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A Framework to Generate Arc-annotated
Sequence Data for Evaluating RN A Analysis
Algorithms

Sen Zhang *

Abstract— We present an algorithmic framework
for generating synthetic RN A data conforming to the
arc-tree model, a tree extension of the RN A arc anno-
tated sequence model that has been under intensive
research during the past decade. The arc-tree model
aims to capture the secondary structures of RNA
data: the parent-child and their derived ancestor-
offspring relationships between tree nodes represent
the nested arcs of RN A; the sibling relationships rep-
resent the parallel arcs. Furthermore, we extend the
tree model to a rooted graph model for represent-
ing tertiary structures of RNAs. The synthetic arc-
annotated RN A data such generated is expected to
facilitate evaluating the effectiveness and complete-
ness of the RNNA analysis algorithms designed for the
arc-annotated sequence model. Keywords: Synthetic
Data, Generator, RNA, Arc-annotated, Tree Model

1 Introduction

Different from double-stranded deoxyribonucleic acid
(DNA)s, Ribonucleic acid (RNA)s are usually single-
stranded [4]. However, RNAs are still structurally inter-
esting because these single stranded RNAs may present
complex secondary and tertiary spatial structures. The
combination of these superlinear RNA structures that
appear in diverse RNA data including messenger RNA,
transfer RNA and ribosomal RNA [4] has posed great
challenges to the full spectrum of RNA analysis algo-
rithms including comparison, alignment, distance calcu-
lating, prediction, pattern mining and motif discovery
etc.

To facilitate the designs of various deterministic and
heuristic RNA analysis algorithms, computational scien-
tists have proposed several RNA data models such as
tree model, arc model and loop model. Due to the fact
that any abstract data model usually ignores certain con-

*Department of Mathematics, Computer Science and Statistics
& State University of New York, College at Oneonta, Oneonta, NY
USA 1380. Email: zhangsQoneonta.edu.

tDepartment of Computer Science, Kean University, Union, NJ
07083 Email: gchang@kean.edu

ISBN: 978-988-98671-0-2

George Chang |

straints of the real world datasets to some extent, the
space of the data of a simplifying model is actually much
greater than that of the real world data. However, most
bioinformatics practitioners tend to restrict the data used
in their RNA analysis algorithm evaluations to the lim-
ited real world datasets only. This practice may suffer the
following major limitations among many others. First,
publicly available RNA data with clearly annotated sec-
ondary and tertiary structures is insufficient. Second, as
pointed out earlier, the data model considers the real
world data only as a subspace of its modeling space,
therefore, the uncaptured characteristics of the real world
data may bias the evaluations of RNA algorithms that are
actually designed for an implicitly expanded data scope
due to the simplifying model. Third, the user has very lit-
tle control over the characteristics of the real RNA data.

These limitations can be considerably overcome by using
synthetic data, especially when the major concern of the
experiments is on evaluating the effectiveness and com-
pleteness of an RNA analysis algorithm. A synthetic data
generator can produce not only large volumes of synthetic
RNA data resembling real data, but also datasets cover-
ing all the possible subspaces of the model through vary-
ing the values of the different input parameters. These
datasets can be used to test RNA algorithms more effi-
ciently than the limited real world data can.

In this paper, we discuss an algorithmic framework for
generating synthetic arc-annotated RNA data mainly for
facilitating evaluation of research ideas and testing the
performance (scalability, accuracy, efficiency etc) of vari-
ous RNA algorithms.

The rest of the paper is organized as follows. Section 2
first discusses the tree model used in our generator. Then
in section 3, we discuss the details of the framework step
by step. Finally, we conclude the paper by reporting the
preliminary implementation of the framework and dis-
cussing the possible improvements as our future work.
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2 Tree Model

Conventionally, the primary sequence of an RNA data
is treated as its linear structure, secondary structure as
a tree, and tertiary structure a rooted ordered graph.
It follows intuitively that in order to generate synthetic
RNA data, we just need to generate the primary se-
quence first, then use the primary sequence to predict
in tandem its secondary and tertiary structures through
secondary structure prediction software [2] and tertiary
structure prediction software[1] respectively. This seem-
ingly straightforward approach is actually problematic for
the following reason. A generated primary sequence tends
to lack sufficient base pair support that is highly expected
by most real world RNA sequences. Consequently, the
chance for the random sequence to support pairwise seg-
ments of complementary subsequences that contribute to
non-trivial higher level structures is very slim. As we will
discuss in the next section, our generator addresses this
issue by partially reversing the above misleading steps.

To facilitate the subsequent discussion on our framework,
we first recapitulate two well-known RNA tree models:
motif tree model and arc tree model. Figure 1 illus-
trates an RNA sequence composed of secondary struc-
tural motifs of stems, bulges, hairpins and loops etc. In
the well-known motif tree model [7], this RNA is treated
as a motif tree with each node representing a motif in-
stance. Since there is no any specific biological meaning
for a root, we treat the motif tree as unrooted. To help
visualizing the higher level motif tree, we use Figure 2
to highlight only the secondary structures of an imagi-
nary RNA. In the figure, the topleft subfigure shows the
layout of the secondary structure by suppressing the de-
tails of the primary sequence, while the topright subfigure
shows the unrooted tree structure formed by the nodes
respectively representing one loop, three stems and two
hairpins. The mapping relationships between the nodes
of the tree model and the motifs of RNA data are repre-
sented by the double-arrowed dotted mapping curves.

From the figure, it can also be observed that the consec-
utive base pairs play an important role in forming RNA
structures. Every RNA motif is actually a substructure
delineated by several stems adjacent to it. Based on this
observation, a more interesting arc tree model [6] has
been proposed, where the constituent nodes represent not
the motifs directly but individual arcs (stems in the arc
model). Every node in the arc tree represents a possible
arc starting a consecutive arc group (stem). An arc tree
is rooted, where the root of the tree represents the whole
sequence of RNA data covering the positions from the
first base to the end, which usually is of a zero sized vir-
tual stem for most cases. The children nodes of the root
node represent the outmost parallel arcs of the RNA, each
of which in turn has children/offspring representing the
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arcs cascadingly nesting in it at lower levels. The bottom-
right subfigure of Figure 2. shows how such an arc tree
can be constructed.

In terms of this arc-annotated model, the RNA data in
Figure 1 can be represented by figure 3 in the arc anno-
tated sequence format (the bottom portion of Figure 3).
which is then represented by the higher level arc tree (the
top portion of Figure 3). Notice that how the numbers
1 to 10 in Figure 1 are mapped to the corresponding arc
feet in Figure 3 and how they are paired yet separated by
the unpaired segments. The arc annotated tree an RNA
data is ordered because the relative positions of the arcs
are significant to the secondary and tertiary structures.
We call this tree an arc skeleton instance tree or simply
the arc tree whenever no confusion arises.

This arc annotated model has been used extensively in
many RNA analysis algorithms[5]. It is also the base
model for our generator framework, where the arc tree
model is enhanced to a rooted graph model where the
crossing arcs of tertiary structures that voilate the tree
structure can be accomodated as graph components.
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Figure 1: An illustration of an RNA structure

3 Generating the Random Arc-annoated
RNA Data

Following the previous discussion on the arc tree/graph
model, we were able to develop a generator framework
which may appear to be a little anti-intuitive. Instead
of generating primary, secondary and tertiary structures
in that order, our generator produces the tree structure
first, which corresponds the overall secondary structure;
then we augment the tree to a rooted graph in order to
define the cross arc groups (Arcs will be used whenever
the context is clear); after that, we generate the feet po-
sitions and sizes of the arcs; finally, based on the higher
level structures obtained from the previous stages, we
generate the sequence symbols. The framework of our
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Figure 2: Two RNA tree models

Q100

CAAGGUCAAGAGGGGACACCCCGGUGUCCCUGCGCGGAGUUGCUAGGGCUGCUCGCCCGAGUCCGCGGGUAGACCGCACGAGGCCGGCGGCAACGCCGGCCCUA

Figure 3: An arc-annotated model
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generator is outlined in Figure of Algorithm 1 and rel-
atively more details of the algorithm will be discussed
phase by phase in the subsequent subsections.

/* Procedure:
arcannotatedrna (controlparameterlist) x/
input : Tree Control Parameters
output: Synthetic arc-annotated RNA data
1.1 Generate skeleton Tree;
1.2 Augment to Rooted Graph;
1.3 Populate the characteristics of stem and free
segments ;
1.4 Fill out sequences of arcs and free segments;
1.5 return the arc-annotated RNA sequence
Algorithm 1: Acr annotated RNA Data Generation.

3.1 Generating the Tree Structure

Generating an arc tree skeleton is the first, also the core,
phase of the whole process. In this phase we focus on
the hierarchical structures of the tree without considering
the details of the primary sequence of the RNA. In the
tree, parallel arcs are represented by sibling nodes, while
nested arcs are represented by parent-child relationships
and their lineage derivations.

To help generate the tree, we consider the following in-
put parameters the depth of tree D, the number of nodes
N, the minimum and maximum fanouts of tree nodes:
minf, mazf, respectively. Given reasonable values for
the above parameters, our generator can generate com-
plex trees of different shapes. The tree generator proceeds
in the depth-first traversal manner, i.e., to expand a tree
topdown from the root to leaves. The number of children
of an internal node at any particular level of the tree is
randomly chosen subjecting a uniform distribution over
the range bounded by the input parameters mazf and
minf. To understand what the target trees generated
at this stage look like, refer to the example in the top
subfigure of Figure 3.

3.2 Augmenting Trees to Graphs

In this phase, we augment the RN A skeleton tree by using
new nodes representing the crossing arcs to generate the
placeholders for the tertiary structures. We consider two
kinds of tertiary arc groups here. The first kind is the arc
whose two feet fall into two different secondary arcs at the
same level respectively. The second one is the tertiary
arc whose two feet falling inbetween two secondary arc
or unpaired segments at different levels.

To be semantically consistent with the nodes representing
the secondary arcs, each tertiary arc is also represented by
a node. However, since a tertiary arc crosses with other
arcs, we need to link a tertiary node to the two parent
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nodes representing the two secondary arcs hosting its two
feet. As a result, we enhance a tree to a rooted graph
by admitting graph edges. The two anchoring feet of a
tertiary arc should originally be either sibling nodes or
ancestor-offspring seating on or off the same root-to-leaf
path.

The augment is based on two assumptions: the leas

o+

in-
fluential principle and simple tertiary structures. By the
least influential principle, we mean among all the arcs, we
would like to identify the secondary structures as many
as possible first from left to right, and only the rest of
the arcs that cross the claimed nested secondary or par-
allel secondary arcs will then be treated as the crossing
arcs, representing tertiary structures. The simple tertiary
means tertiary arcs do not host feet of other tertiary arcs.

To understand the idea refer to Figure 4, where the lowest
node represents a stem connecting to two parenting nodes
at different levels. The figure also shows that all the ter-
tiary nodes will be at the lowest level of the rooted graph.
This is consistent with the simple tertiary rule. Other-
wise, we can always re-identify the secondary structures
and to push all the tertiary nodes to the bottom level or
delete them.

Figure 4: Graph model of sequence with crossing arcs

From the implementation point of view, there is a need
to keep the forward and next sibling attributes of the
node class consistent with that originally designed for tree
nodes, we adopts a novel data structure which uses a pair
of twin graph nodes (they are shadows to each other) to
represent the two feet of a tertiary arc that falls in two
separate tree nodes. The idea is illustrated in figure 5.

To differentiate all the tertiary nodes from the original
secondary arc tree nodes, an arc type attribute is added
to the node class. Once the tree of the secondary struc-
tures is generated, all the node have been ordered in the
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preoder traversal and typed as tree nodes; then when all
the new graph nodes are grafted to the tree, they will
be typed as graph nodes leaving the order system of the
tree nodes intact. In the traversal stage at later stages, all
the nodes will be traversed in BFT order but processed
differently based on their types.
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Figure 5: A modified graph model in our implementation

3.3 Preparing Stem Sizes and Positions

At this stage, we need to generate the length, starting po-
sition and ending position of each stem as well as that of
each unpaired middle segment. The goal can be achieved
by populating the corresponding preserved attributes of
each instance of the unified tree/graph node class c.f. Fig-
ure 6. As the figure shows, each arc is defined by its
left, middle, and right attributes representing the length
of the left unpaired segment, the inner segment and the
right unpaired one respectively. This stage traverses the
tree/graph nodes in the breadth first traversal order and
generates all the attributes for all the nodes level by level.
At the end of this breath first traversal process, stem size,
staring and ending positions of each arc must have been
populated.

3.4 Filling Out Base Pairs and Single Base
Segments

Once all the placeholders and their attributes of the tree
have been well prepared, we need to use the base-pair
probability distribution information to generate different
symbols at all the base positions to complete the data
generation process. In our current framework, we sim-
ply adopt the zero order Markov chain to randomly se-
lect base symbols based on the symbol distribution input
parameters that can either follow the distributions ex-
tracted from the real world data or be supplied by users.

One particular concern at this phase is that a user can
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Figure 6: Data structure of generator tree.

only provide the input frequencies that govern the distri-
butions of symbols at the whole sequence scope, due to
unpredictable constraints posed by the base pairing rules
of randomly generated tree shapes. We address this is-
sue by generating the base pairs in all the arc segments
first. Specifically, we apply the base generation process
to the left foot of the arc data, then derive the counter-
part half based on the pairing rules. After all the arc
segments have been populated, the distribution of sym-
bols, if inconsistent with the given frequencies, will be
adjusted in the remaining unpaired segments to meet the
global frequency distribution.

4 TImplementation and Conclusions

We have discussed an algorithmic framework for gener-
ating synthetic complex arc-annotated RNA data mainly
for evaluating the efficiency, correctness and completeness
of RNA analysis and data mining algorithms. A prelimi-
nary implementation of the proposed generator has been
coded in C++, runnable on all major platforms. Figure
7 shows a debugging session in the VC IDE on Windows
system and its output windows displays a generated se-
quence which is annotated by several arcs. Each arc is
defined by the starting position of the opening foot, the
ending position of the closing foot as well as size of the
arc. The implementation consists classes for generating
trees, rooted graphs and sequences etc. Each class and
its members and parameters can be independently im-
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Figure 7: A screenshot of our preliminary implementation of the framework

proved and enhanced. For example, the tree generation
class may be modified to support other algorithms such
as [3] etc.

In the future, we plan to extend, customize and refine
the framework to produce more interesting data from the
following perspectives. I. Produce possible data conform-
ing to a given RNA family by accepting certain predefined
RNA pattern seeds, possibly given in regular expressions.
I1. Replace the rooted graph structures with the loop rep-
resentation. III. Use data mining techniques to extract
from publicly available RNA databases the various statis-
tic values which then can be used as the parameters to
dictate our generator to produce data more similar to
the real world data. For example, we can use the sil-
houette tree structure that has been mined from the real
data to bypass the tree generate stage. Iv. Refine, im-
prove and extend the framework and its implementation
for generating more interesting higher level structures or
arc-annotated RNA data.
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