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Optimal Trajectory Generation of Space Robots

Shinichi Tsuda and Takuro Kobayasi

Abstract—This paper deals with an approach to generate an
optimal trajectory of space robot. The space robot consists of a
spacecraft body and robotic arm mounted on the body. For a
self-contained and autonomous operation of the space robot,
such as a capture of a target, it must have automatic control of
the spacecraft position and attitude control and, at the same
time, automatic generation of the trajectory for the robotic arm
joints. In this study hypothetical joints were introduced to deal
with the spacecraft position and attitude. Two-dimensional
motion of the space robot were discussed without loss of
generality. In such a case two prismatic joints are required to
give the position of the spacecraft and a rotary joint is required
to define its attitude. Jacobian for this space robot was
established and inverse kinematics is solved for each step to
advance the position, attitude of the spacecraft and the
configuration of robotic arm to final target position. In order
to solve the above, weighted minimization by using Jacobian
and Lagrange multiplier method was applied. In addition to
that, final configuration of the robot arm was optimized by
incorporating a penalty function that measures the
manipulability of the arm posture. Numerical simulations were
conducted to demonstrate the effectiveness of this approach.
For the proper choice of weighting coefficients optimized
trajectories have been obtained.

Key words—Jacobian, Lagrange Multiplier, Optimization,
Space Robot, Trajectory Control,.

I. INTRODUCTION

In the future space robot applications self-contained and
autonomous operations are prerequisite. Especially after
recognition of a target to capture, optimized trajectories for
the spacecraft position and joints of robotic arm must be
generated automatically.

The space robot operation is divided into three phases.
The first one is rendezvous with the target by orbital
maneuvers. Then, the space robot approaches it by
fly-around and finally captures it. This paper discusses the
fly-around phase after the orbit adjustment.

In this study the planar motion is discussed without loss of
generality. This is because operations will be usually divided
into the in-plane and out-of-plane motions.

Let us assume that the robotic arm consists of two rotary
joints. This is enough to position the end effector of the arm.
And we define three joints, two for translational movement
and one for spacecraft attitude motion. The first two joints
are assumed to be prismatic and joint variables will be
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defined relative to the inertial reference coordinate system.
The second joint is rotary which express the attitude angles
relative to the above inertial frame. As noted, these three
joints are hypothetical to give the translational and rotational
position of the spacecraft.

Based on.the above consideration we can define the end
effector position using the space robotic arm joint variables
and hypothetical three joints variables. By differentiating
these relationships we obtain Jacobian matrix, which show
the relation between the small displacement of the end
effector position and small joint variables variation. If we
provide with the value of small displacement of the end
effector, then, we may determine the joint variables using the
inverse of Jacobian matrix. However this does not hold for
our case in which five degrees of freedom are given to
determine two degrees of freedom.

Therefore we have to consider a solution of the redundant
robotic arm problem. In this study the Lagrange multiplier
was applied to solve this redundant system. Firstly there are
relations, two equations, between the small displacement of
the end effector and the small variations of joint variables
including the hypothetical ones. These are constraints when
the inverse problem is solved. Then, Lagrange multiplier is
introduced to incorporate these constraints. And we define a
function to be optimized for the small variations of joint
variables, which will be given as a quadratic function of these
variations. The above procedure is an optimization problem
with constraints.

When the robotic arm approaches a target, it is necessary
to consider the final posture. In this respect the
manipulability of the arm was optimized by introducing a
penalty function. As shown later, this manipulability is given
by the two joints of the robotic arm, not by the hypothetical
joints.

Two kinds of optimization functions are incorporated as
multi-objective functions problem. In this study this was
solved by a simplest formulation.

Numerical simulations were conducted to demonstrate the
applicability of our approach. Although there are many
parameters that must be defined a priori, satisfactory results
are obtained by a simple set of parameters.

II. MODEL OF SPACE ROBOT

As noted above, let us define a space robot model for the
planar motion. The hypothetical joints are introduced to give
two-dimensional positions of the spacecraft and an attitude
of the spacecraft.

Fig.1 shows a concept of space robot. The hypothetical
joints are measured with respect to an inertially fixed
coordinate system. Two translational displacements are
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given by 6,6, and spacecraft attitude angle is specified by 6,
and 6,,05 denote angles of robotic arm rotary joints. The
position of the end effector is given by (x,y)as shown in
Fig.1. The translational movement and attitude control will

be achieved by gas jet thrusters and reaction wheel.

Therefore, for instance, propellant consumed by gas jet
thrusters should be minimized from operational points of
view. This validates our approach to optimize the operation
of the space robot in which the propellant is a key factor of

operational life.

End Effector
fte r (x,»)

Robotic Arm

02

191 Spacecraft Body

Inertially Fixed Frame
IS

Fig.1 A Concept of Space Robot
[II. MATHEMATICAL DEVELOPMENT

Based on the above definitions, let us proceed to the
formulation of optimization problem.
The position vector of the end effector is denoted by
r =1(6).6,.65.0,.05) (1)
where the right hand side of equation (1) is shown in
Appendix (A-1).
By differentiating of both sides and using Jacobian matrix
J(0), we obtain the following infinitesimal relation;
Ar = J(0)A0 )
where 0 describes a vector of joint variables. Jacobian
matrix is also given in Appendix (A-2).
If we assume to minimize the joint travel, then, we treat
this problem as follows.
Firstly, we define the minimization function
g = g(A0) 3)
and as usual, in this study we adopt the following quadratic
function;

g =0T PAB 4)
where P is a weighting matrix among joint variables. In

order to avoid the complexity of discussions here, we simply
assume that P is a diagonal matrix.

B0 0]

P=| 0 " o0 (5)
0 0 P

Then, we have minimization function as shown in Appendix
(A-3).
Next Ar is given by the following;
Ar =(r; 1)/ N = (Ax,An)" ©)
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where r, and r, are initial position and final position,

respectively. Each step Ar is given by linearly dividing the
trajectory into N segments . N must be large enough not to
violate the equation (2). Of course we are able to have
different divisions depending on the curve if required.
Between Ar and A@ we have two scalar equations from the
vector equation (2). These two equations are the constraints
which must be observed along the trajectory. Since these two
equations are not enough to get solutions because of the
rectangular nature of the matrix. So we introduce the
Lagrange multiplier A . Then, we have an optimization
problem:
minimize g(A8)+17[Ar—J(8)A0] . (7)
However, the above formulation is not good enough for
the space robot operation. As easily shown, solutions from
equation (7) include the stretched arm , i.e., straight posture.
In order to avoid this kind of singularity we also introduce
another  measure, so-called manipulability.  This
manipulability assures that the robot would be able to work
in a good situation right after the arrival at the target. The
manipulability measure o defined in our study is "

o= ®)
and as easily seen from the definition of the manipulability,
joint variables included in this measure are just d, and 6s.
Thus hypothetical joint variables do not contribute to the
manipulability. Using the equation (8) optimum 6, and 6
can be calculated numerically by maximizing @ . Thus
optimal values are defined as 6, and 6; .

By introducing the manipulability measure, we have two
optimization functions given by equation (4) and equation
(8), that is, multi-objective functions. At this point we simply
define a single optimization function F by giving a weight
a between joint variable increment and manipulability in
the following manner:

F =A8TPAO + 1T [Ar — J(0)A0]+ o (6, -6, — A6,)?
+ (05 - 05-105)" |
where « is a positive number.

The minimization of the function F is given by

differentiating (9) by variables Ag, ~ A6s and 4, 4,, then

we obtain seven equations as follows:
O%Ael =2R,AG + 7, =0

a%Aez :2P22A92 +j,| :O

8%&93 = 2P5300 = A4 (5353 + 14534 + I55345)

+(les +1yc3q +150345) = 0

(€))

or onG, = 2Pual0s = 4(las34 + Iss3s)

+ Ay (lycsy +1sc345) + 20(AO, + 0, — 0, ) =0 (10)
8%A95 = 2P5sA05 — Aylss345 + AalsC3as
+20(AOs+ 65— 65 ) =0
6%,11 = A0y — (5353 + 14534 +155345) 05
(4534 + I55345) A0y = I55345A05 — Ax = 0
8% 7, = A0+ (B3 + lacsg + 15c345)A05

+(lgC3q +15¢345) A0y + Isc345A05 — Ay = 0
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These result in an equation of a matrix form as shown in
(A-4). Inverting this matrix in the left hand side we obtain
incremental vector of joint variables. For each step the same

procedure as the above will be repeated.

From the above discussion we have to specify six
weighting coefficients. These are numerically determined in

the following section.

IV. NUMERICAL SIMULATIONS

Numerical data for a space robot model, which were used

in our simulation, are as follows:
L=2m,ly=2m,s =2m

6, =45 .65 =40°
where 6, and 495* were determined by the calculation of the

manipulability optimization independently.

Target ‘ r( )

End Effecter {(x, »)

LSS,

Fig.2 Geometry of the Space Robot System

The geometry of the system is illustrated in Fig.1. In our

simulation the target is given as follows:

rp(xz,p7) =(7sin(=60)",7cos(-60°)) .
7m is the distance between the initial spacecraft position and
the target position and —60° denotes the direction of the
target.

As for «, weighting coefficient of penalty function in the
equation (9), we introduced 5 m rule to define its value. A
basic idea is that manipulability is not significant in the far
region from the target. The penalty function should be
heavily weighted as the robot approaches the target, that is,
depending on the distance d . Based on this consideration we
assumed the following values for « :

a=10"* for d=5

:%Ofor d<s.

The reason why the smaller value is defined for d > 5is that
the singular configuration should be avoided even in the far
region. In our case the singular configuration is that the arm
is stretched out. And in the vicinity of the target we
continuously changed the weighting coefficient at each step

ISBN: 978-988-98671-0-2

as shown above, provided that the maximum value is limited
to be 1. In our simulation we divided the whole travel from
the initial position to the target into 1000 steps and each step
is interpreted 1 second for the convenient sake. This
conversion is quite flexible.

Fig. 3 shows the trajectory of the prismatic joints, i.e.,
translational movement of the spacecraft, for the following
weighting coefficients

Ay =10, Py =10, P3 =5, Py =1, P55 =1
and initial posture of the robotic arm was
0, =60°, 65=-30".
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Fig.3 Trajectory for the Prismatic Joints

Apparently after reaching Sm both joints were hurrying to the
final position. So, as shown in the latter chart, initial
approaching were done by using the robotic arm, and then, in
the final approach by using prismatic joints.
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Fig.4 Trajectory for the Rotary Joints

Fig.4 illustrates the history of the three rotary joints, one
for the spacecraft attitude angle. Within 5Sm two joints, 6,

and 65, converged on the posture near the maximum
manipulability. And the spacecraft attitude angle has not
travel so much compared with other joints.

Fig.5 is a chrat of the manipulability measure along the
trajectory shown above. The profile shows that relatively
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large value is maintained during the movements. Especially,
after around 720sec the manipulability measure can be
optimized by increasing the weight coefficients for robotic
arm joints.
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Fig.5 Manipulability Measure

V. CONCLUSIONS

In this paper we discussed autonomous generations of
space robot trajectory, which includes the translational and
rotational motion of the spacecraft. Such a scheme will be
required for future space robot activities, for instance, deep
space operations and orbital operation such as repairs of the
failed spacecraft. A priori information, for instance, on
surroundings and the capturing target, will of course be
mandatory to establish an optimized autonomous system.

Numerical simulations were carried out to verify our
approach. This formulation was multi-objective function
optimization and therefore, there will be several methods to
solve, however, in this study simple weight coefficient
method was applied.

Satisfactory results were obtained by choosing appropriate
set of weighting coefficients. Especially, with respect to « ,
weighting coefficient for manipulability measure, would be
better to be changed as a function of the distance from the
initial position. By this approach the best solutions regarding
manipulability are available. Depending on the robot
characteristics, weighting coefficient must be tuned.
However, once we obtain a proper solution, it will be
applicable to another case in which different target position
is given, although other examples are not shown here due to
the limited space.

The optimization problem discussed here still needs a lot of
numerical efforts to obtain the best solution, but it is useful to
generate the optimized trajectory.

There still remain issues to be solved. One of these will be
the collision avoidance technique. Once the spacecraft
recognizes the position of hindrance, then, the trajectory of
the spacecraft can be designed into some segments that avoid
the hindrance. And our approach may be applicable to each
segment and step-by-step we will be able to have the
optimized trajectory.
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Appendix
O, + lyez + 1434 + sc
f(01a02993904a95) = |:02 33 e > 345:| (A-l)
1+ l3S3 + I4S34 + 15S345
J(0) = {0 1 —(ls3 14534 +1s5345)  —(14534 + [55345) —(15S345)} (A-2)
10 (hes+lyesg+1lscsys)  (gesa+1sc345)  (Isq5)

joint and /;is a hypothetical link between joint 3 and 4.

Trigonometric functions defined in the above are as follows;
3 = Sin(l93),s34 = Sin(6’3 + 94),5'345 = Sin(l93 + 04 + 95)

where I, andls are length of the links attached to each

and the same definitions as the above are used for cosine function.

2(A0) = B1AG” + PpA6y’ + PgAls” + PyAd,” + Pish6s® (A-3)
2P, © 0 0 0 0 1 Tae] [ 0 i
0 2P, 0 0 0 I 0 A6, 0
0 0 2P 0 0 — (383 + 14534 +158345)  (l3¢3 + 14034 +15c345) | A O 0
o o0 0 2Py +2a 0 — (4834 +I55345) (lac34 + I5¢345) A 0y |=| 200605 - 6y) (A-4)
0 0 0 0 2Pss + 20 = (Is8345) (I5¢345) AOs | |2a(05 —65)
0 1 —(l383 + 14534 + 158345)  — (14534 + I55345) —(I55345) O 0 A Ax
|1 0 +(l303 +l4c34 +sc345) (U434 +lsc3q5)  +(Iscgs) O 0 142 1L Ay |
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