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Performance Improvement for PID Controller Design

with Guaranteed Stability Margin
for Certain Classes of MIMO Systems

T. S. Chang

Abstract— Our previous results indicate that there is free-
dom to choose some parameters in the closed-loop sta-
bilization with guaranteed stability margin using Propor-
tional+Integral+Derivative (PID) controllers. In this paper, such
parameters are used to improve the overall performance for a
class of MIMO systems. The procedure is demonstrated through
an MIMO example. Sufficient conditions for the existence of
PID-controllers which stabilize two classes of unstable MIMO

systems with guaranteed stability margin are also derived.
Keywords- Stabilization and tracking, PID control, per-

formance improvement, stability margin.

I. INTRODUCTION

Due to the simplicity of Proportional+Integral+Derivative
(PID) controllers and its zero asymptotic tracking error of
step-input references, they are typically preferred in ap-
plications. Although the simplicity is particularly desirable
because of easy implementation and from a tuning point-of-
view, it also presents a major restriction. Only certain classes
of plants can be controlled by using PID-controllers.

Rigorous PID synthesis methods based on modern control
theory are explored recently in e.g., [9], [6], [10], [8], [5].
Sufficient conditions for PID stabilizability of multi-input
multi-output (MIMO) plants were given in [5] and several
plant classes that admit PID-controllers were identified.

The systematic controller design method given in [5]
allows freedom in several of the design parameters. Although
these parameters may be chosen appropriately to achieve
various performance goals, these issues were not explored.
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Recently, sufficient conditions for some classes of MIMO
systems are derived to stabilize given systems with a spec-
ified stability margin in e.g. [1], [2], [3]. Just like [5],
the associated systematic design procedures also have some
freedom to choose several design parameters. Although the
optimal choice of those parameters for single-input single-
output systems has been explored, the corresponding research
for MIMO systems has not been initiated.

The goal of this paper is to first investigate how to
use those parameters to improve the overall performance
through a class of MIMO systems studied in [1] and [2].
Sufficient conditions for the existence of PID-controllers
which stabilize two class of unstable MIMO systems with
guaranteed stability margin are then derived along the same
line as in [3].

The paper is organized as follows: Section II gives the
problem statement of the PID controller design with guar-
anteed stability margin. Section III demonstrates how to use
the freedom to choose parameters in a previously developed
systematic procedure to improve the overall performance,
through an MIMO example. Section IV presents sufficient
conditions for stabilizing two classes of unstable systems
by using PID controllers with guaranteed stability margin.
Section V gives a short discussion, concluding remarks and

some future directions.

II. PROBLEM STATEMENT

In this paper, we will use the following notations. Let
C. R, R, denote complex, real, positive real numbers.
The extended closed right-half complex plane is U = {s €
C | Re(s) > 0} U {oo}; Rp denotes real proper rational
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functions of s; S C Ry, is the stable subset with no poles in
U; M(8S) is the set of matrices with entries in S; T, is the
n X n identity matrix. The Hoo-norm of M(s) € M(S) is
||M]|| := sup (M(s)), where & is the maximum singular
value andsgg{uis the boundary of U. We drop (s) in transfer-
matrices such as G(s) wherever this causes no confusion. We
use coprime factorizations over S; i.e., for G € Rp™ ™,
G = Y 'X denotes a left-coprime-factorization (LCF),
where X, Y € M(S), det Y (c0) # 0.

Consider the linear time-invariant (LTI) MIMO unity-
feedback system Sys(G,C) shown in Fig. 1, where G €
R,™*™ is the plant’s transfer-function and C € Rp,™*™
is the controller’s transfer-function. Assume that Sys(G, C)
is well-posed, G and C' have no unstable hidden-modes,
and G € Rp™™ is full (normal) rank. We consider
the realizable form of proper PID-controllers given by (1),
where K, K;, K4 € R™*™ are the proportional, integral,

derivative constants, respectively, and 7 € Ry [4]:

ey

For implementation, a (typically fast) pole is added to the
derivative term so that Cp;q in (1) is proper. When K; = 0,
we have a PD-controller.

Definition 2.1: a) Sys(G,C) is said to be stable iff the
transfer-function from (r,v) to (y,w) is stable. b) C is said
to stabilize G iff C' is proper and Sys(G,C) is stable. A

The problem addressed here is the same as that in [1]:
Suppose that h € IRy is a given constant. Can we find a
PID-controller Cp;q that stabilizes the system Sys(G, Cpiq)
with a guaranteed stability margin, i.e., with real parts of the
closed-loop poles of the system Sys(G, Cpiq) less or equal
to —h? It is clear that this goal is not achievable for some
plants. Furthermore, even when it is achievable, it may be
possible to place the closed-loop poles to the left of a shifted-
axis that goes through —h only for certain h € R .

To deal with such a problem, we first perform a simple
transformation from s-space to §-space as follows.

§:=s+h, or s=:5§—h 2)
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Define
G(3) = G(3-h); 3)
Similarly, define C'pid as
A N K; K;(8—h)
szd(s) '_Kp+§—h T(§—h)+1 “)

The original problem is then reduced to ask if Sys(G, C)
can be stabilized by Cpia(3).

ITT. PERFORMANCE CONSIDERATION

As mentioned earlier, certain classes of MIMO systems
admit PID-controller with guaranteed stability margin un-
der proper sufficient conditions. Furthermore, the sufficient
conditions lead to systematic design procedures. Also there
are some freedom to choose these parameters in the design
procedures. We shall use the first class of MIMO systems we
considered in [1] to demonstrate how to use these parameters
to improve the overall performance.

Consider the same class of MIMO problems as in [1]
denoted by G, which can be described as follows. If G €
Gr C S™*™, then the given plant G has no pole with real
parts in [—h, 0]. Assume that G(s) has no transmission-zeros
(or blocking-zeros) at s = 0, i.e., G(0) is invertible (note that
this condition is necessary for existence of PID-controllers
with nonzero integral-constant K; [5]). The plant G may
have transmission-zeros (or blocking-zeros) elsewhere in I
but not at s = 0.

Let Sp(G) denote the set of all PID-controllers that
stabilize G € Gy, , with real parts of the closed-loop poles of
the system Sys(G, Cpiq) less or equal to —h; i.e.,

Sh(G) = {Cpid I épid stabilizes G(§) } . (®)]

We then have the following proposition from [1].
Proposition 3.1: (A sufficient condition):

Let h € Ry and G € Gy, be given. If for some K, €

R™™ K; € R™™ and 7 < 1/h, the given h € R

satisfies

1 A A
h < 57(h5 Kpa Kd)) (6)
where v = y(h, K',,,R'd) is defined as

V(ha KP’Kd)
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Ka(3—h)
T(§—h)+1

G(3)GO) -1
5—h

= ||G(8) (K, + )+ 7%, ()

then there exists a PID-controller Cp;q of the form in (1) that
stabilizes G € Gy, , with real parts of the closed-loop poles of
the system Sys(G, Cpiq) less or equal to —h. Furthermore,
a PID-controller Cpiq € Si(G) is given by

m+mmm*+m+mkw

Cpig = K
pid (a+ ) pt S 7s+1

» (8)

where Kp ,kd € R™*™ are chosen under condition (6),

7 <1/h, and o € R satisfies
h<a<yhKyKg)—h. 9)

A
As mentioned in [1], the above sufficient condition can be

used to synthesize a PID controller systematically as follows:

Given h € R4 and G € Gy, define

B = mazx{z|p = ¢ + jy, where pis apole of G(s)};

(10)
then —h > [. Choose any Kp and Ky and compute
v(h, Kp, Ka) given by (7). If v(h, Ky, Kq) > 2h as in
condition (6), then it is possible to find a € IR satisfying
(9). The PID-controller Cpiq € Sp(G) is then given by (8).
If (6) is not satisfied, the process can be repeated for a
smaller A value. Despite the systematic procedure, we can
see there are plenty of freedom in choosing parameters. We
overall performance through the same MIMO example as

the example 3.3 in [1].

Example 3.1: Consider the quadruple-tank apparatus in
[7] which consists of four interconnected water tanks and
two pumps. The output variables are the water levels of
the two lower tanks, and they are controlled by the currents
that are manipulating two pumps. The transfer-matrix of the

linearized model at some operating point is given by

3.7b 3.7(1—b2)
_ 625+1 (235+1)(625+1) 22
G= 47(1by A 7h, €St (1)
(305+1)(90s+1) 905+1

One of the two transmission-zeros of the linearized system

dynamics can be moved between the positive and negative
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real-axis by changing a valve. The adjustable transmission-
zeros depends on parameters b; and bs (the proportions of
water flow into the tanks adjusted by two valves). For the
values of by ,bs chosen as by = 0.43 and by = 0.34, the
plant G has transmission-zeros at z; = 0.0229 > 0 and
zo = —0.0997.

By (10), 8 = —1/90 = —0.0111. Suppose that h = 0.004,
and 7 = 0.05. The design in [1] has chosen the following

parameters.
N —22.61 37.61
K, = : (12)
72.14 —43.96
N 528 6.21
K= . (13)
6.53 7.84

The quantity v can be computed as v = 0.0099 > 2h =
0.008. By choosing a@ = 0.5, the maximum of the real-
parts of the closed poles is -0.0059, which is then less than
—h = —0.004 and fulfills the requirement.

The step response of such a feedback system T'(s) is
shown in Fig. 2 by solid lines. To see how the choice of
a will affect the overall performance, let us choose o equals
to its extreme values. In Fig. 2, the dashed lines correspond
to @ = h+ 1079 and the dotted lines for o = y—h —1075.
It is consistent with the intuition that higher gain in PID-
controller causes higher overshoot in this example. For the
rest of illustration, we simply choose a equals to its lower
bound and optimize on Kp and Kj.

From the observation in Fig. 2, let choose the model
transfer function Tp12(s) and Tpye1(s) to be zero and both
Tn11(s) and Tpya2(s) to be the same as the prototype second
order model plant, with ( = 0.8 and w, = 0.01; i.e.,

w2

AR M— 14
™82+ 2(ws + w2 (14

The step response for T, (s) is shown in Fig. 3 as the dashed
lines. The original design is shown as the dotted lines.

We want the actual closed-loop step response s,(t) to be
as close as possible to the step response s,,(t) using the

model plant 7},,. Let us consider the cost function

1 2.2 1000 ,
error = 1555 Z Z./o (80i(t) — 8mij(t))dt, (15)

i=1 j=1
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where s,(t) denotes the step response for a choice of
(Kp, K4). The goal is to minimize error by choosing the
best (K,, Kg). The step response of the optimal design
corresponds to this model plant is shown in Fig. 3 by the
solid lines. We can see that it is closer to the given model
plant than the original design and is a reasonable choice.
To see how the optimal design changes according to the
model plant, let now keep ¢ = 0.8 and change w, = 0.02 for
a faster response. The step response of the new model plant
is shown in Fig. 4 by the dashed lines, and that of the original
design by the dotted lines. The optimal step response is also
shown by the solid lines for the new model plant. We can
see the solution is reasonable and has a much faster response

than before. A

IV. PID CONTROLLER SYNTHESIS

In this Section, we will develop the sufficient conditions
of synthesizing PID controllers for two classes of unstable
MIMO systems. We will use the two-step design method by
first obtaining the Proportional+Derivative (PD) controller,
and then adding the Integral (I) portion to form the overall
PID controller as in [5].

Proposition 4.1: (Systems with a small RHP zero):
Let G(s) have no pole at s = 0. It has one zero at s = 21,

where z; > 0. Let A > 0. Choose any kg > 0 and 0 < 7y <

%. Define

1(5) = 3G (3P (h) [+ M] _1, (16)
h)+1 ’
where 21 = (§ — h) — 21, 17)
91 =a1(8 —h) + 1, with ag > 0, (18)
G=Y'X= (”Af—lé—l)—l(jf—ll). (19)
Y %
Denote

Y (0) := Y (h) = —21:G~1(0) (20)

If 0 < 21 <||®1(8)/(8—h)||~", then for any « satisfying

®,(3)
(3-h)

0<a<l|| |7t = 21, (1)
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the PD controller C (s) below stabilizes G(s):
1 ka(s)

= 1 Y (0). 22
C1(s) (z1 +a)[ +7'18+1] ) (22)
Proof:
Choose the RCF for C’l as
Cy =N.D;' = (C)(I)™! (23)
Let
My =XC +V = (?I+ verhe, (24)
1
My o= (14 Lyeyiee, (25)
Ya Yo
where
Jo=(B—-h)+a (26)
(i+a), 1 oA Ja
I+ _ - D)=C 27
[ Yo (z1+a)” ! ) Y1 1 @D
G1(8) = V() + 2R g
YT ) n(B—h)+1”
(z1 +a)(8—=h) ®4(3) .9
I+ E¥g) 29
=] G- h)] P (29)

(-h)+a

Note that ®; (k) = 0, we have ZA_% € M(S). With the
choice of o, M; is unimodular by the small-gain theorem
[11]. Thus, Cy(8) stabilizes G(5). As the result, Ci(s)
stabilizes G(s). A

Proposition 4.2: (Systems with two small RHP zeros):
Let G(s) have no pole at s = 0. It has two zeros at s = 21
and s = 23 , where 21 > 0, 22 > z; and z; € R. Choose

any kg > 0. Define

() = 1 _”’h) e CAROL O RS SEED

where
§="(a1(8 —h) +1)(az2(8 — h) + 1),

= ((8—h)—2)((8 —h) - 2), (31)

Y% = (%é—l)-l(fin 32)
Denote

Y(0) := Y (h) = 212G ~(0) (33)
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If 2(21 + 22) < ||®2(8)/(8 — h)||~1, then for any @ > 0
and S > 0 satisfying

a+ B <||®208)/(5=h)||7t —2(z1 +22), (34)
and
n/p <1/h, (35)
where
n=a+ B+ 2z + 229, and p = af + Bz1 + azs, (36)
the PD controller Cy(s) below stabilizes G(s):
kos+1
C. = Y (0). 37
2(s) = v (0) @
Proof:
Choose the RCF for C’g as
%y = N.D;t = (Co)(I) ™ (38)
Let
My=XCo+V = (%I +VE NGy (39)
Let
Jo=0B—-h)+a+z and Jg=(§—h)+ B+ 22 (40)
My = (-Z1+ L yeyHy¥e, @
Yalyp Yalyp Yy
=M Eep, 0 ponyelsg, g
Yalp Yalp Yy
N h —h) ®,5(8
M2 — [I+ ('I](S )A—i:p)(s )( A2(s))]ya?ﬁc (43)
Yap §—h
Note that ®5(h) = 0, we have 228) ¢ M(S). With

(8—h)
the choice of a and 8, Mg is unimodular by the small-

gain theorem [11]. Thus, Cs(3) stabilizes G(3) and Ca(s)
stabilizes G(s). A

To get the PID-controller, we use the two-step design
procedure used in [5] and [3]. Let Cpq(s) be a PD-controller
stabilizing G(s) with guaranteed stability margin specified by
h, which can be either Cy(s) or Cs2(s) in previous propo-
sitions. Equivalently, C’pd(§) is a PD-controller stabilizing
G(3), and

~ N ~

Hpa(5) := G + CpaG) ™t € M(8). (44)
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Finding an I-controller for ﬁpd(f;) is the special case of
Proposition 3.1 by letting Kp =0and Kg =0 as given in
[3]. Once Cy () is found, the controller C'pid(é) = C'pd(§) +
C1(3) is a PID-controller stabilizing G(3) [11].

Proposition 4.3: (PID-controller):
Let G(s) have no pole at s = 0. Define

Hpa(8)Hpg(0) ™' — T

-1, 4
Py | (45)

y(h) =]

For any given PD-controller Cpq(s) stabilizing G(s) with
guaranteed stability margin specified by A (> 0), if we can

find an « such that

h<a<~y(h)—h, (46)
the PID-controller
Cpia(s) := Cpa(s) + C1(s), (47)
where
Ci(s) = (o + h)Hpa(0)~* ’ 48)

8

stabilizes G(s) with guaranteed stability margin specified by
h. A

V. CONCLUSIONS

For stable plants whose poles have negative real-parts
less than a pre-specified —h, we illustrated how to use
the freedom in choosing parameters to improve the overall
performance of feedback systems using PID-controllers with
a guaranteed stability margin. The optimization procedure
depends on the sufficient conditions for the existence of PID
controllers stabilizing such a class of MIMO systems. Pre-
liminary numerical results are presented through an MIMO
example. We also derive the sufficient conditions for the
existence of PID-controllers which stabilize two classes of
unstable MIMO systems with guaranteed stability margin.

Future directions of this study will involve extension to
more classes of unstable MIMO plants. In addition, optimal
parameter selections for the corresponding MIMO cases will

be explored.
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