
 
 

 

  
Abstract— Many vision-based approaches for obstacle 

detection often state that vertical thin structure is of 
importance, e.g. poles and trees.  However, there are also 
problem in detecting thin horizontal structures. In an industrial 
case there are horizontal objects, e.g. cables and fork lifts, and 
slanting objects, e.g. ladders, that also has to be detected. This 
paper focuses on the problem to detect thin horizontal 
structures. The system uses three cameras, situated as a 
horizontal pair and a vertical pair, which makes it possible to 
also detect thin horizontal structures. A comparison between a 
sparse disparity map based on edges and a dense disparity map 
with a column and row filter is made. Both methods use the 
Sum of Absolute Difference to compute the disparity maps. 
Special interest has been in scenes with thin horizontal objects. 
Tests show that the sparse dense method based on the Canny 
edge detector works better for the environments we have tested. 
 

Index Terms— Computer vision, Obstacle detection, Stereo 
vision, Thin structures.  
 

I. INTRODUCTION 
Obstacle avoidance may be divided in obstacle detection 

and path planning while the former is the input to the latter 
and therefore of great importance. Obstacle detection has to 
be robust, i.e. can handle data that do not respond to a given 
model [1]. It also has to detect all potential obstacles in the 
environment with no false detections as, for instance, patterns 
in the floor. A robust obstacle avoidance algorithm is a key 
issue for a mobile robot in an unknown, or partly unknown, 
environment. A collision with an industrial robot might not 
just cause personal injury or material damage, it can also 
cause stoppage of production which leads to increasing costs. 

Obstacle avoidance is an important part of a vision-based 
navigations system. An extensive survey of vision-based 
navigation is made in [13]. A recent work with map-building 
approach use stereo vision SLAM-algorithms [12] based on 
SIFT (Scale Invariant Feature Transform) to distinguish 
landmarks and a particle filter to track the position of the 
robot. They also utilize visual odometry. The algorithm 
approaches near real-time. Reference [11] combine visual 
odometry with wheel based odometry to get a relative 
position. SIFT is used for landmark detection to get an 
absolute position. Reference [10] bases their work on a 
model of human navigation where angular width of the 
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obstacles is used instead of the distances to obstacles. The 
goal angle and obstacle angles are together with the robot 
heading then used in a potential field model as in the VFH+ 
and VFH* methods. One problem, described by the authors, 
is that large distant objects have the same angle as closer 
small objects. 

Many vision-based approaches for obstacle detection often 
state, especially in outdoor environment, that vertical thin 
structure is of importance, e.g. poles and trees [15], [14]. 
However, there are also problem in detecting thin horizontal 
structures. In an industrial case there are not just objects 
connected to the floor that has to be considered. Horizontal 
objects, e.g. cables and fork lifts, and slanting objects, e.g. 
ladders, also has to be detected. We do consider all obstacles 
in our research, but this paper focuses on the problem to 
detect thin horizontal structures.  

Obstacle detection with vision has two parts; to detect the 
obstacle and to compute the distance to the obstacle. Current 
approaches in vision-based obstacle detection often combine 
sensors algorithms to overcome the drawbacks with one 
single approach. Reference [15] uses stereo vision with a 
variable baseline to drive a vehicle in the DARPA Grand 
Challenge. A variable baseline results in good accuracy at 
various distances but needs a very accurate calibration. 
Reference [14] uses feature vectors based on different 
monocular cues (e.g. texture gradients, texture variations, 
color) and train models with reinforcement learning to drive a 
RC car in an outdoor environment. According to the authors 
the use of monocular cues instead of stereo vision yields 
good determination of depth at larger distance and render 
possible higher speed of vehicles. An open problem with 
learning methods is to decide when trained algorithms will 
work. [17] have extended this work and use monocular cues 
combined with stereo vision to successfully obtain better 
depth estimation than with a stereo system alone.  

 

1 2 3 4 5
Epipolar line
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Figure 1.  Matching problem. What point in the right image corresponds to 
the point in the left image? The third pixel in the right image is the correct 
match, but a matching algorithm would probably select the fourth or fifth 
pixel as a match. This is due to that pixels that lie on the object boundary 
interact with the background. 
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Figure 2.  A trinocular system. 

II. OBSTACLE DETECTION 
In computer vision two historically common methods are 

optical flow and stereo vision. This paper focus on stereo 
vision. 

A. Sensors 
A traditional stereo vision system has two horizontally 

placed cameras with the optical axes in parallel. Search for 
corresponding points is made along the so called epipolar line. 
See for example [3] or [4] for an introduction to stereo vision. 
One problem that arises with using horizontally situated 
cameras is correlation of horizontal thin structures, e.g. wires 
or forks on a forklift. This is a well known problem and is 
illustrated in Fig. 1. The natural solution to this is to add a 
third camera, a trinocular system, which is situated above the 
other two cameras and form a vertical image pair, Fig. 2. 
Using more than two cameras is made in several earlier 
works, see for instance [5], [6] and [7], and has the advantage 
of eliminate false matches and increase precision [7]. The 
drawback is an increased cost, both financial in purchasing 
more sensors as well as computational in handle more data. 
The first drawback is not a problem in systems where the 
sensors are a fraction of the total cost of the system. The 
second drawback is manageable as long as the system is 
solving the problem in detecting obstacle in the right time. 

A trinocular camera system is used in this work, since 

horizontal objects are hard to detect for a stereo system with 
only horizontally situated cameras [2].  

B. Camera Placement 
For all vision systems is the placement of the cameras 

essential to get a good result. This has to be considered for 
every new setup [8]. There are several ways to determine the 
placement of the camera system on the robot. The easiest way 
is to just choose a placement by intuition. Putting a little more 
effort in this judgment will probably increase the precision in 
the system. It will also make a discussion of camera 
placement more unbiased if the systems performance later 
has to be increased. The reasoning in [8] is used in the 
experiments in this paper. 

 
To get a high resolution in distance, when computing the 

distance from the disparity, a long baseline is to be preferred. 
On the other hand will a long baseline result in that a larger 
disparity range has to be searched to get a match. This will 
result in longer computation time and a greater possibility of 
a false match [5]. The distance (Z), Fig. 2, to an object can be 
computed as 

 

 
d
bfZ =  (1) 

 
where b is the baseline, f is the focal length and d the 

disparity between the corresponding point in the images. All 
variables are in meter.  

III. ALGORITHMS 
The unsolved problem, at least in the general case, in 

stereo vision is the correspondence problem (to find the 
correspondence between two locations in two images). While 
many techniques exist for correspondence, the most used in 
real-time stereo vision are the correlation-based Sum of 
Squared Difference (SSD) and Sum of Absolute Difference 
(SAD) since they are fast. In those techniques a similarity 
criterion is a measure of the correlation between windows, 
typically 3x3 pixels, in the two images. Where the curve of 
similarity peaks (or drops), there is a match. See for example 
[3] or [4] for further reading in correspondence. The size and 
shape of the window is still an open issue. A small window is 
preferable in regions with high texture and to get accurate 
disparity measure, but will result in a low signal to noise 
ratio. A larger window is preferable in regions with low 
texture and will reduce noise, but will also cover a larger 
image area and make pixels with varying disparities be 
covered in the window. Using variable windows as described 

    
 (a) Original image (b) Ground truth (c) Dense disparity map (d) Sparse disparity map 

 
Figure 3. The head and lamp Tsukuba images. 
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 a) Hanging cable and smoke exhaust system b) Beam and smoke exhaust system c) Corridor with a small table to the right 
 

Figure 4.  Scenes evaluated.  

in [5] or [19] will overcome the problem in images with 
varying texture. Though, these techniques are slow. 
Reference [18] proposes the use of a five-window approach 
to get real-time performance.   

To get a more robust system and to increase the 
computational speed there are some constraints that can be 
used. The epipolar constraint says that the corresponding 
pixel is found on the epipolar line. It is also possible to further 
limit the search range if the desired distance-of-interest is 
defined. When a series of similarity matches are computed 
the correct match need to be found. The WTA 
(Winner-Takes-All) algorithm simple picks the value with 
the single best matching value. This is not the optimum for 
images with repetitive textures or textureless regions. The 
uniqueness constraint states that there is a one-to-one 
relationship between pixels in the two (or more) images. The 
Left-to-Right consistency check can be used to verify the 
uniqueness. When a corresponding pixel is found, the 
algorithm is used in the other direction. If the origin pixel is 
found there is a match.  

When there is low texture in a region the cost values of the 
similarity measures will be very similar. By rejecting matches 
where the best match (C1) is close to the second best match 
(C2) erroneous matches are removed. This can be done by 
using  

 
1

12

C
CCC −

=     (5) 

to get a confidence coefficient. Textureless regions will get 
a flat similarity curve while regions with repetitive textures 
will have several peaks. Both regions will, however, get very 
low similarity measures and are therefore not reliable.  

There are different methods in computer vision to get the 
distance to objects. Two common methods are Dense 
disparity map and Sparse disparity map. The methods are 
shown in Fig. 3 for a real stereo pair with the ground truth 
from the Scharstein and Szeliski’s dataset [22]. 

 

A. Dense disparity map 
A dense disparity map is created if every pixel in an image 

is considered. [9] compares different dense stereo algorithm 
for complex urban traffic scenes and states that the more 
simpler WTA algorithm with Left-Right consistency check 
outperform techniques with multiple windows. An often 
mentioned drawback with dense disparity map is the problem 
in textureless regions.   

B. Sparse disparity map 
Another approach is to consider only areas with high 

information contents, e.g. corners and edges. A POI (Point Of 
Interest), e.g. a corner, has high intensity variation in both x- 
and y-direction. The KLT- [20] and Harris- [21] detectors use 
a coefficient matrix to compute POI. Edges are often 
extracted with Sobel- or Canny-filter, Fig. 5.  

C. Dense disparity map with column and row filter 
We implemented a row filter with the same principle as in 

[16] where a column filter was used to detect thin vertical 
objects. The column filter is the most decisive filter of the 
filters used in [16]. A row filter keeps the most frequent 
disparity in every row and rejects all the other disparities. It 
has drawbacks as stated in [16] where the method is used in 
an off-road environment outdoors. We try this method 
indoors in an industrial setting.  

IV. EXPERIMENTS AND RESULTS 
Scenes in Fig. 4 are used to evaluate the two algorithms; a 

dense disparity map with a row filter and the sparse disparity 
map based on an edge detector. The computations are made 
off-line in Matlab. 

From the left-right camera pair and from the lower-upper 
camera pair is sparse and dense disparity maps computed 
respectively. In the sparse disparity map we decided to use 
the Canny detector since it performed slightly better than the 
Sobel detector, specially for the hanging cable. This is a 
threshold problem and better performance could be achieved 
with the Sobel detector by tuning, but with the drawback of 
more noise. Both the Canny- and Sobel-detector have 
problems to detect the ladder, Fig 5, because it has nearly the 
same gray value as the background, Fig 4a. A row and 
column filter is used on the dense disparity map.  

For both algorithms are Sum of Absolute Difference 
(SAD), with a window of 3x3 pixels, used to compute the 

  
 (a) Canny  (b) Sobel 

 
Figure 5.  Edge detection 
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correspondence between pixels and the algorithms enforces 
epipolar, uniqueness and mutual correspondence constraints 
to further improve the matching. A small window is 
necessary if thin obstacles should be located. 

We have focused on the horizontal objects in the scenes. 
The cable (Fig. 4a), the beam (Fig. 4b) and the table (Fig. 4c) 
are detected in the sparse disparity map, example is shown in 
Fig 7. It is possible to detect, for instance, the cable in the 
dense disparity map (Fig. 6b), but the amount of outliers is 
high due to the small correlation window. The column (Fig 
6c) and row (Fig 6d) filter have advantage in reducing the 
amount of outliers, but will also reject the hanging cable 
since the cable occupies several rows and columns. This is 
also shown in Fig. 8 where the beam is detected in both 
images, but the number of outliers is strongly reduced with 
the row filter. However, the row filter also rejects inliers as 
the hanging smoke exhaust system (Fig. 8).  

V. CONCLUSION  
This paper compares a dense and a sparse disparity 

algorithm for a trinocular camera system to detect horizontal 
objects for a mobile system. Both algorithms use small 
correlation windows to detect thin objects. The dense 
disparity algorithm uses a row filter to eliminate outliers.  

The row filter works if long horizontal objects are to be 
detected. It does not perform well for short objects or for thin 
objects that occupies several rows.  

A sparse disparity method based on the Canny detector 
works better for the environments we have tested. There are 
still problems to detect thin horizontal obstacles as hanging 
cables or obstacles that have nearly the same grey value as 
the background. In further work we will implement the 
sparse disparity algorithm in an existing robot and try the 
algorithm on a large database of industrial images. 
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 (a) Left-right camera (b) Upper-lower camera 
 

Figure 7.  Sparse disparity image from Fig 4a. 

  
 (a) Before row-filter (b) After row-filter 
 

Figure 8.  Dense disparity map for Lower-Upper images from fig 4b. 

    
 a) Left-Right b) Lower-Upper c) After Column filter d) After row filter 
 

Figure 6  Dense disparity image from Fig 4a.  
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