
 
 

 

  
Abstract— The problem of accurate prediction of the 

maximum depth, width and length of scour hole downstream of 
spillways has been based on the experimental studies and the 
equations developed are mainly empirical in nature. In this 
paper, prediction of the scour hole parameters like maximum 
depth, width and length downstream of a spillway using ski 
jump bucket type arrangement with linear regression and RBF 
& polynomial kernel based SVM technique have been 
attempted. The performance of different schemes was 
compared using two error criteria such as correlation 
coefficient and root mean square error. The study shows that 
RBF kernel based SVM scheme has emerged as the most 
satisfactory on the present data set as compared to the 
polynomial kernel based SVM model and the linear regression 
modeling. 
 

Index Terms— Spillways, Scour, Support vector machines, 
linear regression.  

I. INTRODUCTION 
  Prediction of maximum depth, width and length of scour 

with a reasonable accuracy is of immense importance for 
proper planning, design and management of hydraulic 
structures. Spillways like over-fall, ogee etc are provided for 
disposal of surplus water and to the control of water flow at 
the downstream channel. Scouring is a complex and dynamic 
phenomenon affected by many parameters those are often 
interrelated and difficult to understand because flow in open 
channel is turbulent; geometry is irregular and varies with 
time [1], [2]. There are various hydraulic, morphologic and 
geotechnical factors governing the depth, width and length of 
scour namely discharge intensity q, height of fall H1, bucket 
radius R, bucket lip angle, phi Ø, type of rock, degree of rock 
homogeneity, run time and mode of operation of spillway etc. 
The literature review indicates that a regression mathematical 
model for predicting maximum depth, width and length of 
scour under all circumstances is not readily available using 
different flow, material and fluid parameters. However, 
deterministic models of varying degree of complexity have 
been employed in the past for modeling the scouring process, 
with varying degree of accuracy. The researchers have 
mainly relied on the conventional experimental approach to 
study the scouring by using physical modeling. Recently 
references [3], [4],[5] have applied soft computing modeling 
(ANN) for the prediction of scour parameters downstream of  
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ski jump type spillway successfully. So far a few studies have 
reported the use of support vector machines (SVMs) for the 
scour prediction. Reference [6] examined the potential of 
support vector machines in the long-term prediction of lake 
water levels. Investigators [7] have successfully explored the 
usefulness of SVMs based modeling technique for predicting 
of real time flood stage forecasting on Lan-Yang river in 
Taiwan one to six hour ahead. However, literature review 
indicates that that no one has attempted SVM based modeling 
on the same data set. The present study aims to explore utility 
of the support vector machines for the scour hole parameters 
modeling on laboratory and field data and comparing its 
performance with linear regression for ski-jump type of 
spillways [3], [4], [5]. 

 

II. SUPPORT VECTOR MACHINES (SVMs) 
Support vector machines (SVMs) are classification and 

regression methods, which have been derived from statistical 
learning theory [8], [9]. The SVMs classification methods are 
based on the principle of optimal separation of classes. If the 
classes are separable - this method selects, from among the 
infinite number of linear classifiers, the one that minimize the 
generalization error, or at least an upper bound on this error, 
derived from structural risk minimization. Thus, the selected 
hyper plane will be one that leaves the maximum margin 
between the two classes, where margin is defined as the sum 
of the distances of the hyper plane from the closest point of 
the two classes [8]. The modeling techniques like support 
vector machines have the capability to reproduce the 
unknown relationship present between a set of input 
variables and the output of the system. Support vector 
machines performance was found to be better due to its use of 
the structural risk minimization principle in formulating cost 
functions and of quadratic programming during model 
optimization. These advantages lead to a unique optimal and 
global solution as compared to conventional neural network 
models.  

If the two classes are non-separable, the SVMs tries to find 
the hyper plane that maximizes the margin and that, at the 
same time, minimizes a quantity proportional to the number 
of misclassification errors. The trade off between margin and 
misclassification error is controlled by a positive constant 
that has to be chosen beforehand. This technique of designing 
SVMs can be extended to allow for non-linear decision 
surfaces. This can be achieved by projecting the original set 
of variables into a higher dimensional feature space and 
formulating a linear classification problem in the feature 
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space [9]. Support vector machines can be applied to 
regression problems and can be formulated as below: 

Reference [8] has proposed ε -support vector regression 
(SVR) by introducing an alternative ε -insensitive loss 
function. The purpose of the SVR is to find a function having 
at most ε deviation from the actual target vectors ( iy ) for all 
given training data and have to be as flat as possible [10]. 
This can be put in other words as the error on any training 
data has to less than ε . For a given training data with k 
number of samples, represented by 
( ) ( )kk yy ,x...,,.........,x 11  and a linear function   

( ) df += x,wx  (1) 

where Nw R∈  and R∈d . Set xw,  represents the dot 

product in space NR  and N is the dimension of input space. 
A smaller value of w indicates the flatness of (1), which can 
be achieved by minimizing the Euclidean norm as defined by 

2w [10].  

Thus, an optimization problem for this can be written as:  

minimize 
2w

2
1

 

subject to   
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ε
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x,w
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The optimization problem in (2) is based on the assumption 

that there exists a function that provides an error on all 
training pairs which is less thanε . In real life problems, there 
may be a situation like one defined for classification by [11]. 
So, to allow some more error slack variables ', ξξ  can be 
introduced and the optimization problem defined in Equation 
1 can be written as:  

Minimize  ( )∑
=

++
k

i
iiC

1

'2w
2
1 ξξ  (3) 

Subject to     

iii dy ξε +≤−− x,w  (4) 
'x,w iii yd ξε +≤−+  (5) 

 and 0, ' ≥ii ξξ  for all    i = 1, 2,……, k. 

The parameter C is determined by the user and it 
determines the trade-off between the flatness of the function 
and the amount by which the deviations to the error more 
than ε  can be tolerated. The optimization problem in (3) can 
be solved by replacing the inequalities with a simpler form 
determined by transforming the problem to a dual space 
representation using Lagrange multipliers  

iλ , ''
iii η,η,λ  i = 1,….,k [12].  

The prediction problem can finally be written as 

( ) ( ) df i

k

i
ii +−= ∑

=

x,x,x
1

' λλα  (6) 

 

This technique can be extended to allow for non-linear 
support vector regression by introducing the concept of the 
kernel function [8]. This is achieved by mapping the data into 
a higher dimensional feature space, thus performing linear 
regression in feature space. The regression problem in feature 
space can be written by replacing ji xx ⋅  

with ( ) ( )ji xΦxΦ ⋅ .  

where 
( ) ( ) ( )jiji xΦxΦx,x ⋅≡K  (7) 

The regression function for this can be written as: 

( ) ( ) ( ) dKf i

k

i
ii +−= ∑

=

x,xα,x
1

' λλ  (8) 

 

III. DATA SET USED 
The data set [5] were used in the present study from the 

laboratory and the field for an ogee spillway having ski jump 
bucket type energy dissipation arrangement at the toe. This 
data set has been given in Appendix. The data set comprises 
of a total of 95 runs with a discharge intensity per unit with q, 
upstream Head H1, bucket radius R, angle of bucket phi, 
downstream tail water depth dw , length of scour hole ls, width 
of scour hole ws and depth of scour hole ds (where m means 
meter) on different types of spillway models in lab as well as 
in the field.  

IV. PERFORMANCE EVALUATION 
Much success has already been achieved using neural 

network algorithms in other applications, such as 
rainfall-runoff modeling, stage-discharge analysis and 
prediction of dimensions of scour hole downstream of a ski 
jump bucket[3],[4],[5], [13],[14], [15].  The Neural networks 
are now being applied to several other problems related to the 
hydraulics and hydrologic modeling, while the use of support 
vector machines is comparatively new to the field of 
hydraulics and water resource engineering [6], [7]. One of the 
important factors in using support vector machines for 
prediction of scour is that it requires setting up of the few 
user-defined parameters. The SVMs, in addition to the choice 
of kernel require setting up of kernel specific parameters. The 
optimum values of the regularization parameter C and the 
size of the error-insensitive zone ε need to be determined. 
To select user-defined parameters i.e. (C, γ  and d*) a large 
number of trials were carried out by using different 
combination of these parameters on each of the data sets. 
Similarly, a number of trials were also carried out to find a 
suitable value of ε  (error-insensitive zone) with a fixed 
value of C and kernel specific parameters. To reach at a 
suitable choice of these parameters, the correlation 
coefficients (CC) and Root Mean Square Error (RMSE) were 
compared and a combination of parameters providing 
smallest value of RMSE and the highest value of correlation 
coefficient was selected for the final results. A number of 
trials were carried out with different data set to select a 
suitable value of regularization parameter C. Variation in the 
error-insensitive zone ε  have no effect on the predicted 
scour so a value of 0.0010 was chosen for all experiments. 
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The data sets from references [3], [4], [5] was used in the 

present study for model building and validation to assess the 
potential linear regression based modeling and RBF & Poly 
based kernels support vector machines in predicting the scour 
parameters downstream of spillway. Further, measured scour 
values were plotted against the computed values obtained 
with linear and SVMs algorithms. To study the scatter around 
the line of perfect agreement (i.e. a line at 45 degrees) was 
also plotted for the data set. Due to the availability of small 
data sets, a cross validation was used to train and test the 
performance of the SVMs. The cross-validation is a method 
of estimating the accuracy of a classification or regression 
model. The input data set is divided into several parts (a 
number defined by the user), with each part in turn used to 
test a model fitted to the remaining parts. In this study, the 
data sets of the laboratory and field data were used for both 
creating and testing the models. The choice of input 
parameters used in modeling the scour may influence the 
predicting capabilities of support vector machines. Graphs 
have been plotted for difference in actual and predicted 
values of the scour results as shown in Figure 1, 2 and 3. 

V. PREDICTION OF SCOUR HOLE PARAMETERS 
The first set of analysis was carried out by using SVMs and 

linear regression with data [6] for predicting the scour on 
downstream of spillway. The SVMs determine a relationship 
(i.e. create a model) between the input and the output of the 
available data set of any system. These models are than used 
to predict the output from the known input values of the same 
system, thus requiring sufficient number of data to create and 
test the models. Six parameters namely upstream head 
H1(m), radius of ski jump bucket R(m), angle of ski jump 
bucket phi, tail water depth  dw (m), length of scour hole ls 
(m), width of scour hole ws(m) and depth of scour hole ds(m)  
from the data sets provided by the studies carried out by 
[3],[4],[5] were used to predict the scour. A 10 fold cross 
validation was used to create and test the models. A number 
of trials were carried out to reach at the various user-defined 
parameters required for The SVMs using both polynomial 
and RBF kernels and linear regression based algorithms 
using WEKA software. Measured versus calculated values of 
the maximum scour depth, width and length are plotted as 
given in Figures 1, 2 and 3 respectively.  

The Table I, II provides the value different user defined 
parameters and correlation coefficients, RMSE for the data 
set. For maximum depth of scour, a correlation coefficient of 
0.9502 and 0.7163 (RMSE = 0.0306 & 0.070) are obtained 
by using RBF and polynomial kernels respectively in 
comparison to a value of 0.6610 (RMSE = 0.0746) achieved 
by using linear regression based modeling (Table II).  
Further, it is evident from Figure 1 that more number of 
points are lying on the 45o line when rbf kernel was used to 
predict the scour in comparison to polynomial kernel and 
linear regression based algorithm.   

The values of correlation coefficient of 0.9201 and 0.7515 
(RMSE = 0.1654 & 0.2871) are achieved with RBF and 
polynomial kernels respectively for maximum width of scour 
hole. In comparison to this Table II provides the value of 
correlation coefficient (i.e. 0.7459) and RMSE (i.e.0.2803) 
with this data using linear regression approach. A perusal of 
the Figure 2 indicates a better performance by rbf kernel 
based SVMs for this data set.  

A higher value of correlation coefficient of 0.9803 and 
0.9401 (RMSE = 0.0998 & 0.1729) are achieved with RBF 
and polynomial kernels respectively for maximum length of 
scour hole. In comparison to this Table II provides the value 
of correlation coefficient (i.e. 0.9369) and RMSE (i.e.0.1770) 
with this data using linear regression approach. A perusal of 
the Figure 3 indicates a better performance by rbf kernel 
based SVMs for this data set. The rbf and polynomial based 
SVM and linear regression is performing best when length of 
scour hole is to be predicted. Thus critical examination of 
three figures indicates that the performance of the SVM 
modeling is data dependent. 

 

TABLE I. VALUES OF KERNEL SPECIFIC PARAMETERS OF SVM 
MODELING 

S.No Type of  

parameter 

SVM(RBF) SVM(POLY) 

  C γ / d* C γ / d* 

1 Scour 

depth ds 

5 0.2 0.1 0.1 

2 Scour 

width ws 

5 5 0.1 2 

3 Scour 

length ls 

5 1 5 2 

 

TABLE II. COMPARISON OF RESULTS 
S No Scour  

hole 

parameter 

Type of 

technique 

Correlation 

coefficient 

(r) 

 

Root mean 

squared 

error 

(RMSE) 

1 ds SVM(RBF) 0.9502 0.0306 

2  SVM(POLY) 0.7163 0.0700 

3  Linear 0.6610 0.0746 

4 ws SVM(RBF) 0.9201 0.1654 

5  SVM(POLY) 0.7515 0.2871 

6  Linear 0.7459 0.2803 

7 ls SVM(RBF) 0.9803 0.0998 

8  SVM(POLY) 0.9401 0.1729 

9  Linear 0.9369 0.1770 
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Fig.1Observed scour versus  predicted scour depth
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Fig.2 Observed scour versus predicted scour width
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Fig.3  Observed scour versus predicted  scour length
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VI. CONCLUSIONS 
This study was carried out to judge the potential and 

suitability of SVMs and the linear regression based modeling 
the scour on downstream of spillway using laboratory as well 
as field data sets. A conclusion from this study is that the 
RBF based SVM technique is yielding better results as 
compared to polynomial kernel based SVM and the linear 

regression with this data as indicated by the higher values of 
correlation coefficients and smaller values of root mean 
square values. The findings of this study, encourages the use 
of RBF kernel based SVM approach in predicting the scour 
on spillways downstream of a ski-jump bucket used in water 
resources projects, although the results are data dependent.  

 
 

APPENDIX 

SPILLWAY SCOUR DATA SET 
S.No q H1(m) R(m) phi dw (m) ls(m) ws(m) ds(m) 

1 0.1703 0.5083 0.4 0.472 0.1667 1.1116 0.85 0.55 
2 0.1792 1.4268 0.406 0.612 0.23 1.9512 0.85 0.2439 
3 0.0842 1.4268 0.609 0.698 0.15 2.02 0.92 0.2246 
4 0.0634 1.1328 0.406 0.612 0.03 0.9807 1.63 0.1128 
5 0.0266 1.3659 0.61 0.698 0.17 0.9756 0.92 0.1259 
6 0.1616 1.7962 0.254 0.349 0.2337 1.9055 1.5 0.3608 
7 0.0709 1.4146 0.61 0.698 0.16 1.7378 0.92 0.1922 
8 0.0204 0.3505 0.18 0.524 0.0286 0.697 0.6 0.1218 
9 0.0374 0.3328 0.14 0.524 0.0687 0.72 0.6 0.236 

10 0.0093 1.0718 0.406 0.612 0.234 0.5742 1.63 0.0762 
11 0.1239 1.3659 0.406 0.612 0.18 1.4634 0.85 0.1677 
12 0.1446 1.3902 0.406 0.126 0.265 1.6463 0.85 0.2165 
13 0.0399 1.3902 0.61 0.698 0.18 1.4329 0.92 0.1485 
14 0.0471 0.3827 0.14 0.524 0.0286 0.75 0.6 0.347 
15 0.0204 0.3104 0.18 0.524 0.0687 0.5 0.6 0.0889 
16 0.0204 0.2991 0.14 0.524 0.1 0.53 0.65 0.1235 
17 0.0186 1.0822 0.406 0.612 0.215 0.7165 1.23 0.1037 
18 0.0285 0.3188 0.14 0.524 0.0687 0.63 0.6 0.1609 
19 0.1616 1.7962 0.254 0.78 0.2337 2.0709 1.5 0.3608 
20 0.0471 0.3676 0.14 0.524 0.0437 0.7 0.6 0.3238 
21 0.0089 1.3415 0.61 0.698 0.178 0.5183 0.92 0.0512 
22 0.0725 1.3415 0.406 0.612 0.09 0.9146 0.85 0.0854 
23 0.025 1.0922 0.406 0.612 0.25 0.8781 1.63 0.1098 
24 0.1616 1.7962 0.254 0.174 0.2337 1.4482 1.5 0.2998 
25 0.1626 1.4146 0.406 0.612 0.248 1.8902 0.85 0.2317 
26 0.087 1.1532 0.406 0.612 0.033 1.0162 1.63 0.1169 
27 0.1616 1.7962 0.254 0.523 0.2337 2.1439 1.5 0.2998 
28 0.0204 0.3354 0.1 0.524 0.0437 0.495 0.65 0.136 
29 0.0398 1.3902 0.61 0.698 0.18 1.4329 0.92 0.1485 
30 0.0285 0.3589 0.25 0.567 0.0286 0.65 0.65 0.1642 
31 0.0435 1.1125 0.3 0.612 0.248 0.9502 1.63 0.1113 
32 0.0374 0.3328 0.25 0.567 0.0687 0.7 0.65 0.1772 
33 0.0374 0.3015 0.25 0.567 0.1 0.67 0.65 0.1516 
34 0.0374 0.3015 0.25 0.567 0.1 0.65 0.6 0.2135 
35 0.0471 0.3827 0.25 0.567 0.0286 0.82 0.65 0.3085 
36 0.0285 0.3188 0.25 0.567 0.0687 0.64 0.65 0.1432 
37 0.0204 0.2991 0.25 0.567 0.1 0.455 0.65 0.0512 
38 0.0285 0.2875 0.3 0.612 0.1 0.55 0.65 0.157 
39 0.1532 1.075 0.56 0.611 0.146 1.84 2.06 0.38 
40 0.0511 0.965 0.56 0.611 0.146 1.34 1.56 0.29 
41 0.2042 1.13 0.56 0.611 0.146 2.04 1.65 0.4 
42 0.1021 1.03 0.56 0.611 0.146 1.8 1.78 0.34 
43 0.2042 1.474 0.56 0.611 0.146 2.24 2.14 0.42 
44 0.1532 1.485 0.56 0.611 0.146 2.144 2.1 0.4 
45 0.0511 1.505 0.56 0.611 0.146 1.84 1.8 0.29 
46 0.1021 1.5 0.56 0.611 0.146 2.24 2 0.368 
47 0.0285 0.3589 0.18 0.524 0.0286 0.65 0.65 0.1725 
48 0.0374 0.3578 0.14 0.524 0.0437 0.71 0.65 0.2112 
49 0.0471 0.3113 0.14 0.524 0.1 0.6 0.65 0.2459 
50 0.0285 0.2875 0.18 0.524 0.1 0.63 0.65 0.1297 
51 0.0374 0.3578 0.2 0.524 0.0437 0.725 0.65 0.2032 
52 0.0471 0.3827 0.18 0.524 0.0286 0.78 0.65 0.3199 
53 0.0471 0.3676 0.18 0.524 0.0437 0.775 0.65 0.3036 
54 0.0204 0.3354 0.1 0.524 0.0437 0.495 0.65 0.136 
55 0.0285 0.2875 0.2 0.524 0.1 0.62 0.65 0.1207 
56 0.0285 0.3438 0.18 0.524 0.0437 0.65 0.65 0.1607 
57 0.0471 0.3426 0.18 0.524 0.0687 0.78 0.65 0.2808 
58 0.0374 0.3328 0.18 0.524 0.0687 0.7 0.65 0.181 
59 0.0374 0.3578 0.18 0.524 0.0437 0.71 0.65 0.2172 
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60 0.0471 0.3113 0.1 0.524 0.1 0.7 0.65 0.2394 
61 0.0204 0.3505 0.2 0.524 0.0286 0.525 0.65 0.0816 
62 0.0471 0.3426 0.1 0.524 0.0687 0.72 0.65 0.3153 
63 0.0374 0.3015 0.14 0.524 0.1 0.7 0.65 0.1848 
64 0.0285 0.3438 0.2 0.524 0.0437 0.65 0.65 0.1542 
65 0.0285 0.3589 0.14 0.524 0.0286 0.58 0.65 0.1986 
66 0.0204 0.3354 0.2 0.524 0.0437 0.47 0.65 0.0752 
67 0.0204 0.3104 0.1 0.524 0.0687 0.45 0.65 0.135 
68 0.0204 0.3505 0.14 0.524 0.0286 0.5 0.65 0.139 
69 0.0285 0.2875 0.14 0.524 0.1 0.6 0.65 0.1405 
70 0.0471 0.3827 0.1 0.524 0.0286 0.815 0.65 0.3587 
71 0.0374 0.3729 0.2 0.524 0.0286 0.75 0.65 0.2263 
72 0.0285 0.3589 0.1 0.524 0.0286 0.61 0.65 0.2065 
73 0.0471 0.3426 0.2 0.524 0.0687 0.72 0.65 0.2693 
74 0.0471 0.3676 0.2 0.524 0.0437 0.76 0.65 0.292 
75 0.0204 0.3304 0.14 0.524 0.0687 0.5 0.65 0.1309 
76 0.0204 0.3354 0.18 0.524 0.0437 0.66 0.65 0.1068 
77 0.0285 0.3438 0.1 0.524 0.0437 0.605 0.65 0.1839 
78 0.0471 0.3426 0.14 0.524 0.0687 0.67 0.65 0.3091 
79 0.0471 0.3113 0.25 0.524 0.1 0.69 0.65 0.243 
80 0.0204 0.3505 0.1 0.524 0.0286 0.49 0.65 0.1424 
81 0.0374 0.3328 0.1 0.524 0.0687 0.66 0.65 0.2426 
82 0.0471 0.3676 0.1 0.524 0.0437 0.73 0.65 0.3343 
83 0.0204 0.3104 0.2 0.524 0.0687 0.5 0.65 0.0643 
84 0.0285 0.3438 0.14 0.524 0.0437 0.65 0.65 0.1765 
85 0.0285 0.3188 0.18 0.524 0.0687 0.65 0.65 0.1526 
86 0.0204 0.2791 0.1 0.524 0.1 0.5 0.65 0.1255 
87 0.0374 0.3729 0.14 0.524 0.0286 0.74 0.65 0.2885 
88 0.0471 0.3113 0.18 0.524 0.1 0.765 0.65 0.2497 
89 0.0285 0.3188 0.1 0.524 0.068 0.555 0.65 0.1706 
90 0.0204 0.3354 0.14 0.524 0.0437 0.42 0.65 0.1325 
91 0.0374 0.3015 0.18 0.524 0.1 0.85 0.65 0.156 
92 0.0374 0.3578 0.1 0.524 0.0437 0.715 0.65 0.2755 
93 0.0374 0.3729 0.18 0.524 0.0286 0.72 0.65 0.2382 
94 0.0374 0.3729 0.1 0.524 0.0286 0.72 0.65 0.2915 
95 0.0204 0.2791 0.18 0.524 0.1 0.55 0.65 0.0785 
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