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Abstract—This paper studies the borrower’s opti-

mal strategy to close the mortgage when the volatil-

ity of the market investment return is small. Inte-

gral equation representation of the mortgage contract

value is derived, then used to find the numerical so-

lution of the free boundary. The asymptotic expan-

sions of the free boundary are derived for both small

time and large time. Based on these asymptotic ex-

pansions two simple analytical approximation formu-

las are proposed. Numerical experiments show that

the approximation formulas are accurate enough from

practitioner’s point of view. Keywords: mortgage pre-

payment, asymptotic analysis, numerical solution, an-

alytical approximation

1 Introduction

Consider a mortgage with a fixed interest rate of c
(year−1). Assume that the underlying risk free rate
following the CIR model [1], which says drt = k(θ −
rt)dt + σ

√
rtdWt, where k, θ, σ are positive constants.

According to standard mathematical finance theory (see
[22, 5, 15, 20, 19], for instance), the value of the mort-
gage contract V (x, t) at any specified t, the time left to
the expiry of the contract, and the corresponding interest
rate x , when it is not optimal for prepayment, satisfies

∂V

∂t
− σ2

2
x

∂2V

∂x2
− k(θ − x)

∂V

∂x
+ xV = m; (1)

and when the borrower decides to terminate the contract
prematurely at time t, he needs to pay the mortgage loan
balance

M(t) =
m

c

[
1− e−ct

]
, (2)

where m denotes the continuous mortgage payment rate,
i.e., the borrower pays mdt (dollars) to the mortgage con-
tract holder (the lender) for each time period dt. Math-
ematically we have a free boundary problem where the
free boundary x = h(t) defines the optimal market inter-
est rate level at which the borrower should terminate the
contract. For the continuation region where x > h(t),
the contract is in effect and the value of the contract sat-
ifies (1). For the early exercise region where x ≤ h(t),
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the contract is closed and the lender gets back the loan
balance of M(t). Because it is the borrower, rather than
the lender, who is a proactive player of the game and has
the choice to act in response to the market, so the value
of the contract is always less or equal than the loan bal-
ance. Thus the free boundary is where the value of the
contract V (x, t) first reaches the value of the mortgage
loan balance M(t). It is easy to show, using the free of
arbitrage argument, that the free boundary starts from c,
i.e. h(0) = c. And because of the smooth patch is needed
for the regularity of the problem, we have the derivative
of V (x, t) must be 0 on h(t). Lastly, it is trivially true
that V (x, 0) = 0, which says that the value of the con-
tract, when the contract is expired, must be 0. Putting
all these condition together, we formulate the problem as
follows: for ∀x ≥ 0 and t > 0, find V (x, t) and h(t) such
that





L(V ) = m, for x > h(t), t > 0

V =
m

c
[1− e−ct], for x ≤ h(t), t > 0

∂V

∂x
(h(t), t) ≡ 0

V (x, 0) = 0, for all x ≥ 0

h(0) = c

(3)

where the differential operator L is defined as

L(V ) =
∂V

∂t
− σ2

2
x

∂2V

∂x2
− k(θ − x)

∂V

∂x
+ xV (4)

Because of the important role played by mortgage backed
securities in real economy, there has been continuing in-
terest in mortgage pricing and related problems, espe-
cially the prepayment strategies for mortgage borrow-
ers. Most of the studies, such as [2, 6, 12, 13, 14], are
from option-theoretical viewpoint. A similar problem
with underlying interest rate following Vasicek model was
recently studied with variational integral equation ap-
proach in [11, 3]. In this paper, we focus on the situation
where the volatility σ is small. Such an assumption is
reasonable because the overall risk free return rate does
not fluctuate much in the long term real economy. For
instance, using the maximum likelihood estimation to cal-
ibrate the volatility of the 10-year treasury notes yield in
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the U.S. market for the time period 1966-2006, we find
that σ = 0.003. More discussions on parameter estima-
tion for risk free market return can be found in [8, 10].

2 Integral Formulation of the Solution

Using variational characteristic method [9], one can de-
rive the solution to 3 for small σ, and obtain the following
lemmas.

Lemma 2.1 The characteristic solution associated with
(3) , when σ → 0, is

V (X(t), t) = me−θt−X(t)−θ
k

∫ t

0

eθτ+
X(τ)−θ

k dτ, (5)

where
X(t) = θ + (X0 − θ)ekt (6)

for each given X(0) = X0.

Lemma 2.2 The solution to (3) , when σ → 0, is given
by

V (x, t) = me−
x−θ

k

∫ t

0

e−θs+ x−θ
k e−ks

ds, (7)

it is strictly decreasing in x, ranges from
limx→−∞ V (x, t) = ∞ to limx→∞ V (x, t) = 0.

The basic analytical properties of the free boundary h(t)
can be summarized in the following:

Theorem 1 If c < θ, then h(t), starts from h(0) = c, is
continuous and monotonously decreasing in [0,∞), and is
lower bounded. If c > θ, then h(t), starts from h(0) = c,
is continuous and monotonously increasing in [0,∞), and
is upper bounded.

Proof. The theorem is a summary of the following lem-
mas (2.3-2.7) and corollaries (1-2). The proof is organized
as follows: we first show the existence, uniqueness, and
continuity of h(t), except possibly for t = 0, then show
the boundedness of h(t) both from below and above, then
the monotonocity, and lastly we find the limit of h(t) at
t = 0.

Lemma 2.3 For each t ≥ 0, h(t) exists and is unique.
h(t) is continuous for all t ≥ 0 except possibly at x = 0.

Proof. The existence and uniqueness is naturally con-
cluded from lemma (2.2). The continuity of h(t) for t > 0
is a consequence of the continuity of V in x. The only
thing left to validate is limt→0+ h(t) = c, which is to be
done after we prove the boundedness of h(t).

Lemma 2.4 If c > θ, σ → 0, the free boundary h(t) in
(3) is lower bounded by c, i.e.

h(t) > c ∀t > 0. (8)

Proof. Because V (X(t), t) is monotoneously decreasing
(to 0) in X(t) for fixed t > 0, i.e. ∂V

∂X < 0,∀t > 0,
which is shown in the lemma 2.2, it suffices to show
V (c, t) > M(t), where M(t) = m

c

[
1 − e−ct] is the con-

tract value on the free boundary. Recall V (x, t) =
e−

x−θ
k

∫ t

0
e−θs+ x−θ

k e−ks

ds (hereafter, we assume, WLOG,
m = 1), we have

V (c, t) = e−α

∫ t

0

e(kα−c)s+αe−ks

ds,

by letting c−θ
k = α. Now, noticing α > 0, we have

V (c, t)−M(t) = e−α
{∫ t

0

e−cs
[
ekαs+αe−ks − eα

]
ds

}
.

Because

kαs + αe−ks = α(ks + e−ks)
> α

We have

V (c, t)−M(t) > 0

and thus completes the proof.

Corollary 1 If c < θ, σ → 0, the free boundary h(t) in
(3) is upper bounded by c, i.e.

h(t) < c ∀t > 0.

Proof. Follow the same procedure of the above proof
except this time α < 0, and thus changes the sign of
V (c, t)−M(t).

Lemma 2.5 If c > θ, then h(t) is monotonously increas-
ing in t, i.e. h′(t) > 0,∀t > 0, and limt→∞ h′(t) = 0 .

Proof. Knowing that V (h(t), t) = 1
c

[
1− e−ct

]
, we have,

for ∀t > 0,

e−
h(t)−θ

k

∫ t

0

e−θs+
h(t)−θ

k e−ks

ds =
1
c

[
1− e−ct

]
,

Differentiating it with respect to t, we get

−h′(t)
k

∫ t

0

e−θs−h(t)−θ
k [1−e−ks]

[
1− e−ks

]
ds

+e−θt−h(t)−θ
k [1−e−kt] = e−ct. (9)
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Notice that the definite integral in above equation is
strictly positive. If the second term is strictly greater
than e−ct, then h′(t) > 0 is necessary for the above equa-
tion to hold. Now the previous lemma 3.2 tells us that
h(t) > c, hence

e−θt−h(t)−θ
k [1−e−kt] > e−θt−(ct−θt) = e−ct,

which is the desired inequality leading the monotonocity
of the h(t). Lastly, if we let t →∞ in (2), we have both
the righthand side and the second term in the left side
vanish, thus forces the first term in the left side vanish
too. But the definite integral itself is strictly positive, so
limt→∞ h′(t) = 0 becomes necessary, thus completes the
proof.

Corollary 2 If c < θ, then h(t) is monotonously de-
creasing in t, i.e. h′(t) < 0,∀t > 0, and limt→∞ h′(t) = 0
.

Lemma 2.6 If c > θ, then limt→∞h(t) exists. For ∀
fixed ε > 0, limt→∞h(t) < [c− θ + c

θ e−(εθ+1)] εk
1−e−εk + θ.

If c < θ, then limt→∞h(t) exists. For ∀ fixed ε > 0,
limt→∞h(t) > θ(1− kε

1−e−kε )− kθ
c

1
1−e−kε .

Proof. Let limt→∞ h(t) = h∗. Knowing the contract
value at t infinity is 1

c , we wish to balance the following
parametric integral of h∗

1
c

=
∫ ∞

0

e−θs−h∗−θ
k [1−e−ks]ds.

The boundedness of h∗ is immediate simply because
limV (x, t)x→∞ → 0. Here we are interested in finding a
particular value of the bound. Fix ε > 0, let 1−e−kε = λ.
Notice that 1− e−ks > λ

ε for 0 < s < ε and 1− e−ks > λ
for s > ε, we have

1
c

<

∫ ε

0

e−θs−h∗−θ
k

λ
ε sds +

∫ ∞

ε

e−θs−h∗−θ
k λds

=
θ + ye−(θ+y)ε

(θ + y)θ
,

where y := h∗−θ
k

λ
ε . Now we have

θ(c− θ)
c

>
θ

c
y − ye−(θ+y)ε,

since c > θ. The condition h∗ > c > θ here plays its role
because otherwise θ+y is not necessarily positive. Notice
that the function defined by f(y) = ye−(θ+y)ε achieves
the absolute maximum of e−(εθ+1)at y = 1

ε , we have

θ(c− θ)
c

>
θ

c
y − e−(εθ+1).

Correspondingly, we have

h∗ < [c− θ +
c

θ
e−(εθ+1)]

εk

1− e−εk
+ θ.

The righthand side of above inequality is continuous in ε.
Take limit for ε → 0, we find [c−θ+ c

θ e−(εθ+1)] εk
1−e−εk +θ <

c+ c
θ . To prove the case where c < θ, a similar procedure

is followed, hence omitted.

Lemma 2.7 h(t) is continuous for t ∈ [0,∞), in partic-
ular, limt→0+ = c.

Proof. Because of lemma 3.1, the only thing left to be
justified is limt→0+ = c. For t small, e−ks = 1 − ks, we
have

lim
t→0+

V (h(t), t) = lim
t→0+

e−
h(t)−θ

k

∫ t

0

e−θs+
h(t)−θ

k (1−ks)

Because of the continuity and boundedness of h(t), we
can take limit of limt→0+ h(t) inside of the integral and
arrive at

lim
t→0+

V (h(t), t) =
1

limt→0+ h(t)

Compare this with the boundary value of 1
c [1 − ect], we

have that limt→0+ h(t) = c.

3 Numerical Solution of the Free Bound-
ary

Since ∂V
∂x 6= 0 we can use Newton method to solve for the

free boundary iteratively. Define

Q(h) = e−
h−θ

k

∫ t

0

e−θs+ h−θ
k e−ks

ds− 1
c

[
1− ect

]
,

and

f(h) = e−
h−θ

k [−1
k

]
∫ t

0

e−θs+ h−θ
k e−ks

ds

+e−
h−θ

k

∫ t

0

e−θs+ h−θ
k e−ks

[
1
k

e−ks]ds,

our problem is to find h such that

Q[h](t) ≡ 0, ∀t ≥ 0.

For fixed t = T , discretize [0, T ] uniformly into n subin-
tervals by t0, t1, t2, ..., tn, where t0 = 0, tn = T . Start
with h(t0) = c and assume h(t1), h(t2), ..., h(tn−1) are
known, to compute h(tn) with Newton’s algorithm, we
first assign a reasonable initial guess for h(tn) as

h0(tn) = h(tn−1), n = 1;

h0(tn) = 2h(tn−1)− h(tn−2), n > 1.

For a given error tolerance level, say Tole = 10−7, we
have the following Newton’s iteration scheme

h(tn)new = h(tn)old − Q(h(tn)old)
f(h(tn)old)

.
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After each step of iteration, a current error is recorded as

error(k) = h(tn)new − h(tn)old.

The iteration is kept running until an integer k is reached
such that error(k) < Tole. To increase the accuracy of
the numerical solution, one can increase N , the number of
grids for partitioning the time interval [0, T ]. For typical
parameters with T ≤ 25, our numerical simulations show
that N = 4096 is large enough for achieving a solution
with relative error less than 10−7, where relative error
is defined as the difference of numerical values of h(T )’s
achieved with different N ’s. The following Figure 1 is a
numerical plot of the free boundaries as we fix one set of
parameters at a time.

4 Asymptotic Analysis of the Free
Boundary

We derived asymptotic expansions of h(t) for both small
t and large t, the results of which are summarized in the
following two theorems:

Theorem 2 As t → 0, h(t) ∼ c + αt, where α = (c−θ)k
3 .

Outline of Proof. We postulate that as t → 0,

h(t) ∼ c + αt (10)

, plug this into the contract value on h(t), we have that,
for t small,

V (h(t), t) =
∫ t

0

e
(c−θ+αt)k

2 s2−(c+αt)sds

For a, b > 0, s small, we are able to derive the following
Taylor expansion

eas2−bs = 1− bs + (a +
b2

2
)s2 − (ab +

b3

3!
)s3 + o(s3)

Integrating it term by term, we have
∫ t

0

eas2−bsds = t− b

2
t2 +

1
3
(a +

b2

2
)t3

−1
4
(ab +

b3

3!
)t4 + o(t4).

Comparing this Talyor expansion with the Taylor expan-
sion of V (h(t)x, t) with h(t) being approximated by (10)
leads to

α =
(c− θ)k

3
.

Theorem 3 There exist constants h∗ = limt→∞ h(t),
ρ1 > 0, and ρ2 > 0 such that, as t →∞,

h(t) ∼ h∗ − ρ1e
−θt, if c < θ,

h(t) ∼ h∗ + ρ2e
−ct, if c > θ,

where h∗ is implicitly given by M(1, θ
k + 1,−h∗−θ

k ) = θ
c ,

where M(p, q, z) is the confluent hypergeometric function
of the first kind of order p , q, and

ρ1 =
kc(h∗ − θ)e−

h∗−θ
k

θ(h∗ − c)
, (11)

ρ2 =
k(h∗ − θ)

h∗ − c
. (12)

Proof. The existence and boundedness of h∗ have been
previously shown. The main idea to find the exact value
of h∗ is to use repeated integration by parts to express the
contract value V at t infinity as a infinite series involving
h∗, which turns out to be a confluent hypergeometric
function. As in general, given a, b, c > 0, one can use
repeated integral by parts to derive

∫ ∞

0

e−ay+be−cy

dy =

1
a

n=∞∑
n=1

(−1)n bn

(a/c + 1)(a/c + 2)...(a/c + n)
eb

=
1
a
M(1, a/c + 1,−b).

In terms of our problems, this means

e−
h∗−θ

k e−ks

∫ ∞

0

e−θs+ h∗−θ
k e−ks

ds =

1
θ
M(1, θ/k + 1,−h∗ − θ

k
),

where the series representation of the confluent hyperge-
ometric function of the first kind M can be found in, say,
[18]. At t infinity, we want

V (h(∞),∞) = e−
h∗−θ

k e−ks

∫ ∞

0

e−θs+ h∗−θ
k e−ks

ds =
1
c
,

which means

M(1,
θ

k
+ 1,−h∗ − θ

k
) =

θ

c
.

To fully understand the asymptotic behavior of the free
boundary as t → ∞, we evaluate the limit of h′(t) as
t →∞. Start with the equation

∫ ∞

0

e−θs−h(t)−θ
k [1−e−ks]ds =

1
c

[
1− e−ct

]
,

take derivative with respect to t along h(t),

−h′(t)
k

∫ t

0

e−θs−h(t)−θ
k [1−e−ks]

[
1− e−ks

]
ds =

−e−θt−h(t)−θ
k [1−e−kt] + e−ct,

we get
h′(t)

k
=

e−θt−h(t)−θ
k [1−e−kt] − e−ct

1
c [1− e−ct]− I

,
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Figure 1: c=0.05, k = 0.06, 0.07, ..., 0.12 (top to bottom) θ = 0.06 (right), 0.07 (left). The units for t and h(t) are years and
year−1, respectively.

where

I :=
∫ t

0

e−θs−h(t)−θ
k [1−e−ks]e−ksds,

which can be evaluated using integration by parts. Thus
we get

h′(t) = F (t)e−θt,

where

F (t) =
e−

h(t)−θ
k [1−e−kt] − e−(c−θ)t

h(t)
c(h(t)−θ) [1− e−ct] + 1

h(t)−θ{e−θt−h(t)−θ
k [1−e−kt]}

.

Now we postulate

h(t) ∼ h∗ − ρ1e
−θt, if c > θ.

Compare the limit of h′(t), we get

ρ1 =
kc(h∗ − θ)e−

h∗−θ
k

θ(h∗ − c)
.

A similar procedure can be repeated to prove the case
where c < θ.

Corollary 3 As t →∞,

h(t) ∼ h∗ − ρ1e
−θt + ρ2e

−ct,

where h∗, ρ1, and ρ2 are defined by (9) and (10).

Proof. It is a direct patching of the two asymptotics for
c > θ and c < θ. Depending on which is greater, c or θ ,
only one of the two exponential terms will be significant
and prevail.

5 Global Approximation Formulas

We propose that the free boundary h(t) globally behaves
like

h(t) ∼ h∗ − (h∗ − c)e−βt, (13)

where clearly h → h∗ as t →∞, and β is chosen to match
the asymptotic expansion of h(t) ∼ c + αt, which means

β =
k(c− θ)
3(h∗ − c)

(14)

The accuracy of approximation can be improved if we use
a little bit more complicated formula

h(t) ∼ h∗ − (h∗ − c)e1−eβt

. (15)

We choose the exponential of the exponential function to
make the free boundary ”decay” faster to the true bound-
ary, when other conditions are matched as previous. And
also this does not alter the asymptotic expansion at t in-
finity at all. In the same rationale, β is chosen to match
the asymptotic expansion of h(t) ∼ c + αt for t small,
which gives the same expression of β as defined in (14).
In Figure 2 we provide a comparison of our analytical ap-
proximations and the true numerical solution of the free
boundary.

In general these approximation formulas are very accu-
rate. Our numerical experiments with a variety of param-
eters show that the relative error is within 4% for t < 20
for the second formula. From the financial practitioner’s
point of view, both our numerical method and the ap-
proximation formula can provide satisfactory solutions.

6 Conclusion

Assuming the underlying interest rate follows the CIR
model, we studied the mortgage borrower’s optimal strat-
egy to make prepayments when the volatility of market
return rate is small. We derived the integral equation rep-
resentation of the solution and studied the mathematical
properties of the free boundary. An efficient iteration
scheme was designed to solve the free boundary numeri-
cally. We also found two useful approximation formulas,
the accuracy of which are validated with numerical sim-
ulations.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008



0 50 100 150
0.02

0.025

0.03

0.035

0.04

0.045

0.05

t

h(
t)

0 50 100 150
0.03

0.035

0.04

0.045

0.05

0.055

t

h(
t)

Figure 2: The plain curve is the true solution. The top stared curve is the first approximation, and the bottom dotted curve
is the second approximation. c = 0.05, θ = 0.06, k = 0.15 (left), 0.10 (right). The units for t and h(t) are years and year−1,
respectively.
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