
 
 

 

  
Abstract—This paper discusses a new hybrid ant colony 

optimization algorithm and its characteristics are as follows. (1) 
A greedy mechanism is combined to ACO in order to reduce 
calculation time, and new hierarchical constraints are proposed 
for combining it to ACO. (2) A new pheromone update rule is 
introduced to consider intensification and diversification. 
Experimental results using benchmark data prove the validity 
of the proposed algorithm, in comparison with the conventional 
ACO, of which the proposed algorithm improves the processing 
time. 
 

Index Terms—Ant Colony Optimization, Hierarchical hybrid 
approach, High speed processing.  
 

I. INTRODUCTION 
  Combinational optimization problem can be applied to 

various engineering fields. However, most of these problems 
are classified into non-deterministic polynomial time 
(NP)-hard. In practical applications of the combinational 
optimization problem, many cases need semi-optimal 
solution. Semi-optimal solution is enough accuracy in many 
cases of practical applications of the combinational 
optimization problem.  

Ant Colony Optimization (ACO) [1],[2] is an algorithm 
which can find such the semi-optimal solutions efficiently. 
Especially, the searching performance of ACO is superior to 
other algorithms, such as Genetic Algorithm (GA) [3]-[5] 
and Simulated Annealing (SA) [6], if it is applied to 
Traveling Salesman Problem (TSP) [7]. The search 
mechanism of ACO is based on positive feedback using 
pheromone communication among ants. All ants mark their 
own trails using pheromone, when the ants move. Figure.1 
shows an example of placed pheromone on the route. In this 
example, there are two routes that pheromone was placed. 
Route B has more pheromone than route A. Because the 
pheromone amount that is marked by an ant is the same, and 
the evaporation speed of pheromone is also the same. 
Therefore, the following ants select route B, and positive 
feedback works as reinforcement. Thus, ACO realizes to find 
the shortest route using pheromone communication. 
However, ACO has the inherent problem of substantial 
processing time, because it requires a lot of repetitive 
calculation to obtain the semi-optimal solutions. 
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(1) Examples of two routes 
 
 
 
 
 
 
 
 
 
 
 

(2) Reinforcement by feedback 
Fig.1 Example of Ant Colony Optimization 

 
 
In this paper, we propose a new hybrid ACO algorithm to 

achieve high-speed processing. The characteristics of the 
proposed algorithm are as follows: (1) A greedy mechanism 
is combined to ACO in order to reduce calculation time, and 
new hierarchical constraints are proposed for combining it to 
ACO. (2) A new pheromone update rule is introduced to 
consider intensification (exploitation of the previous 
solutions) and diversification (exploration of the search 
space). Experimental results using benchmark data prove 
effectiveness, in comparison with the conventional ACO, of 
which the proposed algorithm improves the processing time. 
This paper is organized as follows. Section 2 briefly surveys 
ACO and explains the searching mechanism of ACO. The 
proposed algorithm is discussed in Section 3. Section 4 
reports the experimental results. We conclude this study in 
section5. 

 

II. RELATED WORK 
ACO is a general term of the algorithm that imitates the 

behavior of which ants gather of food. Ant System that is 
proposed by Dorigo [1] is the basic model of these 
algorithms.  
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Many ACOs [8]-[14] applied to TSP are based on AS. Ant 
Colony System (ACS) [2] is the expanded algorithm of AS, 
and it is reported that ACS is one of the best algorithms when 
applying to TSP. Therefore, we adopt ACS as a base 
algorithm, hereafter in this paper, ACO represents ACS. 
ACO utilizes two kinds of evaluation. One is static evaluation, 
and the other is dynamic one. The static evaluation depends 
on the target problem, and usually adopts a reciprocal of 
distance when applying ACO to TSP. That is, the short 
distance is evaluated higher than the long distance in the 
static evaluation. 

On the other hand, the dynamic evaluation adopts 
pheromone amount as an evaluation. ACO has two kinds of 
pheromone update rules. One is the local update rule, and is 
applied when ants move. It is defined as follows. 

 
(1) 

 
Where, ψ is a decay parameter in local update rule, τ(i,j) is 

a pheromone amount one the route between city i and city j, 
τ0 is the initial value of pheromone. Thus, local update rule 
adds the pheromone to the selected route between two points, 
when the ant moves. 

The other is the global update rule, and is applied to the 
shortest tour when all ants complete their tours. It is defined 
as follows. 

 
 

(2) 
 
 
 
Where, T+ is the best tour, and L+ is the distance of the best 

tour. Regarding the selection of ant’s move, the concretely 
procedure is as follows. First, the random number q between 
from 0 to 1 is generated. Next, q is compared with benchmark 
(parameter) q0. When q is smaller than q0, the city that has the 
largest value of the product is selected. Otherwise, ant k in 
city i selects the move to city j according to probability pk and 
it is defined as follows. 

 
 

(3) 
 
 
η(i,j) is a reciprocal of the distance between city i and city 

j, β is a parameter which controls the balance between static 
evaluation value and dynamic one, and nk is a set of un-visit 
cities. Therefore, the selection probability is proportional to 
the product of the static evaluation and the dynamic one as 
shown in Fig.2. 

 

III. HYBRID ANT COLONY OPTIMIZATION 
The processing of which each ant selects the move requires 

the most computing time. In the selection procedure of ant's 
move, the product is calculated as shown in section 2. Here, 
the static evaluation is constant while optimizing.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Selection mechanism in ACO 
 
 
That is, calculations of pheromone amount cause the long 

computing time. It is necessary to calculate the local update 
rule and the product of the static evaluation and the dynamic 
one when each ant selects each city. 

To reduce computing time, the proposed algorithm 
introduces greedy mechanism that utilizes only static 
evaluation that is constant while optimizing. The greedy 
mechanism can reduce the number of calculation steps, 
however, it is easily trapped at local optima. 

In order to prevent form trapping at local optima, the 
proposed algorithm limits a period of which the greedy 
mechanism is applied. Specifically, the greedy mechanism is 
introduced at an early phase of optimizing. Figure.3 shows an 
example of the phase of which the greedy algorithm is 
introduced. In Fig.2, iteration represents a period that each 
ant completes each a tour. 

Moreover, the greedy mechanism is applied to only the 
first half of the iteration. Figire.4 shows an example of the 
procedure to complete a tour. It is important to achieve the 
well-balanced of the trade-off between intensification and 
diversification to improve the searching performance. The 
greedy mechanism functions as intensification. 

Regarding the diversification, the proposed algorithm 
applies the global update rule to the second shorter tour, in 
addition to the shortest tour. Thus, the proposed algorithm 
considering intensification and diversification achieves the 
hybrid optimization with greedy algorithm effectively. 

 
 
 
 
 
 
 

Fig.3 Example of the phase of which the greedy algorithm is 
introduced 
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Fig.4 Example of the procedure to complete a tour 
 

IV. EXPERIMENTS AND DISCUSSION 
In order to evaluate the proposed algorithm, we conduct 

several experiments using TSP.LIB benchmark data. All 
experiments are executed ten times. 

First, we compare the proposed algorithm with 
conventional ACO. Experimental results are shown in 
Tables.1, 2, and 3. In these experiments, parameter q is 
different. The parameters of Tables.1, 2, and 3 are 0.25, 0.50, 
and 0.75 respectively. Each value of tour distance and 
processing time in these tables is calculated as the average 
value of 10 trials. 

 
 

TABLE.1 
 RESULTS OF q = 0.25 

Algorithm # iteration Distance Time (s)
Conventional N/A 22049 37.84 

200 22439 37.62 
400 22456 37.52 
600 22609 35.05 Proposed 

800 22492 35.86 
 
 

TABLE.2 
 RESULTS OF q = 0.50 

Algorithm # iteration Distance Time (s)
Conventional N/A 21876 38.69 

200 22005 38.24 
400 21983 36.15 
600 22307 35.38 Proposed 

800 22365 32.85 
 
 

TABLE.3  
RESULTS OF q = 0.50 

Algorithm # iteration Distance Time (s)
Conventional N/A 21768 38.43 

200 21821 38.48 
400 21810 37.48 
600 21845 35.13 Proposed 

800 21970 34.27 
 
 
 

In these tables, #iteration represents the timing that it 
switches ACO without greedy mechanism from ACO with 
one. That is, 200 in #iteration indicates that ACO is applied 
until 200 iterations and then Greedy is applied from the 201 
iteration. Similarly, 400 in #iteration indicates that ACO is 
applied until 400 iterations and then Greedy is applied from 
the 401 iteration. Thus, the application frequency of Greedy 
increases when the number of #iteration in these tables grows. 
The proposed algorithm achieved high speed processing 
compared with conventional ACO as shown in these tables. 
That is, Greedy reduces calculation cost to obtain a solution 
effectively.  Moreover, the proposed algorithm maintains the 
quality of solutions. 

Next, we evaluate how to the greedy mechanism to 
combine with ACO. Experimental results are shown in tables, 
4, 5, and 6. “Greedy + ACO” represents the approach that the 
greedy mechanism is introduced in the first half of the 
iterations. In contrast, “ACO + Greedy” represents the 
approach that the greedy mechanism is introduced in the 
latter half of the iterations. 

On the other hand, “Greedy => ACO” represents the 
method that the greedy mechanism is introduced in the first 
half of composing a tour. In contrast, “ACO => Greedy” 
represents the method that the greedy mechanism is 
introduced in the first latter of composing a tour. The greedy 
mechanism enables to reduce the processing time even it is 
only included, as shown in these tables. The proposed 
approach shows the best performance in comparison with the 
other hybrid approaches. 

 
 
 

TABLE.4  
COMPARISON OF THE DIFFERENT TECHNIQUES FOR GREEDY MECHANISM 

 (q = 0.25) 

(1) “ACO + Greedy” and “Greedy => ACO” 

# iteration Distance Time (s) 
200 23008 35.49 
400 22798 36.00 
600 22733 35.97 
800 22641 39.18 

 
(2) “ACO + Greedy” and “ACO => Greedy” 

# iteration Distance Time (s) 
200 22520 33.37 
400 22512 37.75 
600 22627 38.65 
800 22513 38.55 

 
(3) “Greedy + ACO” and “Greedy => ACO” 

# iteration Distance Time (s) 
200 22520 33.37 
400 22512 37.75 
600 22627 38.65 
800 22513 38.55 
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TABLE.5  

COMPARISON OF THE DIFFERENT TECHNIQUES FOR GREEDY MECHANISM 
 (q = 0.50) 

(1) “ACO + Greedy” and “Greedy => ACO” 

# iteration Distance Time (s) 
200 22473 32.59 
400 22303 36.77 
600 22169 36.96 
800 22128 36.64 

 
(2) “ACO + Greedy” and “ACO => Greedy” 

# iteration Distance Time (s) 
200 22289 36.33 
400 22243 36.31 
600 21973 35.41 
800 21973 36.67 

 
(3) “Greedy + ACO” and “Greedy => ACO” 

# iteration Distance Time (s) 
200 21938 38.64 
400 22057 37.54 
600 22002 36.79 
800 22253 35.78 

 
 
 

TABLE.6  
COMPARISON OF THE DIFFERENT TECHNIQUES FOR GREEDY MECHANISM 

 (q = 0.75) 

(1) “ACO + Greedy” and “Greedy => ACO” 

# iteration Distance Time (s) 
200 21998 34.13 
400 21924 35.03 
600 21853 37.64 
800 21818 36.98 

 
(2) “ACO + Greedy” and “ACO => Greedy” 

# iteration Distance Time (s) 
200 21926 36.50 
400 21936 37.21 
600 21825 37.80 
800 21757 38.04 

 
(3) “Greedy + ACO” and “Greedy => ACO” 

# iteration Distance Time (s) 
200 21798 38.29 
400 21743 37.74 
600 21939 37.49 
800 21970 36.85 

 
 
Lastly, we evaluate the diversification performance of the 

proposed algorithm. Experimental results are shown in 
Tables.7, 8, and 9. In these tables, “Best + Better” represents 
the proposed algorithm without greedy algorithm phase.  

 

 
TABLE.7  

COMPARISON OF DIVERSIFICATION   (q = 0.50) 
Global update rule Distance Time (s)

Best 22049 37.84 
Best + Better 22353 37.83 

 
TABLE.8  

COMPARISON OF DIVERSIFICATION   (q = 0.50) 
Global update rule Distance Time (s)

Best 21876 38.69 
Best + Better 22109 38.52 

 
TABLE.9  

COMPARISON OF DIVERSIFICATION   (q = 0.50) 
Global update rule Distance Time (s)

Best 21768 38.43 
Best + Better 21709 36.78 

 
 
That is, it modifies the conventional ACO for applying the 

global update rule to not only the shortest tour but also the 
second shorter tour. The proposed algorithm enables not only 
to reduce the processing time, but also to explore the search 
space as shown in Table.9. 

 

V. CONCLUSION 
In this paper, we proposed a new hybrid ACO algorithm. 

The proposed algorithm combined the greedy mechanism to 
ACO in order to reduce calculation time, and new 
hierarchical constraints were proposed for combining it to 
ACO. Moreover, a new pheromone update rule enabled to 
achieve the well-balance between intensification and 
diversification. Experimental results using benchmark data 
proved effectiveness, in comparison with the conventional 
ACO, of which the proposed algorithm improves the 
processing time. 

Regarding future work, experiments using large-scale data 
are the most important priority. We will also introduce a new 
hybrid technique for diversification. 
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