
xt

 fi
el

d
of

 "U
se

r t
ak

es
"

pa
ne

l
3.

2
V

ie
w

 n
um

be
r

of
 s

tic
ks

 l
ef

t
in

 p
ile

D
is

pl
ay

 n
um

be
r

of
 st

ic
ks

 le
ft

in

pi
le

G
am

e:
:p

la
y(

)
--

G

am
e:

:s
ti

ck
sL

ef
t(

),

Pi
le

::
st

ic
ks

()
::

st
ic

ks
 le

ft
 in

 p
ile

Re
po

rt
Pa

ne
l:

:R
ep

or
tP

an
el

()
 -

-
N

im
Co

nt
ro

lle
r:

:i
ni

ti
al

iz
eG

am
e(

)
--

N

im
In

te
rf

ac
e:

:u
pd

at
e(

):
:s

ti
ck

s
le

ft
 in

 p
ile

V
ie

w
 "

St
ic

ks
 le

ft
in

 p
ile

"
pa

ne
l

3.
3

K
no

w
 w

in
ne

r
of

 g
am

e
R

ep
or

t w
in

ne
r

of
 g

am
e

G
am

e:
:p

la
y(

)
--

G

am
e:

:g
am

eO
ve

r(
)

--

G
am

e:
:w

in
ne

r(
):

:p
la

ye
r

w
ho

 w
on

N
im

Co
nt

ro
lle

r:
:i

ni
ti

al
iz

eG
am

e(
)

--

N
im

In
te

rf
ac

e:
:u

pd
at

e(
)

--

N
im

In
te

rf
ac

e:
:r

ep
or

tW
in

ne
r(

):
:p

la
ye

r
w

ho
 w

on

V
ie

w
 m

es
sa

ge
 o

f "
G

am
e

O
ve

r"
 o

pt
io

n
pa

ne
 th

at
 p

op
s u

p
w

he
n

ga
m

e
is

 o
ve

r

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

