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Abstract— In this paper a method is given for computing 

distributions of statistics of hidden state sequences. The method 
applies to any situation for which the conditional distribution of 
states given observations may be modeled by a factor graph 
with factors that depend on current and past states but not 
future ones. Model structure is exploited to develop a Markov 
chain that facilitates efficient computation of distributions. The 
methodology may be used for discrete hidden state sequences 
perturbed by noise and/or missing values, and for state 
sequences that serve to classify observations. Two detailed 
examples are given to illustrate the computational procedure. 
 

Index Terms—Auxiliary Markov chain, classification, 
deterministic finite automaton, distribution of pattern statistics, 
hidden state sequences.  
 

I. INTRODUCTION 
   An important problem in structured learning is the 
prediction of values of a sequence of hidden states, 
conditioned on observed data.  A typical choice for this task 
is to maximize the conditional probability of states given the 
data and the model (producing the Viterbi sequence; see [1]). 
Whereas this method of prediction is optimal in many 
situations, it may not be so if one is mainly interested in 
inference on statistics of the hidden states. Determining 
sampling distributions associated with statistics of hidden 
states is the topic of the present paper. 
   In classification, runs in hidden labels correspond to 
regimes in the observed data. Examples of applications 
where statistics of regimes are of interest are [2], in the 
context of business cycle analysis, and [3] and [4], which 
classified DNA nucleotides to locate genes or CpG  islands, 
respectively. Hidden states can also be the true values of 
noisy data with or without missing values. In that situation, 
any pattern of interest in the observed data is of relevance in 
the hidden states as well. Prototypical applications include 
microarray experiments, which frequently have noisy data 
for various experimental reasons [5], and noisy time series 
data [6]. 
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   In [7] an illustration is given of the pitfalls of basing 
inference for functions of hidden states on the Viterbi 
sequence, and a method based on Markov chains is presented 
to compute exact sampling distributions of statistics of 
patterns in states of hidden Markov models. In this paper that 
methodology is extended to more general settings, as it is 
applied to both discriminative and generative models for 
which the conditional distribution of states given 
observations can be represented as a factor graph with factors 
that depend on current and past states but not future ones. 
This is important because it supplies a way to analyze data 
from a variety of models, supplanting the need to develop 
new methodology for each individual case.  In addition, the 
development of the auxiliary Markov chain used for 
computations is made more efficient through the use of 
deterministic finite automata, in the sense that in some cases 
the number of states needed in the auxiliary Markov chain is 
reduced. 
   After background information is given on the model 
framework, details of the computational procedure are 
presented, along with two examples. The final section is a 
conclusion.   

II. THE MODEL 
   Let 1( , , )To o=o …  be a sequence of observations, and 

1( , , )Ts s=s …  the corresponding hidden states, with each ts  
from a finite state space Σ . The conditional distribution of 
states given observations is assumed to factor according to 
  

 ( )
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1( ) ( , ) ( , , )
( )
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S m t
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p s s
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= Ψ Ψ∏s o o o
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In (1), ( )h

ts  are history variables for time (or sequence 
location)  that include t t ms −  and some subset of 1: 1t m ts − + −  
( : 1, , ,a b a a bs s s s+= … , a b≤ ), so that the sequence has m -th 
order dependence . Also, 1:m ms s≡�  are initialization states. 
(In general, s s 1:t t m t≡ − +� , 1, ,t m m T, = + … ).   The factors 

0Ψ  and 1Ψ  are non-negative potential functions that 
indicate compatibility between the states that are their 
arguments and some subset  (which is possibly empty) of the 
observations o . These functions are (or contain) parameters 
that are estimated from data. The partition function  is a 
normalization constant, so that (1) defines a probability 
distribution.   
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   The representation (1) is fairly general in that conditional 
probabilities from various graphical models take that form.  
The model is a special case of a conditional random field 
(CRF) [8]. When ( )

1
h

t ts s −= , the model is a linear chain CRF, 
and a linear chain CRF with vector states is a dynamic 
conditional random field [9]. The model (1) can also be 
applied to generative models for the joint distribution of 
states and observations. For example, a hidden Markov 
model (HMM) 
 
 

0 1 1 1 1
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 has a conditional distribution ( )p s o  given by (1), with 

, potential functions  and  as indicated, and 

.  Dynamic Bayesian networks [10] may be 

represented as an HMM with vector states, and thus also 
satisfy (1). Other models may also be represented as (1) as 
well. 

1m = 0Ψ 1Ψ

( ) ( , )Z p= ∑ s
o s o

   The computation of  is facilitated by the backward 
variables, defined by 

( )Z o
( , ) 1T Tsβ ≡o�  for all Ts� , and 

for  t T , 

, which lend themselves to recursive computation: 
. Using the 

backward variables,  is obtained as 
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   The model (1) has a Markovian property that is useful. For 
, 1t m≥ +
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Thus conditioned on the observations, transition probabilities 
in the state sequence given all previous states depend on only 
the last m  states. This Markovian structure is exploited in 
the next section to develop an auxiliary Markov chain (AMC) 

 that eases the computation of conditional 
distributions of statistics of s .  
{ }T

mYτ τ =

 

III. COMPUTATION OF DISTRIBUTIONS IN HIDDEN STATE 
SEQUENCES 

   Terminology related to patterns is now given as a prelude to 
a description of the computational algorithm.     
  
A. Preliminary notation and terminology 
 
   The alphabet  is a nonempty finite set whose elements 
are called letters. A word  over  is a sequence of letters, 
and its length 

Σ
w Σ

w  is the number of letters forming the word.  

The word of length zero is denoted by ε . ,  is the 

set of all words formed by taking k  letters from 

kΣ 0k ≥

Σ , with 
{ }0 εΣ = . The set of all words over  is denoted by Σ *Σ ; 

* 0 1 2Σ = Σ ∪ Σ ∪ Σ ∪… Let { }* :j w w≤Σ ≡ ∈ Σ ≤ j . For 

words  and  over u v Σ , the concatenation  is the word 
formed by adding v  to the end of u . A word v  is called a 
suffix of u  if 

uv

u wv=  for some  , and v  is a prefix of 
 if 

*w∈Σ
u u vw= , *w∈Σ . For , define *w∈Σ ( )jw  to be the 

longest jv ≤∈Σ  that is a suffix of w . Finally, a pattern L  is 
any subset of *Σ .   
 
B. Markov chain embedding 
 
   Distributions associated with patterns and statistics in a 
state sequence may be computed through an auxiliary 
Markov chain (AMC) that sequentially processes each 
random variable of the sequence and returns probabilities for 
each of the states of the chain. This technique was formalized 
in [11], and has been used extensively, including in [12] and 
[13] to compute generalized sooner and later waiting time 
distributions of collections of patterns that have to occur 
pattern specific numbers of times, and, as stated earlier, in 
[7], where distributions of patterns in state sequences of 
HMMs are computed. 
   The work of the latter reference is extended here to more 
general factor graphs of the form (1). The AMC that is 
formed for computation is of the form ( , )Φ θ , where θ  is a 
vector holding the statistic(s) of interest, and Φ  is a set of 
supplementary variables needed to form the Markov chain.  
Φ  consists of the variable q  that gives progress into the 
pattern of interest, an m -tuple ts�  that holds the last m  
values of 1:ts , and possibly other variables, though no other 
variables are used in Φ in the remainder of this paper. 
Deterministic finite automata assist with setting up possible 
values of  in an efficient manner.   q
    A deterministic finite automaton (DFA)  is a 
five-tuple,

D
( )0, , , ,D Q q Fδ= Σ , where Q  is a finite set of 

automaton states, Σ  an alphabet, : Q Qδ ×Σ →  a transition 
function,  an initial state, and 0q F  a set of final states. The 
transitions of a DFA may be represented as a directed graph 
with labeled edges, where an arrow labeled with the character 
a ∈ Σ  connecting a state  to a state r  is drawn provided 
that 

q
( , )q a rδ = .   

   A state r Q∈  is accessible if there is a path from  to , 
and  coaccessible if there exists a path from r  to one of the 
final states. The automaton recognizes all words that can be 
formed by concatenating from left to right the labels of edges 
visited by any path over its transition graph that starts at  
and ends at a state of 

0q r

0q
F .   

   In an Aho-Corasick automaton [14], 0q ε= , states of Q  
represent prefixes of words of the pattern, and final states 
represent matches with words of the pattern. In some cases, 
an Aho-Corasick automaton will not be minimal, in the sense 
that the pattern in question can be recognized with fewer 
automaton states. For improved efficiency we use the 
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procedure of [15], which involves determining equivalence 
classes for states Q  of D  based on its transitions, and 
defining a minimal automaton minD  with states that 
correspond to equivalence classes.  Values of  correspond 
to states of 

q

minD . 
   An -th order automaton  ([16]) may be formed by 
coupling words of  with states of , and then deleting 
any states that are not accessible and coaccessible. Elements 

 of Φ  are then states of .   

m ( )mD
m≤Σ minD

( , )tq s� ( )mD
   The variables of  and of Φ θ  at any time t  are uniquely 
determined from 1:ts , and thus, so are initial and transition 

probabilities of the AMC . If { }T

m
Yτ τ =

( , )mmq θ  are the values 

of  and q θ  determined from ms� , then 
 
 [ ( , , )] (m m m m S mP Y q s p sθ= = o� � )  

 
1:

1
0( )  ( ) ( , ) ( , )

m T

S m
s

p Z s sβ
+

−⎡ ⎤= = Ψ⎣ ⎦∑ s o o o o� �m m

t

, (3) 

 
and if 1( , , ) ( , , )tq s q sθ θ−′ ′ →� �  with the occurrence of ts  at 
time , t
   
  1 1[ ( , , ) ( , , )] (t t t t t t 1)P Y q s Y q s p s sθ θ− −′ ′= = =� � −� . (4) 
 
 
  Equations (3) and (4) lead to a recursive method for 
computing ( , , ) [ ( , , )]t tq s P Y q sψ θ θ≡ = , . If , ,t m T= …

mξ  holds the initial distribution of , and the matrix mY τΩ  
has probabilities for transitions of 1Yτ −  to Yτ , 

1, ,m Tτ = + … , then 
 
  

1

t
t m m ττ

ψ ξ
= +

= ∑ Ω , (5) 

 
which lends itself to recursive computation: 
  
  m mψ ξ= , 
  1τ τ τψ ψ −= Ω , 1, ,m tτ = + … . 
 
The last equation can be written as  
 
  , 1 ,j jτ τ τψ ψ −= Ω , (6) 
 
where , jτψ  is the probability of the j -th state of the AMC 

when states are ordered ( j  corresponds to some ( , , )tq s θ� ), 
and  is the ,t jΩ j -th column of tΩ . Equation (6) is the basis 
of a dynamic program for computing probabilities for the 
AMC lying in its various states. From ( , , )t tq sψ θ� , one 
obtains probabilities for θ  by summing over . ( , )tq s�
  

IV. EXAMPLES 
   Two examples are now given to make the computational 
algorithm more transparent.  
 
A. Distribution of Chi motif  
 
   Assume that an observed DNA sequence o  is recorded 
with error, and one is interested in determining the 
distribution of the Chi motif  

(
1 *L G= TGGTGG

{ }* , , ,A C G T∈ Σ = ) in the true underlying values , 
conditional on o . Recognition of Chi sites by RecBCD is 
involved in repair of broken DNA, and thus this motif occurs 
frequently in certain genomes, such as E. Coli [17]. The 
conditional distribution of states given observations is 
modeled through an HMM:  

s

 

[ ] 1
1 1 1 1 2 12

( ) ( ) ( ) ( ) ( ) ( )T
S tt

p Z g s o s g s s oγ γ−
−=

= ∏s o o t t ts , 

 
where 1 1 1 1 2 12

( ) ( ) ( ) ( ) (T
t t t tt

)Z g s o s g s s o sγ γ−=
= ∑ ∏s

o . The 

recursion to obtain the backward variables tβ  is well known 
[1], and  is easily obtained from the backward 
variables.  From (2), the conditional probability of 

( )Z o

1s  given 
 is  o

  

  
1

1 1 1 1 1 1
1

1 1 1 1 1 1

( ) ( ) ( )
( )  

( ) ( ) ( )S
s

g s o s s
p s

g s o s s
γ β

γ β
=

∑
o , (7) 

 
and from (3), conditional transition probabilities are   
 

  2 1
1

1 1

( ) ( ) (
( , )

( )
t t t t t t

S t t
t t

)g s s o s s
p s s

s
γ β

β
−

−
− −

=o . (8) 

 
The model parameters 1g , 2g , and γ  may be estimated by 
the Baum-Welch method (see [1]). The minimal DFA 

{ } { }( , , , 0 , 9 )D Q δ= Σ  that recognizes  is depicted in Fig. 
1. As pattern prefixes are grouped in states of 

1L
D  (for 

example, word prefixes GA , ,  and  are 
all represented by state 4 of 

T GCT GGT GTT
D ), the minimal DFA has only 

10 states, instead of the 30 states (word prefixes) of an 
Aho-Corasick automaton, so that the AMC has 1/3 the states, 
compared with its formation based on word prefixes. For Fig. 
1, it is assumed that counting is overlapping, where all 
occurrences of  are counted. Under non-overlapping 
counting, transitions from state 9 are the same as those from 
state 0.    

1L

   Since for an HMM the state sequence s  has first-order 
dependence,  is set to one and the minimal first-order DFA 
(not shown) also carries the last state value.  

m

   The AMC { } 1

TYτ τ =
 has states of the form ( , , )tq s θ , where 

θ  is the number of occurrences of . To illustrate the 
correspondence between the AMC and s , for the sequence 

1L

1:12s ACGATGGTGGTG= ,  ( )  (1 12 =, , (0, ,0), (0, ,0),Y Y A C…
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  Fig. 1. Minimal DFA D  that recognizes pattern 1 *L G TGGTGG= , where { }* , , ,A T G C∈  (overlapping counting)   
 
 
(1, ,0), (2, ,0), (4, ,0), (5, ,0), (6, ,0), (7, ,0), (8, ,0),G A T G G T G

)(9, ,1), (4, ,1), (5, ,1)G T G  under overlapping counting, with  

 under non-overlapping 

counting. Recall that 

( ) (11 12, (0, ,1), (1, )1),Y Y T G=

1( )Sp s o   and 1( ,S t tp s s − o)  are 
respectively computed from (7) and (8), and note that for an 
HMM, probabilities for ts  depend on , but no other 
observations. The initial distribution of  is 

to

1Y

1(0, ,0) ( )Sa p aψ = o for , and { , ,a A C T∈ }

1(1, ,0) ( )SG p Gψ = o . If ( ) 1I υ =  if υ is true, and zero 

otherwise, transition probabilities for ,  may be 
represented as:  
 

tY 2t ≥

[ ]1 1, ,
(0, , ) (0, , ) (2, , ) ( ) ( , )t t tb A C T

a b b I a Tψ θ ψ θ ψ θ− −=
= + ≠∑ oSp a b  

  14,7
( , , ) ( , )t Sq
q T p a Tψ θ−=

+∑ o , { }, ,a A C T∈ ; 

 
10,2 , ,

(1, , ) ( , , ) ( , )t tq a A C T
G q aψ θ ψ θ−= =

= ∑ ∑ oSp G a ; 

 

11,5,8
(2, , ) ( , ) ( , , )t S tq

a p a G q Gψ θ ψ −=
⎡= ⎣∑o θ   

       , 13,6,9
( , , ) ( )tq
q G I a Tψ θ−=

⎤+ ≠ ⎦∑ { }, ,a A C T∈ ; 

 

11,3,6,9
(3, , ) ( , , ) ( , )t tq

G q G pψ θ ψ θ−=
= ∑ oS G G ; 

 

1, ,
(4, , ) (2, , ) ( , )t ta A C T

T aψ θ ψ θ−=
= ∑ oSp T a  

 13,9
( , , ) ( , )t Sq
q G p T Gψ θ−=

+∑ o ; 

  

1( , , ) ( 1, , ) ( , )t t Sq G q T p G Tψ θ ψ θ−= − o , ; 5,8q =
 

1(6, , ) (5, , ) ( , )t t SG G p Gψ θ ψ θ−= oG ; 
   

1(7, , ) (6, , ) ( , )t t ST G p Tψ θ ψ θ−= oG ;  
 

1(9, , ) (8, , 1) ( , )t t SG G p G G

 
The distribution of the number of occurrences of   at time 

 is computed by summing 
1L

t ( , , )t tq sψ θ  over  and q ts .   
 
B. Success runs with gaps 
 
   This example is motivated by the problem of locating 

 islands, a segment of DNA in which the frequency of 
the  dinucleotide is higher than in other regions. 
Whereas because of methylation there is a high chance that 
the  of CG  will mutate to a T , upstream from a gene the 
methylation process is suppressed in a short region (a CpG  
island) of length 300-5,000 nucleotides so that  pairs are 
more frequent [18]. Thus CpG  islands are useful for 
identifying genes.   

CpG
CG

C

CG

   To identify CpG  islands, [4] modeled the data generation 
process as an HMM, and used the Viterbi algorithm to 
segment the state sequence. Due to minimal length and gap 
restrictions that are frequently placed on islands ([19],[20]), 
[4] subjected the Viterbi sequence to post-processing 
procedures to ensure that islands are at least 500 nucleotides 
long, with gaps between islands of at least 500 nucleotides.  
In [7] it was shown that inference based on using the most 
likely sequence as if it is deterministically correct may not be 
optimal. The approach of this paper gives a way to compute 
the complete sampling distribution of statistics of CpG  
islands over all possible state sequences.    
   The joint distribution of the number of “islands” (runs with 
minimal gaps between them) and the number of observations 
falling in them (a statistic that was reported in [20]) is 
computed based on the CRF model (1), with 2m = , history 
variables ( )

2 1( ,h
t t t )s s s− −= , and states representing labels of 

whether or not the sequence is in an island.  
   The shared potential functions are typically modeled as  
 

 ( )1 1 2 1( , , ) exp ( , , , )t t j j t t tj
s s w f s s s− −Ψ = ∑o o− , 

where { }jf  are a set of real-valued feature functions, and 

{ }jw  are weights that are estimated using training data ψ θ ψ θ−= − o 1, θ ≥ . 
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(training of CRF parameters is discussed in [21]).     
Conditional random fields allow the flexibility to model 
multiple interacting or long-range features of the 
observations, models that are intractable when using 
generative models like HMMs. In the case of CpG  islands, 

 content in C G+ 1, ,t l tx x− + …  for some  could be stored in 
feature functions to assist in identifying islands.  

l

   Let ( , )θ φ= Δ , where φ  is the number of islands and Δ  is 

the number of observations in them, and let  { },a bΣ = , 
where  means that the observation is labeled as being in an 
island, and  that it is not in an island.  The statistics ( ,

b
a )φ Δ  

are defined as follows. 
   

 An island begins with the first b  of a run of b ’s of 
length at least k  and doesn’t end until the last b  
preceding the first subsequent run of  of length at 
least 

'a s
g .  If the last island has not ended before time T , it 

is considered as having ended at the last b  of the 

sequence. Define, for 1φ ≥ , , 

where 
1
( 1)

j
eφ

=
+∑ j jξΔ ≡ −

je ( jξ )  denotes the index of the end (beginning) 
of the j -th island, and  if  0Δ ≡ 0φ = .    
 

These definitions mimic counts of islands and observations in 
them when the labels are subjected to post-processing as in 
[4]. The distribution of Δ  differs from that of the “sum of 
heads” statistic [22] because for Δ , non-CpG island states 
can be counted as being in an island after post-processing. To 
illustrate the definitions, if k 5=  and , for the 
sequence 

of 
length  we have 

2g =

 1  2island

aaabababbbbabbb babbbb aabbbaaaabbbbbb a=s

� ��� 
����island

bbb
��

40T = 2φ =  and .    18Δ =

   For this example , { }0,1, , , , 1Q k k g= + −… … { }0 0q =

}−

, 

and , so that the automaton { , , 1F k k g= +… D  
recognizes words that end in an island. The states 

 indicate the length of the current run of the letter 
. For final states of the form k

0,1, , 1k −…
b α+ , 0, , 1gα = −…  , α  
indicates the current length of the run of .  'a s
   Taking the cross product of states of D  with 

 and then trimming inaccessible 

states, one obtains the second-order DFA  with initial 
state 

{2 , , , , , ,a b aa ab ba bbε≤Σ = }
(2)D

(0, )ε  that is depicted in Fig. 2.                

   The AMC { } has states of the form 
2

TYτ τ =
( , , , )tq s φ Δ� , where   

are states of ,  and ( ,( , )tq s� (2)D )φ Δ  are incremented with 
visits to ’s final states. The value of (2)D φ  is incremented 
by 1 and Δ  is incremented by k when state ( ,  is 
entered from ( 1 , indicating a k -run of . With 
each subsequent visit to one of the final states, 

)k bb
,k bb− ) 'b s

Δ  is 
incremented by one.  To compensate for counting visits to 
non-island states when the island is being left, 1g −  is 

subtracted from Δ  on the transition from ( 1,k g aa)+ −  to 
 (or from (0, )aa ( 1, )k ba+  to  when (0, )aa 2g = ).   

   For 1, ,φ ς= + [ ( )] /T k g kς− +⎢ ⎥⎣ ⎦…  and 1, ,TΔ = …  

( x⎢ ⎥⎣ ⎦   is the greatest integer less than or equal to x  and 

/( )T k gς = +⎢ ⎥⎣ ⎦ ), let ( , , , ) [ ( , , ,t )]t t tq s P Y q sψ φ φΔ = = Δ� � . 
The backward variables are obtained as described earlier. 
The initial distribution and transition probabilities for the 
state sequence  conditional on  are, respectively, s o
 

  

2

0 2 2 2
2

0 2 2 2
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s

s s
p s

s s
β

β
Ψ

=
Ψ∑

o
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�
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� �

, (9) 

  1 1
1

1 1

( , , ) ( , )( , )
( , )

t t t t
S t t

t t

s s sp s s
s

β
β
−

−
− −

Ψ
=

o oo
o
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. (10) 

    
We assume that . To obtain ,k g > 2 tψ  recursively, begin 
with 
  

2 (0, ,0,0) ( )Saa p aaψ = o , 2 (0, ,0,0) ( )Sba p baψ = o ,

2 (1, ,0,0) ( )Sab p abψ = o ,  2 (2, ,0,0) ( )Sbb p bbψ = o ;   
 
initial probabilities for other states are zero. For 3, ,t T= … ,  
 

1(0, , , ) (0, , , ) ( , )t taa ba p a baψ φ ψ φ−Δ = Δ o   

    1( 1, , , 1) ( ) ( ,t k g aa g I k p a aaψ φ−+ + − Δ + − Δ ≥ o)  

    1(0, , , ) ( , )t aa p a aaψ φ−+ Δ o ; 
 

1(0, , , ) (1, , , ) ( , )t tba ab p a abψ φ ψ φ−Δ = Δ o  

     1
12
( , , , ) ( , )k

tj
j bb p a bbψ φ−

−=
+ Δ∑ o ;      

 
1(1, , , ) (0, , , ) ( , )t tab aa p b aaψ φ ψ φ−Δ = Δ o  

      1(0, , , ) ( , )t ba p b baψ φ−+ Δ o ; 
 

1(2, , , ) (1, , , ) ( , )t tbb ab p b abψ φ ψ φ−Δ = Δ o ; 
 

1( , , , ) ( 1, , , ) ( , )t tj bb j bb p b bbψ φ ψ φ−Δ = − Δ o , 3, , 1j k= −… ; 
 

[ ]1( , , , ) ( 1, , 1, ) ( 1, )t tk bb k bb k I kψ φ ψ φ φ−Δ = − − Δ − ≥ Δ ≥   

   ( , )p b bb o× 1( , , , 1) ( , )t k bb p b bbψ φ−+ ⎡ Δ −⎣ o   

   1 ( , , , 1) ( , ) ( 1)t k ab p b ab I kψ φ− .       Δ − ⎤ Δ ≥ +⎦o+

 
For 1kΔ ≥ + , 
 

1( , , , ) ( 1, , , 1) ( , )t tk ab k ba p b baψ φ ψ φ−Δ = + Δ − o  

       1
12
( , , , 1) ( ,g

t k aa p b aa
α

ψ α φ−

−=
+ + Δ −∑ o) ; 
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Fig. 2. Second-order DFA  that recognizes words ending in an island (2)D

 
 

1( 1, , , ) ( , , , 1) ( , )t tk ba k bb p a bbψ φ ψ φ−+ Δ = Δ − o  

            1( , , , 1) ( , )t k ab p a abψ φ−+ Δ − o ; 
 

1( 2, , , ) ( 1, , , 1) ( ,t tk aa k ba p a baψ φ ψ φ−+ Δ = + Δ − o) ; 
 

1( , , , ) ( 1, , , 1) ( , )t tk aa k aa p a aaψ α φ ψ α φ−+ Δ = + − Δ − o ; 
( 2 1gα< ≤ − ). 
   The joint distribution of ( , )θ φ= Δ  is obtained by summing 

( , , , )t tq sψ φ Δ�  over values of ( ), tq s� .    

V. CONCLUSION 

   In [7], a method was introduced for computing distributions 
of statistics of state sequences of hidden Markov models. 
This paper extends the methodology to more general classes 
of hidden state sequences. It is shown that distributions can 
be computed in graphical models, both discriminative and 
generative, which have factors that depend on current and 
past states, but not future ones. Thus the results have very 
general applications. In future work, the authors will apply 
the methodology to analyzing real data.      
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