Proceedings of the World Congress on Engineering and Computer Science 2008

WCECS 2008, October 22 - 24, 2008, San Francisco, USA

Introduction to Methodology DF*E M
- Framework for Efficient Development of Finite
Element Based Models

D. Frydrych *

Abstract— The Finite Element Method (FEM)
is currently one of the most widely used methods
to solve engineering questions described by partial
differential equations. This method has been im-
plemented in several commercial software packages.
These are in most cases proprietary systems, whose
architecture and source code are closely guarded.
Their further development, customization or adding
of new functionality is quite time consuming, difficult
and costly.

This article presents a different approach to devel-
opment and use of FEM based models. It presents
Methodology DF?EM which is based on the idea of
open source software. It is an open system, which en-
ables easy and fast development of new model systems
based on FEM and it also defines standard interfaces
based on which it is possible to develop own parts of
the model, compatible with Methodology DF?EM.

Keywords: mathematical modellingg OOP, UML,

XML, JAVA, design pattern

1 Introduction

The development of modern software applications does
not depend solely on the writing of the source code. The
development takes place in a world of fast development
of requirements, frequent change requests, new tasks, ag-
gressive deadlines and constant cost pressure. In order
to succeed the team leader, the SW analyst, program-
mer and the entire development team as such must pay
close attention to proper analysis of the task at hand,
requirement specification, detailed solution design docu-
mentation and optimal architecture design of the future
system. This approach is already commonplace in the
software industry, its utilization in the academic circles
is however lagging behind the commercial world. This
is probably caused by the perception that academic SW
projects are generally smaller and their documentation
does not add much value.

and J. Lisal *

Methodology DF?EM is much more than a general de-
scription of the steps and definition of interfaces. Its
inseparable part is the implementation of those inter-
faces in particular classes. These classes form a frame-
work within which you can develop concrete models. The
user then uses existing source code when developing their
own model and only concentrates on enhancing the func-
tionality. The benefits of Object-Oriented Programming
(OOP) are exploited.

When designing Methodology DF2EM, great care was
taken to address structuring of individual parts (subpro-
jects). This division ensured high reusability of already
developed pieces and provides for an easy deployment of
those subprojects in other projects. During its develop-
ment the most advanced technologies and methodologies
have been used from the areas of design analysis, system
design and implementation.

This article presents new directions in software devel-
opment and their impact on the development of math-
ematical models. It demonstrates the advantage of doc-
umented, well managed development applied in the aca-
demic circles.

1.1 FEM from OOP point of view

Classical schema describing the general approach to OOP
is based on division in two Meta-layers.

Real thing — class — meta class

The first Meta-layer deals with the transformation of real
world task in the computer environment by describing its
characteristic properties and behavior. The product of
this layer is a class.

*Technical University of Liberec, Faculty of Mechatronics and Interdisciplinary Engineering Studies, Institute of new tech-

nologies and applied informatics, Studentskd 2, 461 17 Liberec, CZECH REPUBLIC, EUROPE, Emails:

jan.lisal.frisco@topdance.cz

ISBN: 978-988-98671-0-2

ffast_train@quick.cz,

WCECS 2008

Proceedings of the World Congress on Engineering and Computer Science 2008

WCECS 2008, October 22 - 24, 2008, San Francisco, USA

Mathematical model

Numerical mode

Abstract numerical model

Methodology DF2EM

Figure 1: Structure of Meta-layers

The second layer is more complex. It generalizes the
properties and behavior of various classes. The product
of this layer is a Meta-class.

When working with mathematical models, the above-
described schema is extended by another Meta-layer, see
figure 1. The classes no longer describe particular real-
world task, but rather its abstract representation in the
form of mathematical equations. This significantly com-
plicates the task at hand. Detailed documentation be-
comes necessary to keep track of the entire project. The
first level of documentation is the analytical model.

2 Analytical model

The framework of calculation based on FEM can be di-
vided in the following steps:

1. Loading an init-file of the model and loading an
input data of the task. XML format has proven
very useful, see section 4.

2. * Generating of approximation_functions and
test_functions (depends on the FEM formulation
being used). A function from an extensive library
of frequently used functions can be used (for ex-
ample polynoms) or this library can be extended
with new functions.

3. * Creation of structures of the global matrix,
the right_hand_side_vector and the correspond-
ing access_vectors to gain access to the in-
dividual_items of global_matrix and of the
right_hand_side_vector to the entities of space
discretization (depends on the task at hand and on
the formulation of the FEM being used).

4. Initialization of calculation_scenario, or the start
of the next step (of calculation_scenario).

5. Calculation of local_matrixes. In case the lo-
cal_matrix does not change during the calcula-
tion (constant material properties, fixed mesh) the

ISBN: 978-988-98671-0-2

10.

11.

12.

13.

14.

values of the items of the local_matrixes are cal-
culated only once, in the first step of the calcula-
tion_scenario.

the
the

Placement of the local_matrixes into
global_matrix and the assembly of
right_hand_side_vector.

* Application of boundary_conditions in the
global_matrix and the right_hand_side_vector.

Solving the set_of linear_equations de-
fined by the global.matrix and the
right_hand_side_vector.

* Distribution of the solution of the

set_of_linear_equations into the appropriate en-
tities of space discretization. The values can be
calculated directly in entities where the FEM does
not provide the solution directly (for example dual
values).

Evaluation of the success of the step, set up of stop-
criteria. For example the quality of the solution can
be improved through finer discretization - by using
adaptive_mesh.

Repeating of a given calculation step in case the
previous step didn’t finish successfully (back to
point 5).

Next step of the calculation_scenario (back to
point 4).

Results output. General results usable for graph-
ical postprocessing are meant here.

* Individual results processing. This concerns
special, user-defined calculations, for example:

(a) Time development of a given value in given
point in space. Interpolation using appropri-
ate approximation_function given by the
used formulation FEM is used for this cal-
culation.

WCECS 2008

Proceedings of the World Congress on Engineering and Computer Science 2008

WCECS 2008, October 22 - 24, 2008, San Francisco, USA

(b) Integral criterion for a given value in the area
to be solved (for example tension energy for
elasticity task, or the volume of water in tasks
regarding filtered water flow).

Names written in bold are candidates to become a class.
The internal structure of the classes is not considered on
this level. The goal is to obtain general overview of the
system being developed.

From the textual analysis we can extract high percent-
age of functionalities (marked with an asterisk) which can
be further generalized. These generalized functionalities
are characteristic for any numerical model based on FEM.
The proportion of functionalities specific for a given FEM
task is fairly small. The items covering these functional-
ities are marked with an asterisk.

Creation of a new model based on FEM can be re-
duced with the utilization of Methodology DF?EM
to the creation of a few classes, whose interface
and interaction with the environment is defined by
Methodology DF?EM.

3 UML diagrams

Unified Modeling Language (UML) [4] is successfully used
to clearly capture the requirements for the newly designed
system. UML provides graphical expression of design
thoughts through the use of standardized diagrams. Class
diagram is the most useful of the UML provided tools
for mathematical modeling. Graphical expression of the
relations between classes makes it possible even for non-
developers to understand the structure of the numerical
model.

Class diagram describing a package was chosen
to present an example of utilization of UML in
Methodology DF?EM. This package describes dis-
cretization of problem domain, which is generally called
mesh, see figure 2.

The existence of circular relationships is eliminated even
on this basic level. Each element is defined by appropri-
ate nodes, from which it obtains information about its
coordinates. On the other hand, a node can be shared
by several elements so that it can inform them in case it
moves. This circular reference was eliminated by the use
of design patter called ”Observer”, see chapter 5.1.

UML has proven to be a means of effective communica-
tion between experts from different fields in this project.

4 XML input files

Reading of input data from a file has proven to be quite
problematic. It was necessary to ensure high variability
while maintaining maximum possible independence. De-

ISBN: 978-988-98671-0-2

tail documentation and certain level of standardization
were further required.

Extensible Markup Language (XML) [5] format was even-
tually chosen for the input data. Individual parts of the
calculation and the appropriate classes are grouped into
logical sections. This arrangement provides for a high
flexibility when preparing input data, for example for
“variant” calculations. Changes in one section thus do
not affect other sections. The nesting can be used, where
the structure of one internal section is used in more sec-
tions. Methodology DF?EM defines two types of input
files.

4.1 Initialization file

This file defines classes, from which instances are created,
which are further inserted into the basic framework. Ini-
tialization file ensures the model initialization for solving
a specific task type (heat task, elasticiy taks, etc.).

4.2 Input data file

Input data file contains data defining a specific task at
hand. The reading of the input file is divided into these
steps:

e Reading of discretization of the solutin domain
(mesh). The model can work with various systems
for mesh generation. The task of discretization of
the problem domain is solved by external systems
and Methodology DF2EM is responsible for read-
ing the files generated by these systems.

e Reading of material properties. Individual material
properties are distinguished by title (abbreviation).
The file with material properties can therefore be
used for calculation of various tasks where a partic-
ular model only uses the properties needed for the
modeled process and the remaining properties are
ignored. All properties are treated as functions, de-
pendent on target variable. Each task is treated as
non-liner task. Definition of functions is provided in
text format, which is processed by function parser,
section 5.2.

e Reading of boundary conditions. Each task is con-
sidered to be an unsteady task. The action is
described by calculation scenario. The calcula-
tion scenario is based on several regimes of bound-
ary conditions. The duration and the number of
equidistant steps is given for each regime. The
regime is further based on provided boundary con-
ditions. If the first step has zero duration and zero
steps then it is solved as steady task. The solution
then corresponds to the initial conditions, which
are in this case not read (the following step will be
skipped).

WCECS 2008

Proceedings of the World Congress on Engineering and Computer Science 2008

WCECS 2008, October 22 - 24, 2008, San Francisco, USA

xirgarfaoess

IElementLi:

wsitaricei
{Element

| o

ElementList

Tetrahedron

Altroutes

Line Triangle

Atlrtutes

Ardaes

Cperations Cporating

<<irtarfacer
iMesh

“<interface»®

Nodelist |

Figure 2: Class diagram of package mesh

The values of the boundary conditions can be spec-
ified:

— Constant for the entire duration of a regime in
which they are defined.

— The value at the beginning and at the end of
regime, where the values in between are inter-
polated.

— Lexical analyzer is used to define the bound-
ary condition (in addition to other options T'T
- time since the beginning of the task or TR -
time since the beginning of the regime can be
used)

The actual values are read from the appropriate
section of the XML file.

e Reading of the initial conditions. In case of solv-
ing an unsteady task with given initial conditions,
those conditions are read from the appropriate file.
The input file for initial conditions is compatible
with the output file. This guarantees, that the out-
put data from one task can be used as input for
some other task (task branching).

XML has proven its usefulness in this project, as it en-
sured general usability of output files and effective work
with them.

ISBN: 978-988-98671-0-2

5 Implementation

The analysis and design of the system have been, so far,
platform and language independent. During the selection
of the platform and programming language, the following
requirements have been taken into account:

Easy portability between various platforms and op-
erating systems.

Stable and portable, object oriented programming
language, which helps minimize human errors.

Low cost.

Usability in education.

5.1 JAVA language

Based on the above-mentioned requirements, JAVA has
been selected as the programming language of choice [1].
It is necessary to note, that the basic requirements did
not include performance or speed of execution. This
is a result of the fact that the speed of execution of
the resulting program is not significant when considering
the total amount of time needed to develop the model.
Methodology DF2EM is a tool for rapid development of
new models and testing of their properties. The speed of
execution of JAVA is not a limiting factor even for more
extensive tasks then the ones at hand. JAVA can be
considered an ideal programming language for projects
similar to Methodology DF?EM.

WCECS 2008

Proceedings of the World Congress on Engineering and Computer Science 2008

WCECS 2008, October 22 - 24, 2008, San Francisco, USA

"m["lgﬁ(ﬁ;i([ﬁﬁ [jig"jﬁgi{l"!ﬁﬁﬁi{jﬁ;ﬁ{[ﬁg" 1iII(1{I{[IIliﬁi{?‘ﬁﬁﬁi{;ﬁi@iﬁﬁ
Sl deined Sysieln

L
= lll

AbstractApproxFunctior—

Dynamically Loaded

unlIIIIllllllIIIIllllllIIIIlllllllIIIlllllllIIIIllllllIIIIllllllIIIIlllllllIIIIIIIIIIIIIIIIIIIIIIIIII“IIIIlllllllIIIlllllllIIIIllllllIIIIllllllIIIIIIIIIIIIIIIIIIIIIIII

AbstractOutput nymmicauy Loaded Classes ||

. o

ll

Figure 3: Scheme of using the dynamic loading of classes in Methodology DF?*EM

Another framework that has been successfully used in
the implementation are design patterns [3]. The ”Inter-
preter” pattern has been used for the implementation of
”automatic” updates. To instantiate all classes, the " Fac-
tory method” is used consistently. The Class.forName
technology provided within the JAVA language is used in
the developed software, see figure 3. Its use extends the
”Factory method” to the level of ” Abstract factory”.

5.2 Parser of functions

The implementation of parser of functions has proven
very useful. Full flexibility has been achieved for entering
values in the input files in this way. The value does not
need to be limited to a constant (when using function
parser, a constant function can be used) but rather any
function can be used. The user therefore gains the flexi-
bility to easily introduce nonlinearities (for example the
values of material properties, boundary conditions, etc)
without changing the source code. At the same time, the
user needs to keep in mind that the task of convergence
and uniqueness of solution remains with him/her.

The actual implementation of the function parser has
been divided into three parts:

e The first step is the implementation of interface
IFunction. This interface is quite simple and con-
tains only one method double value(doublef] vari-
ables).

e The second step is the implementation of abstract
method AbstractFunctionParser, which realizes the
interface IFunction.

e The third part is the implementation of a parser
for a particular function. This is, in fact, an imple-

ISBN: 978-988-98671-0-2

mentation of a single method (constructor) which
defines the internal order of independent variables.

5.3 TUsed software tools

An integral part of implementation is information about
tools used for implementation. The following list sum-
marizes the tools used and their brief description. Some
of the names bellow are a registered trademarks.

Java - programming language (version 1.6).

NetBeans - Integrated Development Environment (IDE
6.1 release) for software developers. It enables
model development starting from UML all the way
to implementation in JAVA.

Subversion - centralized system for sharing source code
files. The core of system is a repository, which acts
as central store of data. Any number of clients can
connect to the repository, and then read or write to
these files.

Maven - software project management and compre-
hension tool. Maven is based on the concept of
a project object model (POM). Maven manages
a project build, reporting and documentation.

Cobertura - tool, that calculates the percentage of code
accessed by tests. It is used to identify which parts
of your JAVA program are lacking test coverage.

6 Conclusions

Methodology DF?EM is the multi-META-layer system,
see figure 1. It can be used as an end-user tool to build,
from the provided components, own modeling systems to
solve concrete tasks. For example to define own material

WCECS 2008

Proceedings of the World Congress on Engineering and Computer Science 2008

WCECS 2008, October 22 - 24, 2008, San Francisco, USA

parameters (using function parser - see section 5). In this
case the work takes place on the first META-layer. These
type of changes do not require programming knowledge
from the user (creation of new classes). Therefore these
changes can be implemented quickly.

The second META-layer represents changes to the math-
ematical model and their impact on the numerical model.
It could be, for example, definition of new approximation
functions, or the use of a new solver for a set of linear
equations. This layer requires basic programming skills.
The user is guided by technical documentation. Great
benefit can be obtained from studying classes which are
part of Methodology DF2EM.

The third META-layer is intended for users with very
good knowledge of Methodology DF?EM. On this layer,
the user can make changes to the basic framework.

An integral part of Methodology DF?EDM are tests. For
each class there is a class that provides testing of its
functionality (for example stability when changing inter-
nal state). There are also classes responsible for testing
larger functional areas (for example the compilation of
approximation functions). The highest level of tests is
represented by functions which test sample tasks (for ex-
ample evaluation of results of a particular task in a given
mesh, material and given boundary conditions).

Methodology DF?EM is not an artificial academic sys-
tem. Several other systems have been building on top of
the provided framework, which were used to solve con-
crete problems. Among the most successful and most
widely used belongs model ISERIT [2]. The ISERIT
solve the unsteady coupled heat and moisture transfer
problem in porous materials with sorption of moisture
in solid phase by using primal formulation of finite ele-
ment method. During the implementation of the ISERIT

ISBN: 978-988-98671-0-2

model, it was necessary to implement only 24 classes (log-
ically divided into 6 package) out of which 12 classes deal
with boundary conditions. The implementation of the
ISERIT model took about 3 weeks. Significantly more
time was needed to prepare input data [2].

Methodology DF?EM has proven its validity and is used
for the development of new models dealing with tasks be-
ing solved at the Institute of new technologies and applied
informatics on Technical University of Liberec.

Acknowledgements

This work has been supported by Ministry of Education
of the Czech Republic; under the project ” Advanced re-
medial technologies and processes”, code 1M0554.

References

[1] Eckel, B., Thinking in JAVA,
URL:<http://www.bruceeckel.com>

[online]

[2] Frydrych, D., Hokr, M., ”Verification of Coupled
Heat and Mass Transfer Model ISERIT by Full-scale
Experiment” ICMSC’08 - International Conference
on Modeling, Simulation and Control, San Francisco,
USA, 10/2008

[3] Gamma, E., Helm, R., Johnson, R., Vlissides,
J., Design Patterns: FElements of Reusable Object-

Oriented Software Addison Wesley Professional,
1994, ISBN 978-0201633610

[4] Pilone, D., Pitman, N., UML 2.0 in a Nut-
shell, First Edition, O’Reilly Media, Inc., 2005,
ISBN 9780596007959

5] Simpson, J., E., Just XML, Prentice Hall PTR, 2000,
ISBN 013018554X

WCECS 2008

