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Abstract: The emergence of Intelligent Tutoring System (ITS) 

has opened up new avenues for the use of computers in the 

field of education. ITSs are able to tackle difficult instructional 

problems and extend the usefulness of the computer as an 

instructional tool. Intelligent Tutoring Systems  have proved 

useful in  various domains, but are highly  resource intensive  

to  build , the “tutor generators” for assisting users in 

building ITSs  conforming to two prominent intelligent tutoring 

paradigms: model-tracing and constraint-based. This paper 

presents design of a software tool called Intelligent Tutor 

Generators (ITG) for ITS. It is observed that it was easier to 

build a generic ITS generator based on the constraint-based   

paradigm,   but   the   tutor generator based on the model-

tracing paradigm is more feature rich. It can generate 

applications with rich user interaction and powerful theory-

based remediation capabilities. 

Index Terms:   ITG, ITS, Paradigm,  

1.  INTRODUCTION 

Educational system in general and the learning 
process in particular are heading for a rapid change in the 
next millennium. Computers and computer networks are 
becoming major sources of information for the present and 
future generations. 

Computers have made impressive strides in the 
field of education. As personal computers are becoming 
cost-effective with rapidly increasing capabilities, their 
application in education is becoming more and more 
prominent. Computers can provide individualized and 
interactive education for everyone. According to Skinner’s 
theory of learning Skinner [1], education is nothing but the 
transmission of knowledge and can be done by breaking 
down any subject into a well-organized succession of 
modules and a question-answer process. A computer, being 
able not only to display matters, but also can interactively 
ask questions and grade answers. It can simulate and 
complement the teacher and allow each student to learn a 
subject and progress at ones own pace Hebenstreit, [2]. 

Intelligent   tutoring   is   a   knowledge-intensive 
activity. ITS have shown themselves to be effective in 
practice Anderson et al., [3] Mitrovic et al., [4]. They are, 
however, extremely resource intensive to build, requiring   
detailed   knowledge   about   instructional technology in 
general, the paradigm in use in particular, and a high-level 
of software development expertise.   In an attempt to make 
development of ITS easier, tutor authoring tools or shells 
have been developed Murray [5]. 
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This paper describes software tools -   “Intelligent   
Tutor   Generators” (ITGs) for assisting users in building 
intelligent tutoring systems.  

• ITG focuses on  

o Constraint based paradigm.  

o  Model tracing paradigm.  

ITG for constraint-based tutors, entirely new tutors 
can be created    quickly    without    any    new    software 
development since the constraints can be stated 
declaratively. ITG for model-tracing tutors requires the 
rules to be specified in JESS code Friedman-Hill et al., 
[6]. Both the ITGs are capable of generating problem-
specific   user   interfaces   based   on   declarative 
descriptions stored in a database. 

  Intelligent Tutor Generator’s are used to build 
constraint-based and Model-Tracing Tutors for the 
statistical. hypothesis testing problem Kodaganallur       et 
al., [7]. Currently MTTs are being  built  primarily  by  the  
Pittsburg Advanced  Cognitive Tutor Center at Carnegie 
Mellon University and  Constraint-Based Model Tutors 
(CBMT)  at  the  Intelligent  Computer  Tutoring Group at 
the University of Canterbury, New Zealand. These  groups  
have  developed  tools  for  generating tutors, Koedinger et 
al.,[8] and Martin et al.,[9], but we have found that  these  
tools  either  use  platforms  that  are  not commonly 
available  or  are difficult  to  use  without specific  training.  
The  constraint  checker  for  our constraint based tutor is 
generic and can be used for several  domains;  it  is  also  
easily  extensible. 

The   following   sections   cover   theory-based 
approaches  to  intelligent  tutoring,  the  two  main 
paradigms of intelligent tutoring, the functionality of  our  
tutor  generators  and  their  architectures.   

2. INTELLIGENT TUTORING SYSTEMS 

The necessary components of an ITS are the expert 
module, the student model module, the diagnostic module, 
the tutorial module and the user-interface module Siddappa 
et al.,[10]. The expert module in an ITS consists of domain 
knowledge that the system intends to teach the student. The 
expert module provides the necessary skill to the tutor to 
solve problems posed by the student and determines correct 
answers for the questions asked by students. The student 
model is that part of an ITS which represents the current 
knowledge state of the student. This information helps the 
tutor to adapt the instruction in accordance with 
competence, abilities and needs. The tutor can accordingly 
choose a suitable level and method of presentation of the 
subject based on the student’s learning abilities and other 
factors such as those represented in the student model. The 
main objective of diagnostic module is to maintain the 
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student model and it does the evaluation of the student 
before, during and after the tutorial process. The information 
provided by the diagnostic module is to be used by the 
tutorial module to decide about what to teach and how to 
teach. The tutorial module contains instructional strategies 
like choosing an effective presentation method, determining 
what to present next and when to interrupt the instruction 
process. The instructional strategies are based on the 
information provided by the diagnostic module and the 
student module. The user-interface module provides 
communication between the student and the tutor which 
includes the actual presentation of text and graphics as well 
as acceptance of student input. A functional model of an ITS 
is given in figure 1 

 

 

 

 

 
 
 
 
 

Fig. 1 Functional Model of  ITS 

The constraint based paradigm  is  feasible  only  
when the  solution  itself consists of sufficient information 
based on which the tutor  can  provide  remediation.  The 
model tracing paradigm is more effective in problem 
domains where there is a strong element of goal 
decomposition. Thus information content of the solution 
and the extent of goal decomposition are the two important 
dimensions which determine the suitable paradigm. Model 
tracing tutors have an added advantage in that they can 
provide guidance when a student is stuck with a blockade.   

2.1. Constraint-Based Model Tutors (CBMT) 

CBMT are rooted in theory; this theory stipulates  
that intelligent tutoring can be achieved by examining  
the problem state that a student arrived at and that   
the process  the  student  used  to  reach  that  state  is  
unimportant  for  remediation.  The problem state is  
characterized by a-priori problem data and by  
variables for which the student supplies values while  
interacting with the tutor. At its core, this paradigm  
relies on the notion of constraint Mitrovic et al., [4], which 
can either be satisfied or violated. A problem state that 
violates one or more constraints is erroneous, and the 
violated constraints determine the remediation to be 
provided. A constraint is an ordered pair (Cr, Cs) of 
conditions with Cr being the relevance condition and Cs 
being the satisfaction condition. Relevance and 
satisfaction conditions are Boolean expressions based on 
the problem state. A simple example is given below: 

Cr: problem-type is “time and distance” 
Cs: speed supplied by the student, equals distance divided by 
time.  

An example from Ohlsson et al., [11] in the domain of 
algebra is: 

Cr (x+y)/d is given as the answer to x/d1 + y/d2 

Cs d = d1 = d2 

The  relevance  condition  is  used  to determine 
whether  a  particular  constraint  is  relevant  to a  
problem   state.   The   satisfaction   condition   of   a  
constraint is evaluated if and only if the problem state  
meets its relevance condition.  If the satisfaction  
condition is met, then the constraint as a whole is said  
to be satisfied.  A constraint whose satisfaction  
condition is not met is said to be violated, and suitable  
remediation may then be provided.    

In the above example, the relevance condition is  
written in terms of the a-priori variable problem-type.  
The satisfaction condition is written in terms of both  
a-priori variables (distance and time) and a student- 
calculated value (speed). Evaluating a student’s work  
involves checking the resultant problem state against  
every constraint, to determine all the constraints  
satisfied   and   violated.   The   corpus   of   violated  
constraints is used to determine the remediation.  
Fig 2 shows the basic components of a constraint- 
based tutor and charts the interactions between these  
components in response to a student submission.  
Typical   implementations   would   use   highly  
specialized  versions  of  each  of  the  components  
suitable  for  the  domain  in  question.  Thus, for  
example, the SQL Tutor Mitrovic [12] provides a 
customized user interface, has a constraint engine with 
specific string processing capabilities needed for the 
domain and implements the constraint-base in LISP code. 
The need to build customized versions of each of the 
components for each application domain makes the 
creation of ITSs labor intensive. 

2.2. Model-Tracing Tutors (MTT) 

MTTs have been fielded in a variety of domains 
including college-level physics Gertner et al.,[13], Shelby 
etal., [14], high school algebra Koedinger  et al.,[3], 
Heffernan etal.,[15], Heffernan et al.,[16], geometry 
Anderson et al.,[17], Wertheimer  et al.,[18] and computer 
programming Corbett et al.,[19], Corbett  et al., [20], Corbett 
et al., [21]. 

This paradigm can be seen as taking a “process 
centric” view since it aims to understand the process that a 
student employs in arriving at a solution and to provide 
remediation based on this.  An MTT is composed of 
expert rules, buggy rules, a model tracer and a user interface.   
Expert model rule is the step that a proficient individual 
might take to solve the problem   in   question.   These   
include   rules   for decomposing   a   problem   into   sub 
problems (or “planning” rules) and rules those address the 
solution of atomic sub problems (“operator” or “execution” 
rules).  Planning rules embody procedural domain 
knowledge and operator rules embody declarative domain 
knowledge. 
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In an MTT, the components are similar to those 
in figure  2, except that the constraint base is replaced  
with  a  rule  base,  and  the  process  of  constraint  
checking  will  be  replaced  by  a  process  of  model- 
tracing. 

The following is the example expert rule 
hypothesis testing domain.  Hypothesis testing is a 
fundamental topic in inferential statistics Martin et al., [9]. 
A later section provides more details on this problem 
domain. 

IF    The goal is to solve the problem 

      THEN     Set sub goals to determine: 
                      The critical value, and  
                      The sample statistic value. 

IF    The goal is to determine the critical value 

   THEN      Set sub goals to determine: 
                      The value of alpha, and  
                      test statistic to use. 

 
IF   The appropriate test statistic to be used is the   z   

statistic,   and   the   population standard deviation is 
unknown. 
 

THEN   The   value   of   the   test   statistic   is 

x − µ 
z = s x , where sx=sn 

Here, the first two are planning rules and the third 
is an operator rule.  

In MTT, domain knowledge is captured in the 
form of many such rules. The crux of an MTT is to 
“trace” the student’s input, where tracing consists of 
finding a sequence of rule executions whose final  
result matches the student’s input. If the tutor is able  
to  do  this,  it  is  taken  to  mean  that  the  tutor  has  
understood the process by which the student arrived at  
an answer. In order to identify student errors an MTT  
has a set of “buggy” rules which reflect common student 
misperceptions.     If  the  tutor’s  trace  of  a  student 
solution contains the application of one or more of these  
buggy  rules,  then  the  tutor  provides the remediation 
associated with the buggy rule(s).  

A sample buggy rule in our tutor follows: 

IF The population standard deviation is unknown, 

        and the sample size < 30. 

THEN     The appropriate test statistic is the z 

      statistic. 

This rule models incorrect reasoning; for sample 
sizes less than 30 the appropriate test statistic is the t 
statistic.   If the student’s behavior matches this buggy  
rule, the system concludes that the student does not  
understand this piece of declarative knowledge, and  
provides the remediation associated with the rule.  
Since MTTs can provide well-targeted remediation  
only when one or more buggy rules are used in a  
successful trace, their tutoring capabilities depend on  
how well they capture the corpus of mistakes made by  

students. 

While the ideal situation is that the tutor is able to  
trace all student inputs, this might not always be  
practical. Tutors should generally be able to trace all  
student inputs which are correct. For incorrect student  
input the tutor is unable to trace, the best  
remediation   might   be   a   general   response   that  
something is wrong. 

In general,   there   could   be   several   alternate 
strategies to solve a problem. A particular tutor might choose 
to allow only one strategy, or support multiple strategies. In 
the latter case, the tutor must have expert rules  and  buggy  
rules  for  each  strategy,  and  the model-tracing  process  
should  be  able  to  map  the student’s input to a particular 
strategy  Schultze, K.G.,   [22]. 

3. USER INTERFACE 

A different approach to building tutors looks at the 
possibility of creating generic versions of each of the 
requisite components and using these to help create tutors 
in a broad variety of application domains. It is possible  to  
do  this  fully  for  the  constraint-based paradigm,  but  for  
the  model-tracing  paradigm  it is unable to generalize the 
knowledge base that the tutor   uses.   Despite the 
limitations   that   generic ness introduces, we have seen that 
useful tutors from many domains can be quickly and easily 
generated from our generator. 

When a generated tutor is started, a window 
appears showing the available problems. Our current 
implementations work at the level of individual problems; 
there is no sequencing of problems based on the student’s 
performance. When a student selects a problem to work on, 
the Tutor displays a problem. The problem has several tabs 
and the student is free to move among the tabs as needed. 
To start working on the selected problem the student selects 
the “Work Area” tab. Solving a problem consists of 
selecting variables (from a master list) relevant to the 
problem solution and supplying values for those variables. 
Students type in values for the selected variables and submit 
the (possibly partial) solution for evaluation. The tutor 
evaluates the solution and provides solution in the answer 
status column. The tutor provides progressive hints, or the 
correct solution, on the student’s request. If there are 
multiple errors, then the “Errors” list has multiple rows. 
When the student has supplied correct values for all the 
appropriate variables, the system treats the problem as 
having been completed. In the case of MTT, the “Guidance” 
tab and the “Guide” button are visible. When a student using 
the generated MTT is stuck and does not know how to 
proceed, then the student can press the “Guide” button and 
the tutor will provide guidance. Under the current state of 
the art in constraint-based tutors, such a facility is extremely 
difficult, if not impossible to provide in most domains. This 
is a natural feature of all model-tracing tutors since they 
always know where the student stands in the problem 
solving process. All the domain/problem specific 
information is supplied as data to our tools. The tools 
generate a problem-specific user interface based on 
declarative data. For someone wanting to use the generators 
without any additional coding, the user interface is currently 
restricted to allowing the student to select from a list of 
predefined variables and supplying values for   these.  
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Anything else would require the tutor developer to 
write a plug-in. We planned to introduce a wide range of 
user-interaction primitives, using which tutor developers can 
declaratively create other user interaction paradigms. 

 

4. CONSTRAINT-BASED TUTOR ARCHITECTURE 

The other significant components are the constraint 
base and the constraint engine. All problem specific 
information is stored in a relational database. The 
generators support the notion of a problem type. Problem 
type represents a family of problems. For example, in the 
hypothesis testing domain, all single population tests for 
comparisons of means would constitute a single type. Thus 
once the constraints are specified for a problem type, any 
number of problem instances of that type can be created 
without needing to specify the constraints all over again. A 
new problem   can be added by populating database tables 
with all the problem parameters. The parameters problems 
are variable-value pairs. Some variables are a-priori 
variables which inform the tutor about some data that 
appears in the problem description. Other variables are the 
variables for which the student has to provide values. 
Tables 1 and 2 provide examples of a-priori and other 
variables.  

A priori variable 

Name 
Description 

Problem Type 

The kind of hypothesis testing 
problem(testing for mean less than a given 
value, greater than a given value or equal to 
a given value) 

muZero 
The hypothesized value of the population 
means 

popStdKnown 
Whether the population standard deviation is 
known 

 

Table 1- A Priori variable Examples 

 

Variable Name Description 

Null Hyp Sign 
The comparison operator for the null 
hypothesis)<,> or =). 

StudentmuZero Students’s value of mu zero. 

Mean The sample mean. 

testStatistic The test Statistic to be used 

zValue 
The value for the z statistic (this is 
applicable only if the proper statistic to be 
used in a problem instance is the z statistic). 

 

Table 2- Student variable examples 

 

Problem type Hypothesis Testing 

Constraint number 30 

Description 
If the problem type is “one population, 
testing for Mu<=muZero then the correct 
sign for the null hypothesis is “<=” 

Relevance 
Equals(problem Type, “IPM<=”) 
&&exists(“nullHypSign”) 

Satisfaction condition Equals((“nullHypSign, “<=”) 

Error title Incorrect null hypothesis 

Hint 1 

Check your null hypothesis, You want to 
formulate your null hypothesis in such a 
way that you do not move away from the 
status quo unless there is strong 
evidence indicating otherwise. The null 
hypothesis is always that the observed 
mean favors retaining the status quo. 

Hint 2 

Think above whether a larger value or a 
smaller value for the mean than muZero 
would favor moving away from the 
status quo, and then formulating the null 
hypothesis accordingly. In general, one 
would tend to stick with the status quo 
unless the data gathered convincingly 
indicates that there is a case to make 
changes, in this problem would a small 
sample mean or a large one convince 
you to maintain status quo? The null 
hypothesis is the case for maintaining 
the status quo. 

Hint 3 

In the problem a small sample mean 
would convince you that it makes sense 
to stick with the status quo and not to 
take any action whereas a large mean 
would provide a rationale to do 
something. 

Answer 
The null hypothesis should be  

µ =| µ 0| 

Variable(s) nullHyeSign 

 
Table 3- A constraint   

 

The constraint engine is generic and can handle 
constraints based on extensive string, numeric and logical 
processing, with numerous built-in functions that 
encompass the requirements of several domains. The 
constraint base is implemented with relational database 
technology and is independent of any programming 
language. A small constraint language enables tutor 
developers to specify constraints as Boolean expressions in 
a Java like syntax. The heart of the engine was developed 
using Java Compiler (Java CC) based on an EBNF 
specification of the language. Table 3 shows an example of 
a constraint. Note that the relevance and satisfaction 
conditions are shown as Boolean expressions. Associated 
with each constraint is the relevant remediation.  

The generated tutors optionally allow for problem 
data to be generated individually for each student. That is, 
each student can work on the same problem, but with 
different randomly generated data. This is the case in the 
hypothesis testing problems shown on the screen. Data thus 
generated can be copied to the systems clipboard for 
transfer to any other application for further work.  

 
The systematic interface between the user-interface 

and the constraint engine is very narrow. The user interface 
invokes a single operation on the constraint engine and 
passes the problem state to it. The result of this invocation 
contains all the information that the user interface needs to 
provide remediation to the student. This was explicitly done 
to facilitate the planned addition of a web interface. 

 
Although the default functionality of the generator is 

already sufficient to build tutors in many domains, it is 
extensible through a plug-in architecture. New domain-
specific functions can be added to the constraint language 
by writing standalone Java classes. The complete work area 
for a family of problem can be replaced by a user-supplied 
Java class that conforms to a specific interface. It is thus 
possible to create tutors with just the required functionality 
with a minimum of effort since most of the functionality 
will be reused.   
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5. MODEL-TRACING TUTOR ARCHITECTURE 

We have already described the user interface portion 
of the MTT generator. The MTT uses the same approach as 
the constraint-based tutor generator for storing problems 
and problem types. The major difference between the two is 
the knowledge base. In MTT the domain knowledge of the 
tutor is represented in the form of rules. The use of the Java 
Expert System Shell (JESS) Friedman-Hill, E [6] as our 
rule engine and coded the rules in the JESS language.  

(defrule decompose-ready-to-decide 
             (Need-ready-to-decide) 
             (Critical-value-computed) 
             (statistic-value-computed) 
             => 
             (assert(ready=to=decide))) 
(defrule compute-right-side-cutoff-correct 
              (need-critical-value-computed) 
              (alpha-established) 
              (statistic-established) 
              (ht_prob (problemType “1PM<=”) (testStatistic “z”) alpha 
?alpha) (zAlphaRight? z&nil&(approx-eq?z (zlookup ?alpha)))) 
               => 
              (assert (cirical-value-computed)) 
              (addResult (fetch results) nil CORRECT (create$ “zAlphaRight”) 
) ) 

Fig. 3 – Sample goal decomposition rules in the MTT 

 
JESS is inherently a forward chaining rule engine. 

However, model-tracing requires a backward chaining rule 
engine. Fortunately JESS supports backward chaining 
through “backward chaining reactive” templates those 
allow one to build a goal structure and case the rule engine 
to try to achieve a goal by recursively trying to achieve its 
sub goals. An example snippet of JESS code that defines 
the goal breakdown is given in Figure 3.The first rule in 
that figure essentially says that in order to be able to make a 
decision, the critical value and the statistic value must both 
have been calculated. Firing this rule will cause JESS to try 
to satisfy the two sub goals. A JESS operator rule is shown 
in Figure 4.  
 
(defrule compute-right-side-cutoff-correct 
              (need-critical-value-computed) 
              (alpha-established) 
              (statistic-established) 
              (ht_prob (problemType “1PM<=”) (testStatistic “z”) alpha 
?alpha) (zAlphaRight ?z&nil&(approx-eq?z(zlookup ?alpha)))) 
               => 
              (assert(cirical-value-computed)) 
              (addResult(fetch results) nil CORRECT(create$ “zAlphaRight”) ) 
) 

 

Fig. 4 – Sample operator rule pertaining to computing the right side 

cutoff value in the MTT 

 

In order to pass data back and forth between JESS 
and   Java user interface uses the native data transfer 
mechanisms that JESS provides. Essentially data are passed 
back and forth as variable-value pairs. The MTT functions 
quite differently from the constraint-based tutor. Whereas in 
the constraint- based tutor, the student could submit values 
for any variables and get the partial solution evaluated by 
the tutor, the structure of model tracing is such that the tutor 
will proceed only along the goal structure. Suppose the 
student supplies values for a variable, which is part of a 
downstream goal without having satisfied upstream goals, 
the model-tracing process will find that earlier goals have 
not been satisfied.  Hence some of the values supplied by 
the student will not be evaluated at all. The fact that these 

values were not evaluated itself tells the student that 
something is wrong.  

 
The unique feature of MTT is their ability to provide 

guidance when the student does not know what to do next. 
In this case rather than submit a partial solution for 
evaluation, the student invokes the “Guide” button. At this 
stage the tutor knows exactly which goals have already 
been satisfied and which have not. Based on this the tutor 
can give precise guidance on what goals the student can try 
to meet next. This functionality is achieved by means of a 
set of “Guidance ” rules stored in the rule base. An example 
guidance rule is given in Figure 5. Since a model tracing 
tutor can figure out   the solution process the student   
knows which goals have been satisfied at any point in time. 
It provides remediation based on this knowledge. The 
example rule in Figure 5 is checking for the goal that is 
being satisfied (establishing the null hypothesis) and 
verifies that an upstream goal (computing mu-zero) has 
already been satisfied. It also verifies that the null 
hypothesis has not yet been established. Based on this 
information it constructs the guidance. 
 
(defrule null-hypothesis-guidance 
              (need- null-hypothesis –established) 
              (mu-aero-computed) 
              (ht_prob (nullHypSign nil)) 
               => 
             (store guidance  
            (str-cat(fetch guidance) (build_guidance”decision” “hypotheses” 
“mu_zero_established” “null_hypothesis”) ) ) ) 

 

Fig.  5 - Sample guidance rule in the MTT 

 

6. CONCLUSIONS 

This paper describes tutor generators for building tutors 
based on the constraint- based and model-tracing intelligent 
tutoring paradigms. The generator for constraint-based 
tutors supports the creation of tutors from several domains 
without the need for any coding. The user interface, 
problem details and the constraints are all declaratively 
specified. The generator for model- tracing tutors also 
shares the same user interface capabilities, but its 
knowledge base is not generic and has to be coded in an 
expert system language as rules for each type of problem to 
be solved. On the other hand, the generated model-tracing 
tutors have the ability to guide the student as to the possible 
next step when the student is lost. This capability is absent 
in the constraint-based tutors generated.  

In this ITS it is possible to add features to the tutor 
generators. We are looking for ways to eliminate the need 
for tutor developers to have to write JESS code for creating 
MTT. We are also working on enhancing the user interface 
to provide many additional pre-built motifs that tutor 
builders can use directly to create more appealing 
interfaces.  
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