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Abstract 

 

This work is targeting to find the perimeter of an 

ellipse. It is not only for the ellipse, but for the total 

arc length of all the astroids on the positive 

Cartesian.  No algebraic calculi were used but only 

graphical solutions. It is based on the overlapping 

of the real graphs with the model graphs. That is a 

simulation. The real graphs are known [5]. In this 

concern, the equation: 

 

(x/a)^r+(y/b)^r=1   is  considered 

(r=2) case of an ellipse  is studied 

The overall error %    =0.000004753119960  

              is reached. 

 

The actual  record for (error %) being =0.00145 [1], 

this is a shocking result. 

 

Why such estimations when exact values exist? 

Exact values do not exist, except for (r=2) 

Why estimation? It is necessary for the people’s 

understanding. Kepler, Euler, Ramanujan were 

academicians but also they were close to the 

people’s understanding of science. 

 

The history of this work starts in year 1956. In 

1959, I gave my one-line estimation formula 

(a^s+b^s=L^s) to my math-Prof.Weiyrich who 

refused it [2], due to his wrong comment. In 2000 

this formula was registered in a tricky style to the 

name of Roger Maertens [3]. Since then the formula 

was attempted for correction by researchers who 

never succeeded to comment it, due to their 

insufficient knowledge about the prove [4] of the 

formula. Think about this illegal registration when 

it is said to belong to Hölder. Also search for a 

prove document similar to [4] for Hölder. Here you 

will discover my comments on my formula. 

 

Keywords: shocking-reasoning, accurate-

estimation, arc-length 

 

Introduction 

 

This work is about a new reasoning to reach to the 

most accurate approximation for the perimeter of an 

ellipse. It is valid for the total arc length, on the 

positive Cartesian, for all the astroids expressed by 

the equation: 
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(x/a)^r+(y/b)^r=1                (1) 

 

Case r=2        is an ellipse 

Case r=1        is a line segment 

Case r=2/3        is an astroid 

Case r=9783.01       is also an astroid.  

 

Astroid is the general name for (1) 

 

(a,b)              are the semi-axes lengths 

(r)              is the power of the astroid. 

 

The relation to reach to this shocking accuracy is 

expressed by the one-line formula: 

 

(a^s+b^s=L^s)                 (2) 

 

Today, there are some people who still insist that 

this formula has been sent from the Sky [3]. No. It 

has a reaching reasoning, an algebraic solution [4], 

dated from 1956-1959 and resumed as follows: 

 

Consider the astroid family  

(x/a)^r+(y/b)^r=1                           (3) 

When we have a relation  

f(a,b)=0                            (4) 

we may speak of an envelope for this family. 

The envelope is freely chosen in the form 

 

(x/A)^t+(y/B)^t=1                       (5) 

where  t=t(x) 

 

(5) is not an astroid, except  (t=Constant) 

 

Say  (B/A=E) 

Say  (r*t/(t-r))=s         (6) 

 

Then, the relation (5) is written as: 

 

(A^t-x^t*(1-N))^(s/r)*A^t=a^s*N^(s/r)+(b/E)^s    (7) 

 

where     

 
N=(1+(dt/dx)*(x/t^2)*(t*ln(x/A)+(y/x)^t*(A/B)^t*t*ln(y/B)))(8)

    

 

Suppose we think about the envelope of (3), when it 
has constant total arc length on the positive Cartesian. 

When an arc length is at the research target, the 

relation (5) is solvable with approximation methods 

as follows: 
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Consider the classic segment expression 

dL^2=dx^2+dy^2                        (9) 

 

Here, for all approximation, (d) will means (delta), 

then we write 

 

dL=(1/n)*(a^2+b^2*((n^r-(i+1)^r)^(1/r)-(n^r-

i^r)^(1/r))^2)^(1/2)             (10) 

 

where 

 
n=     the total segments quantity in the positive Cartesian 

i=      intermediary segments quantity, finally (i=n). 

 

 

The relation (4) is symmetric when we treat total 

arc lengths: 

-(a and b) may change their position, their places, in 

the evaluation of the total arc length. 

The relation (4) is written with the same parameters 

as long as (b/a=TAN) is constant. 

-the “lieu” of the touching point of the astroid with 

the envelope is a line    

Then we write: 

 

(dt/dx=dt/dTAN*dTAN/dx=0)  for a given set 

of (a,b). That is (b/a=TAN=Constant) .And we get 

 

N=1 

A^s=((a*E)^s+b^s)*E^s       (7 solved)  

 

When (A=B), say (A=B=K) and (K/a=L1) we write   

 

a^s+b^s=K^s          and with (b/a=TAN) 

1+TAN^s=L1^s          (11) 

Where 
L1=unit total arc length on the positive Cartesian. 

 

Here, the power (s) is to be commented. The 

expression (6) indicates that (s) is a variable, that 

each ellipse has its own (s).But, for a coarse 

estimation, we may agree that (s) is a constant 

Then we write, 

 

R^s+R^s=(R*L1)^s 
 

and knowing (L1=Pi/2) for a circle, the orthogonal  

case of  the ellipse, we find 

 

s=ln(2)/ln(L1)=1.5349853566138… 

 

For a line segment (r=1) we will find  

s1=ln(2)/ln(L1)=2               knowing (L1=2^(1/2)) 

For a classic astroid (r=2/3) we will find  

s2/3=ln(2)/ln(L1)=1.709511…     knowing (L1=1.5) 

 

The fine estimation needs that (6) be commented 

correctly. In this concern, we evaluate (L1) with (n) 

segments and find the graph of (s).This is a real 

graph [5]. 

 

Use, at least (n=5 000 000 000) segments for an 

accurate (L1).There are no integral calculi. 

This reasoning is general for the total interval 

(0<r<infinity). 

 

Figure (1) shows the coarse graph (stage0) for 

(dL1=L1Estimated-L1Real) with s=1.5349853…… 

Figure (2) shows the error % graph at stage(0) 

GRAPH (I)    1<TAN<infinity
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Fig.1 shows the coarse dL1 graph at (stage 0) 
 

GRAPH (II)    1<TAN<infinity
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Fig.2 shows the error % graph at (stage 0) 

 

Max. (dL1)stage0                   =0.034155353209052

                           at TAN=b/a=25.45169958 

Max.(error %)stage0               =0.003605936813090 

                           at TAN=b/a=5.006784983  

Figure (3) shows (sReal) graph for the ellipse. The 

Real graphs are known [5] 

 

GRAPH  (III)  1<TAN<infinity
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Fig.3 shows  (sReal) graph for the ELLIPSE 

 

 

This graph looks like an astroid, seated on a 

polynomial curve. So, we write an astroidal math-

model with which we try to overlap the real graph 

(s) 

 

Here are the math-model (sMod) and its 

parameters. Parameters are known [5]. Only (p) is 
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estimated. This is a personal estimation. Figure (4) 

shows the overlapping, with (p=2.98) 

 

sMod=d1+b1*(1-((x-c1)/a1)^p)^(1/p)+(F+m1*x) 
 

 Table 1 shows the  parameters and their values for  (stage1) 

 AUTOMAT 1 

parameters values 

a1 1000 

(sm-sM)=b1 -0.193966223722475 

c1 0 

           d1 0.000000000000000 

       p 2.980000000000000 

sM=F 1.728894759383850 

m1 0.000000000000000 

sm 1.534928535661380 

 

GRAPH  (IV)  1<TAN<infinity
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Fig .4 shows the overlapping of the graphs 

 

(x) is the angular absis of (TAN=b/a), so that: 

when (TAN=1,x=0) and when (TAN=infinite, x=1) 

Practically, we use x=1000  

When  TAN=b/a=infinite. For this: 

divide the angle (90o-45o) in 1000 linear (d alpha) 

and  write: 

 

(Angle alpha=Radian  alpha*180/Pi) and 

[x=(angle apha-45o)/(45o/1000)] 

 

For unit evaluation of L1,it is evident that 

(a=1;b=TAN)  and  (1<TAN<infinity) 

 

Graph (IV) shows  a very nice overlapping,with 

(p=2.98) but we have to control the error %. 

 

The error % is defined as: 

 

Error %=(L1Estimated-L1Real)/L1Estimated 

 

Figure (5) shows the error % graph, at this first 

stage of the approximation, with (p=2.98). 

 

GRAPH  (V)  1<TAN<infinity
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Fig.5 shows the error % graph at (stage1) 

 

We have  (max.error %)  =0.000529950426610. 

Better than the actual world record of (max.error %) 

=0.00145 

 

With another value of  (p),we will  get another 

graph .We can diminish the error % where we want 

it diminished. Or equalize the max-min  error %. 

Elasticity in reasoning ! 

 

dL1=(L1Estimated-L1Real) is much more 

important. See  Fig. (VI).            

 

Max. dL1 (stage1)      =0.001353949406581 

 

 

GRAPH (VI)  1<TAN<infinity
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Fig.6 shows dL1 graph at (stage1)  
 

Knowing (error % and dL1) at any point (at any 

given TAN) we can evaluate (L1Real). 

(L1Real) will not change according our chose of the 

parameter (p). 

 

Example: at the max.error point, where (x=415),  

we have 

dL1  =0.001294322464019   and 

error %  =0.00052995042661. Then, 

 

L1Estimated=(dL1/error %)  =2.44234630076549 

   will vary according (p) 

L1Real=(L1Estimated-dL1)=2.4410519783147   

   will stay constant 
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When considering the graphs (I to VI) we think 

that (p) should be a variable to have (dL1=0) 

 

So, we get the graph (VII) for (pReal) which will 

make (dL1)stage1=0 at every point.  

 

GRAPH (VII)  1<TAN<infinity
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Fig.7 shows the (pReal) graph 

 

 

This graph looks like an astroid seated on a 

polynomial curve. We write a (pMod) in order to 

overlap the (pReal).Here are the math-models and 

its parameters. Figure (8) shows the overlapping 
 

pMod=d2+b2*(1-((x-c2)/a2)^q)^(1/q)+(G+m2*x) 
 

sMod=d1+b1*(1-((x-c1)/a1)^pMod)^(1/pMod)+(F+m1*x) 

 
Table 2.shows the parameters and their values for (stage2) 

 

 AUTOMAT 2 

parameters values 

a2 500 

b2 0.3475 

c2 500 

       d2 0.000 

              q 4 

G 1.95 

m2 0.000935 
 

GRAPH  (VIII)  1<TAN<infinity
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Fig .8 shows the overlapping 

 

Knowing (a=1; b=TAN), we know the (angle alpha) 

and (x) 

We use (pMod) values in (sMod) and we get 

 

L1Estimated=(1+TAN^sMod)^(1/sMod) 
 

 

 

 

 

At this stage2, the (error %)stage2  and (dL1)stage2  

are shown on the graphs (IX and X) 

 

Maximum (error %)stage2     =0.000019980316582 

(dL1)stage2       =0.000592851604697 

                          at the max-error point. 

Maximum (dL1)stage2      =0.001153601015915 

           for the range (1<TAN<infinity) 

GRAPH  (IX)  1<TAN<infinity
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Fig.9 shows the error% at (stage2) 

 

GRAPH (X)  1<TAN<infinity
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Fig.10 shows dL1 graph at (stage2) 

 

GRAPH (XI) 1<TAN<infinity
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Fig.11 is a comparison of the error graphs 

 

Error % (stage2) is better than the error % (stage1) 

This means: the parameters were estimated 

correctly 

 

When this accuracy level is not sufficient, we may  

go one step ahead. 

In this concern,the parameters (a2,b2,c2,d2,q,G,m2) 

of (pMod) should be variables for a finest 

evaluation. We get their (Real graphs) [5]  when we 

write: 

 

(dL1)stage2=0  for (b2) 

(dL1)stage3=0  for (m2) 

(dL1)stage4=0  for (G) 
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We write (math-Models) for these parameters. They 

all look astroidal, seated on a polynomial curve. 

Respective math-Models and  the parameters are as 

follow: 

 
b2Mod=d3+b3*(1-((x-c3)/a3)^r)^(1/r)+(H+m3*x^v3+n3*x^w3) 

pMod =d2+b2Mod*(1-((x-c2)/a2)^q)^(1/q)+(G+m2*x) 

sMod =d1+b1*(1-((x-c1)/a1)^pMod)^(1/pMod)+F+m1*x) 

 

 

Table 3 shows the parameters and their values for (stage3) 

 

 AUTOMAT 3 

parameters values 

a3 500

b3 0.330000

c3 500

d3 0

              r 5

H 0.650000

            m3(+) 0.000038

v3 1

n3 (-) 0

w3 1

 
m2Mod=d4+b4*(1-((x-c4)/a4)^t^(1/t)+(J+m4*x^v4+n4*x^w4) 

pMod =d2+b2Mod*(1-((x-c2)/a2)^q)^(1/q)+(G+m2Mod*x) 

sMod=d1+b1*(1-((x-c1)/a1)^pMod)^(1/pMod)+(F+m1*x) 

 
Table 4.shows the parameters and their values for (stage4) 

 

 AUTOMAT 4 

parameters values 

a4 500 

b4 0.0009381 

c4 500 

d4 0 

                  t 10 

J 0.000001 

m4(+) 0.0000000700 

v4 1 

n4(-) -0.000000065 

w4 1 

 
GMod=d5+b5*(1-((x-c5)/a5)^u)^(1/u)+(K+m5*x^v5+n5*x^w5) 

pMo=d2+b2Mod*(1-((x-c2)/a2)^q)^(1/q)+(GMod+m2Mod*x) 

sMod=d1+b1*(1-((x-c1)/a1)^pMod)^(1/pMod)+(F+m1*x) 

 

 

 

 

 

 

 

 

 

 

 
Table 5 shows the parameters and their values for (stage 5) 

 

 AUTOMAT 5 

parameters values 

a5 500 

b5 0.098750000 

c5 500 

d5 0 

u 10 

K 1.851440000000000 

m5 0.000000010000000 

v5 1.2 

n5 0 

w5 1 

 

Here are their graphs 
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Fig.12 shows the overlapping 

 

GRAPH  (XIII)  1<TAN<infinity
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Fig.13 shows the  error % graph at (stage3) 
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Fig.14 shows the dL1 graph  at (stage3) 
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GRAPH (XV) 1<TAN<infinity
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Fig.15 shows a comparison of  error% graphs 
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Fig.16 shows the overlapping 
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Fig.17 shows the error % graph at (stage4) 
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Fig.18 shows dL1 graph at (stage4) 

 

 

 

 

 

 

GRAPH (XIX) 1<TAN<infinity
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Fig.19  is a comparison of error % graphs 
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Fig.20 shows the overlapping 
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Fig .21 shows the error % graph at (stage5) 
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Fig.22 shows dL1 graph at (stage5) 
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GRAPH (XXIII)  1<TAN<infinity
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Fig.23 is  a comparison of error % graphs 

 

GRAPH (XXIV)    1<TAN<infinity

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

1 85 169 253 337 421 505 589 673 757 841 925 (dL1)stage1

(dL1)stage2

(dL1)stage5

 
Fig.24 is a comparison of dL1 graphs 

 

 

The improvements are as follows: 

 

Max.(error  %)stage3 =0.000015169457087

   at TAN=39.83780595 

Max.(dL1)stage3  =0.001101293826650

   at TAN=181.9062712 

Max.(error %)stage4 =0.000012645431103

   at TAN=2.791356503 

Max.(dL1)stage4  =0.000674186830850

   at TAN=424.4123962 

Max.(error %)stage5 =0.000004753119960

   at TAN=4.828817352 

Max.(dL1)stage5  =0.000637394755302

   at TAN=424.4123962 

 

The parameters which I used are not 

IMPERATIVE! Not MUST! Not mandatory! 

Better parameters may be proposed for a most  

accurate estimation. 

When we have calculated (b2Mod, m2Mod, GMod) 

we use these values in 

 

 
pMo =d2+b2Mod*(1-((x-c2)/a2)^q)^(1/q)+(Gmod+m2Mod*x)  

and then, 
sMod=d1+b1*(1-((x-c1)/a1)^pMod)^(1/pMod)+(F+m1*x)  

 

will give 
 

L1Estimated  =(1+TAN^sMod)^(1/sMod) 

 
  

 

 
 

Conclusion 

 

All these calculations are done with simple macro 

programs. Ready, available on request [5] 

We do not use eccentricity, but TAN, as it is 

general for [0<r<infinity] 

 

We do not need to calculate and to get the sum of 

2500 000 000 integral terms. 

 

The following figure (25) is a comparison of 

Ramanujan’s estimations and my estimations. The 

interval (1<TAN<10) is specially chosen, to escape 

the high error %.of Ramanujan when TAN 

goes>10.The parameters (not MUST) have been 

modified to reach to this comparison. 
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Fig.25 is a comparison of dL1(Ram,Nec) graphs 

 

It was impossible to beat Ramanujan’s estimations 

For  TAN<3.25 

 

I thank Mr.Paul Bourke/Australia for the helps he 

brought to this project. He worked really hard. 

See  

 http://local.wasp.uwa.edu.au/~pbourke/geometry/el

lipsecirc for details 
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