
  

  
Abstract—Since real manufacturing is dynamic and tends to 

suffer a wide range of uncertainties, research on production 
scheduling with uncertainty has received much more attention 
recently. Although various approaches have been investigated 
on the scheduling problem with uncertainty, this problem is still 
difficult to be solved optimally by any single approach, because 
of its inherent difficulties. This paper considers makespan 
optimization of a flexible flow shop (FFS) scheduling problem 
with stochastic processing times. It proposes a novel 
decomposition-based algorithm (DBA) to decompose an FFS 
into several clusters which can be solved more easily by 
different approaches.  A neighbouring K-means clustering 
algorithm is developed to firstly group the machines of an FFS 
into an appropriate number of clusters, based on weighted 
cluster validity indices. A back propagation network (BPN) is 
then adopted to assign either the shortest processing time (SPT) 
or the genetic algorithm (GA) to generate a sub-schedule for 
each cluster. If two neighbouring clusters are allocated with the 
same approach, they are subsequently merged. After machine 
grouping and approach assignment, an overall schedule is 
generated by integrating the sub-schedules of the clusters. 
Computation results reveal that the proposed approach is 
superior to SPT and GA alone for FFS scheduling with 
stochastic processing times. 
 

Keywords—back propagation network, decomposition, 
flexible flow shop, neighbouring K-means clustering algorithm, 
stochastic processing times. 
 

I. INTRODUCTION 
  Ever since the flexible flow shop (FFS) scheduling 

problem was identified in 1970’s [1], it has attracted 
considerable attention during the past decades [2]. An FFS 
consists of a series of production stages, each of which has 
several functionally identical machines operating in parallel. 
All the jobs released to an FFS have to visit all the stages in 
the same order. Research efforts on FFS scheduling problems 
generally consider a static environment with no unexpected 
events that would influence the job processing when the 
schedule is executed.  

Real manufacturing, however, is dynamic and tends to 
suffer a wide range of uncertainties, such as stochastic 
processing times, machine breakdown, rush orders, job 
cancellations, and change of due date. This paper is primarily 
concerned with the scheduling problem of flexible flow shop 
with stochastic processing times. The flexible flow shop 
(FFS) scheduling problem [3] has been proven NP-hard in 
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nature which is difficult to solve [4, 5]. Consideration of 
stochastic processing times aggravates its complexity.  

As a research issue, production scheduling with uncertainty 
has indeed drawn considerable attention in recent years. The 
completely reactive approach, the robust approach, and the 
predictive-reactive approach are three fundamental ways [6, 
7] to tackle this issue. 

The completely reactive approach changes decisions during 
execution when necessary. The dispatching rule is a typical 
reactive one, in which jobs are selected by sorting them 
according to predefined criteria. It is easy to understand, and 
can find a reasonably good solution in a relatively short time. 
However, it uses only local information to generate a schedule 
which may not be globally optimal in nature. Hunsucker and 
Shah [8] compared the performance of dispatching rules in a 
constrained multiprocessor flow shop, and concluded that the 
Shortest Processing Time (SPT) algorithm was superior for 
the makespan criterion.   

The robust scheduling approach takes into account possible 
uncertainties to construct solutions. Uncertainties, known as a 
priori, can be modelled by some random variables [9]. If such 
uncertainties are difficult to quantify, a range of scenarios will 
be considered and a solution is developed to optimize the 
performance under different scenarios [10]. In this case, the 
approach is viewed as a form of under-capacity scheduling to 
maintain robustness under different scenarios.  

The predictive-reactive approach is indeed a two-step 
process. First, a predictive schedule is generated over the time 
horizon considered. This schedule is then rescheduled during 
execution in response to unexpected disruption. This 
approach is by far the most studied. The most common 
rescheduling methods include the right-shift schedule repair, 
the partial schedule repair, and the completed scheduling [11]. 
The right-shift schedule repair postpones the remaining 
operations by the amount of time needed to make the schedule 
feasible. The partial schedule repair only reschedules the 
operations that are affected by the disruption. The completed 
scheduling regenerates a completely new schedule for all the 
unprocessed operations. Although the completed scheduling 
may construct a better solution in theory, it is rarely applied in 
practice due to high computation burden and increasing 
scheduling instability [9]. Conversely, the right-shift schedule 
repair yields the least scheduling instability with the lowest 
computation effort, while the partial schedule repair is a 
moderate one in this regard. 

Since each of these three approaches has its own strength 
and weakness, some research work has focused on comparing 
their effectiveness. Lawrence and Sewell [12] studied the 
static and dynamic applications of heuristic approach to job 
shop scheduling problems when processing times are 
uncertain. Experiment results indicated that the predictive 
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methods based on overall information were highly likely to 
perform better than completely reactive approaches in an 
environment with little uncertainty.  However, the predictive 
methods might lead to poor result when the uncertainty in a 
system exceeds a certain level.  

In order to handle a complex environment, it is beneficial 
and imperative to take advantage of mixing these three 
approaches to deal with uncertainty. Matsuura et al. [13] 
developed a predictive approach on a periodic basis, called 
switching. The system switched to using a dispatching rule for 
the remaining operations when the deviation between the 
realized and predictive schedule exceeded a certain level. 
They concluded that the proposed approach dominated the 
dispatching rules when the frequency of disruption was low, 
but it yielded worse results than the dispatching rules when 
the disruption reached some level. A search of available 
literature indicates not much research works have been 
attempted to address the combination of different approaches.  

This paper studies the problem of scheduling an FFS with 
stochastic processing times. The objective is to minimize the 
makespan. Enlightened by the work of Lawrence’s [12], a 
decomposition-based algorithm (DBA) is proposed. In this 
approach, a neighbouring K-means clustering algorithm first 
groups the machines of an FFS into several clusters based on 
their stochastic nature when processing jobs. Then the 
completely reactive approach or the predictive-reactive 
approach, determined by the process of approach assignment, 
is employed to generate a sub-schedule for each cluster. 
Finally these sub-schedules are integrated into an overall 
solution.  

This study contributes to the development of an integrated 
approach that combines and takes advantage of the completely 
reactive approach with the predictive-reactive approach, to 
deal with the uncertainty. On the contrary, the techniques 
reported in available literature on scheduling with uncertainty 
were mostly based on a single approach, yielding some initial 
yet limited performance. The proposed DBA explores a new 
direction for future research in the field of scheduling with 
uncertainty.  

The remaining part of this paper is organized as follows. 
Section II is devoted to problem description. Section III 
describes the framework of DBA, while it is explained in 
detail in Section IV. To evaluate the effectiveness of DBA, 
simulation is conducted and computation results are analyzed 
in Section V. Finally, conclusions are summarized and some 
directions of future work are discussed in Section VI. 

 

II. PROBLEM DESCRIPTION 
In the FFS discussed above, machines sharing a similar 

characteristic are arranged into stages in series. Jobs have to 
pass all the stages in the same order. In each stage, there are a 
number of functionally identical machines in parallel, and a 
job is to be processed on one of these machines. The 
processing time may be highly uncertain due to quality 
problems, equipment downtime, tool wear, and operator 
availability [12]. The stochastic processing time can be 
described by the expected processing time E[P] and the 
standard deviation σ. The coefficient of processing time 

variation (CPTV), defined as ( )CPTV E Pσ= , can be used 
as an indicator to processing time uncertainty; it equals 0 
when processing times are deterministic, and increases as the 
uncertainty increases. 

In order to simplify the typical FFS scheduling problem in 
consideration of stochastic processing times, the following 
assumptions are made: (1) Preemption is not allowed for job 
processing; (2) Each machine can process at most one 
operation at a time; (3) All jobs are released at the same time 
for the first stage; (4) There is no travel time between 
machines; (5) There is no setup time for job processing; (6) 
Infinite buffers exist for machines; (7) For the same job, the 
expected processing time at any parallel machine at a stage is 
identical; (8) The actual processing time of a job on a machine 
is uncertain; and (9) As parallel machines at a stage are 
functionally identical, they lead to the same CPTV when 
processing  any jobs, but the CPTV may be different for other 
stages. 

The scheduling objective under consideration is to 
determine the processing sequence of operations on each 
machine such that the makespan, which is equivalent to the 
completion time of the last job to leave the FFS, is minimized 
without violating any of the assumptions above. This FFS 
scheduling problem can also be described as follows.  
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Where  
k:  stage index, 1 ≤  k  ≤  t 
mk:  number of parallel machines at stage k 
Mk:  set of parallel machines at stage k  
i, i1, i2:  machine index, 1 ≤ i, i1, i2 ≤ mk 
j, j1, j2:  job index,  1 ≤  j,  j1,  j2  ≤  n 
Ckj:  completion time of Job j at stage k 

1 2kij jB :  a Boolean variable, 1 if Job j2 is scheduled 
immediately after Job j1 on machine i at stage 
k, and 0 otherwise      

Ukij:  a Boolean variable, 1 if Job j is the first job on 
machine i at stage k, and 0 otherwise      

Pkj:  stochastic processing time of Job j at stage k                    
Pkij:  stochastic processing time of Job j on 

machine i at stage k       
STkij:  start time of Job j on machine i at stage k             
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For the first stage, (2) and (3) give the completion time of 
the first job and that of each subsequent job on the machines, 
respectively. Similarly for all other stages, (4) and (5) 
determine the completion time of the first job and that of each 
subsequent job on the machines, respectively. While (6) 
ensures non-negative start time of job processing, (7) 
stipulates that each of the parallel machines at a stage takes 
equal time to process the same job. Lastly, (8) requires the 
processing sequence of each stage to satisfy the processing 
time, and (9) guarantees that each machine can process only 
one job at a time.

  
 

III. THE FRAMEWORK OF THE PROPOSED   
DECOMPOSITION-BASED ALGORITHM (DBA) 

The DBA framework consists of three modules, as shown 
in Fig. 1. An FFS is firstly decomposed by a clustering 
algorithm into machine clusters, each of which contains a 
number of machines sharing a similar stochastic nature. As the 
actual processing times of jobs on a machine may be 
non-deterministic, the processing time uncertainty during job 
processing is used to describe the stochastic nature of a 
machine. Clustering is the classification of objects into 
different groups, such that the objects in each group would 
share some common trait. Quite a few algorithms, such as 
K-means, fuzzy C-means, and self-organization maps etc., 
have been proposed to perform the classification. Since the 
K-means clustering algorithm is simple and widely used, a 
neighbouring K-means clustering algorithm is proposed and 
adopted in this paper.  

After decomposition of an FFS, machines in the same 
cluster share the similar stochastic nature of job processing 
and can be scheduled by the same approach. Clusters with low 
stochastic nature are solved by the predictive-reactive method, 
while those with high stochastic nature are scheduled by the 
completely reactive method. Due to their better performance, 
GA and SPT are identified as the predictive-reactive approach 
and the completely reactive approach, respectively. 
Considering the computation effort and scheduling instability, 
we apply right-shift scheduling repair to react to job 
processing delay caused by stochastic processing times. 

In order to assign an appropriate approach to a machine 
cluster, it is critical to establish an effective model to estimate 
the makespan difference (MDSG) when generating the 
schedule by both SPT and GA. Artificial neural networks 
(ANNs) have been widely used in various areas due to its 
capability of identifying complex nonlinear relationships 
between input and output. The back propagation network 
(BPN) is a commonly used ANN structure and has been 
successfully applied for system modelling, prediction, and 
classification [14]. It is therefore adopted to determine the 
approach assigned to the cluster. 

After approach assignment above, the sub-schedule for 
each of the clusters is generated by either SPT or GA, and 
subsequently integrated into an overall schedule. Fig. 2 shows 
the decomposition result of an FFS with 7 stages and 3 parallel 
machines at each stage. Geometric figures with the same 
shape represent the parallel machines. One of the two 
approaches, the completely reactive approach or the 
predictive-reactive approach, is assigned to each cluster. 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. DETAILED ALGORITHM 
A. Neighbouring K-means Clustering Algorithm 
Since the CPTV represents processing time uncertainty, it 

is adopted to form the stochastic vector Ui to group machines 
into clusters of similar stochastic natures, giving  

 [ ]i iU CPTV=
 

(10) 

Where CPTVi is the CPTV of the parallel machines at stage 
i. Ui represents the stochastic nature of machines at stage i. A 
machine with a large CPTV indicates a high stochastic nature 
of job processing. 

As the Euclidean distance is one of the most commonly 
used methods to measure the distance between a pair of data, 
it serves to define the machine distance ( ),i jD U U , which 

represents not the physical distance but the difference of 
stochastic nature between the parallel machines at stages i and 
j.  The machine distance is calculated as follows: 

 ( ) ( )2

2
,i j i j i jD U U U U CPTV CPTV= − = −  

(11) 

Considering ( ),i jD U U , the FFS can be decomposed into 

machine clusters by K-means clustering algorithm. The major 
problem to apply K-means clustering algorithm is the choice 
of cluster number. Neither a small nor a large cluster number 
can offer a satisfactory classification of the data objects. 
Recently, cluster validity indices (CVIs), indicating how well 
the clustering algorithm classifies the given data set, have 
attracted much attention as an approach to determining the 
optimal cluster number. Dunn [15], DB [16], Vsv [17] and 
DVI [18] are some typical CVIs. 

However, the FFS decomposition above is different from 
the traditional clustering problem. Since this study aims to 
schedule neighbouring clusters by different approaches, a 
good clustering algorithm should encourage large inter-cluster 
distances between neighbouring clusters rather than that 
between non-neighbouring clusters. For this purpose, a 
modified DB (MDB) is proposed as follows: 
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Figure 2.   Machine clusters in an FFS 

Figure 1.   The framework of the proposed decomposition-based 
algorithm (DBA) 
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   Where n is the number of clusters; Si denotes the average 
machine distance of all objects from the cluster to their cluster 
centre; Dij represents the machine distance between cluster 
centre i and j; Wij is the weight of Dij; Fi is the first stage of ith 
cluster. A small value of MDB indicates a good clustering. 

In order to avoid specifying the cluster number, a 
neighbouring K-means clustering algorithm, incorporated 
with MDB, is established. Its procedure is shown in Fig. 3.  

 

For k=2 to Kmax (Kmax = number of stages/2) 

    For i=1 to Imax (Imax = 10) 

  Apply the K-means clustering algorithm to decompose an FFS into k clusters; 

Compute the MDB for ith iteration of decomposing an FFS into k clusters; 

End 

End 

Return machine clusters where the MDB is minimum over all i and all k. 

 
 

B. Back Propagation Network for Approach Assignment  
Under the assumptions we made on the FFS scheduling 

problem, jobs are released simultaneously in the first stage. 
However, in subsequent stages, they are allocated by the FIFO 
rule and may arrive non-simultaneously. Therefore, two 
scenarios have to be considered when establishing models to 
predict the MDSG. The first scenario assumes the jobs to be 
released simultaneously, while the other allows the jobs arrive 
non-simultaneously.  

Accordingly, two BPNs, each corresponds to a scenario, 
are generated. The configurations of these BPNs are 
established as follows: (1) Inputs: Four parameters, namely 
CPTV, stage size, job size and parallel machine size. These 
parameters are found to affect the performance of MDSG 
significantly according to the experiment results in Section V; 
(2) Number of single hidden layers: Generally one hidden 
layer is capable of approximating any function with a finite 
number of discontinuities. Therefore, the BPN only consists 
of one hidden layer; (3) Number of hidden neurons: There is 
no concrete rule to find the optimal number. If inadequate 
hidden neurons are adopted, it may introduce a greater risk of 
modelling the complex data poorly. If too many hidden 
neurons are used, the network may fit the training data 
extremely well, but would perform poorly to new and unseen 
data. For these reasons, the optimum number is intentionally 
chosen from the interval [2, 20]. The BPNs with different 
number of hidden neurons are evaluated by the mean square 
error (MSE), and the one with the minimum MSE has the 
optimum number of hidden neurons; (4) Output: MDSG; (5) 
Number of epochs per replication: 10000; (6) Number of 
replications: 100. The performance of a BPN is sensitive to 
the initial condition of network. The network with different 
initial conditions will be trained and evaluated respectively. 
Among the results, the best one is chosen.  

After training, validation, and testing, the BPNs can 
estimate the MDSG. If the MDSG is predicted to be positive, 
GA is allocated to address the scheduling problem of the 
cluster. Otherwise, SPT is used to generate the schedule for 
the cluster. However, the neighbouring K-means clustering 
algorithm cannot avoid the possibility that two neighbouring 
clusters are to be suitably solved by the same approach. 

Therefore, it is reasonable to conduct a cluster merging 
process (CMP) to integrate neighbouring clusters if necessary, 
using the following steps: (1) Identify the two neighbouring 
clusters which are to be solved by the same approach; (2) 
Merge the two neighbouring clusters and determine the 
approach for the new cluster by BPNs; (3) Repeat steps 1 and 
2 until any two neighbouring clusters are allocated with 
different approaches.  

Integrating with CMP, the complete process of approach 
assignment is summarized as follows: (1) Collect the data sets 
for both scenarios, including CPTV, stage size, job size, 
parallel machine size, and the expected MDSG; (2) Train, 
validate and test the BPNs; (3) Estimate the MDSG for each 
machine cluster by BPNs; (4) Assign either SPT or GA to 
each machine cluster according to the positive or negative 
sign of its estimated MDSG, respectively; (5) Conduct CMP. 

C. Cluster Scheduling 
After FFS decomposition and approach assignment, 

sub-schedules are generated by either SPT or GA for all 
machine clusters and then integrated into an overall solution. 

SPT performs better with low computation cost when the 
machines in a machine cluster with a large CPTV. It consists 
of the following two main steps: (1) Determine the job 
sequence based on the SPT rule for the first stage; (2) Allocate 
the finished job from the previous stage to the current stage by 
the FIFO rule until all the jobs are processed at each stage. 

GA is used prior to the dispatching rules when scheduling a 
machine cluster with a small CPTV. The right-shift 
scheduling repair is triggered to regenerate a new schedule 
whenever the start time of job processing has to be postponed 
due to the stochastic processing times. The overall structure of 
our GA is briefly described as follows: (1) Coding: The job 
sequence is used as the chromosome for the FFS scheduling 
problem. For example, job sequence [2,3,5,1,4,9,8,6,7,10] is a 
chromosome with ten jobs in an FFS; (2) Fitness function: It is 
formulated as  maxfitness C= , where Cmax is the maximum 
completion time of jobs; (3) Selection strategy: Roulette 
wheel selection is applied to reproduce the next generation; 
(4) Crossover and mutation operation: Order preserved 
crossover (OPX) and shift move mutation (SM) are adopted. 
The crossover rate and mutation rate are analyzed by setting 
different values on the same FFS scheduling problem. A 
crossover rate of 0.8 and a mutation rate of 0.2 are found to 
give good performance; (5) Termination criterion: The 
algorithm continues until 200 generations have been 
examined. This value is chosen empirically. 

 

V. COMPUTATIONAL RESULTS AND ANALYSIS 
The test-bed contains 27 problems with different stages, 

jobs and parallel machines, as shown in Table II. For each 
problem, ten instances with different expected processing 
times of operations are randomly generated. The actual 
processing time of job i on machines at stage j is stochastic 
and assumed to follow the gamma distribution with the 
expected processing time E(Pij) and standard deviation 

( )ij jE P CPTVσ = × , where CPTVj is the coefficient of 

Figure 3.   The proposed neighbouring K-means clustering algorithm 
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processing time variation at stage j. The simulation is iterated 
50 times for each instance. 

A. Establishing BPNs for MDSG Estimation 
Corresponding to the two scenarios of simultaneous and 

non-simultaneous job arrivals, the examples for training and 
testing BPNs are generated for all the problems in the test-bed. 
The levels of BPN input used in the experiments are shown in 
Table I. This results in a total of 3,600 (10×10×6×6 = 
3,600) training examples. 

 

TABLE I.  BPN INPUTS AND THEIR LEVELS  
Factors Levels 
CPTV 10 levels (0.1, 0.2, …, 1) 

Stage size 10 levels (1, 2, …, 10) 
Job size 20, 25, 30, 35, 40, 45 

Parallel machine size 2, 3, 4, 5, 6, 7 
 
 

Based on the data of the examples, scatter plots are 
generated to visualize the relationship of four factors, 
including CPTV, stage size, job size and parallel machine 
size, on the MDSG. As shown in Fig. 4, circles and squares 
represent the results derived by the scenarios of simultaneous 
job arrivals and non-simultaneous job arrivals, respectively. 
Accordingly the following conclusions are drawn: (1) The 
MDSG decreases with the increasing of CPTV, stage size and 
job size. Parallel machine size affects the MDSG as well. 

Therefore, it is reasonable to adopt these four factors as BPN 
inputs; (2) The MDSG is different for the two scenarios of 
simultaneous and non-simultaneous job arrivals. Hence, two 
BPNs are needed to estimate the MDSG.  

The prediction accuracy of the two BPNs is measured by 
MSE. The minimal MSE with various numbers of hidden 
neurons in the hidden layer are compared in Fig. 5. The 
optimum numbers of BPNs with simultaneous and 
non-simultaneous job arrivals are 12 and 14, respectively. The 
BPNs with the optimum numbers are adopted to estimate the 
MDSG. 

B. DBA Analysis 
To evaluate the effectiveness of the proposed approach, 

SPT, GA, and DBA are analyzed in a stochastic environment 
in which CPTV is uniformly distributed in the interval [0.1, 
1]. The experiment results of these three approaches with 
stochastic processing times (denoted by SPT_S, GA_S, and 
DBA_S respectively) are shown in Table II. The results of 
SPT and G A with deterministic processing times (denoted by 
SPT, and GA respectively) are also given. It can be seen that 
DBA_S gives the best performance in most cases, decreasing 
the makespan by about 3% and 8% in comparison with SPT_S 
and GA_S, respectively. 
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Figure 4.   Scatter plots of the MDSG with (a) coefficient of processing times (CPTV), (b) stage size, (c) job size, (d) parallel machine size. 
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Figure 5.   The minimal MSEs with various numbers of hidden neurons for (a) simultaneous job arrivals, (b) non-simultaneous job arrivals. 
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TABLE II.  COMPARISON OF PERFORMANCE OF VARIOUS SCHEDULING ALGORITHMS a  
Problem size (No. of jobs x no. of stages) No. of Parallel Machines in each stage SPT GA SPT_S GA_S DBA_S 

20×6 2 1.170 1.000 1.318 1.384 1.257 
20×6 3 1.202 1.000 1.345 1.395 1.276 
20×6 4 1.220 1.000 1.396 1.557 1.350 
20×10 2 1.120 1.000 1.321 1.450 1.305 
20×10 3 1.165 1.000 1.296 1.409 1.277 
20×10 4 1.119 1.000 1.302 1.504 1.292 
20×15 2 1.144 1.000 1.290 1.413 1.255 
20×15 3 1.114 1.000 1.265 1.459 1.246 
20×15 4 1.083 1.000 1.170 1.295 1.158 
30×6 2 1.099 1.000 1.246 1.358 1.212 
30×6 3 1.165 1.000 1.309 1.415 1.246 
30×6 4 1.163 1.000 1.341 1.535 1.271 
30×10 2 1.135 1.000 1.320 1.459 1.298 
30×10 3 1.153 1.000 1.287 1.425 1.249 
30×10 4 1.121 1.000 1.279 1.504 1.280 
30×15 2 1.157 1.000 1.291 1.404 1.261 
30×15 3 1.159 1.000 1.284 1.475 1.255 
30×15 4 1.125 1.000 1.295 1.499 1.279 
40×6 2 1.134 1.000 1.242 1.265 1.199 
40×6 3 1.129 1.000 1.257 1.354 1.188 
40×6 4 1.139 1.000 1.296 1.514 1.291 
40×10 2 1.165 1.000 1.314 1.375 1.249 
40×10 3 1.158 1.000 1.326 1.508 1.256 
40×10 4 1.086 1.000 1.266 1.528 1.252 
40×15 2 1.147 1.000 1.297 1.402 1.255 
40×15 3 1.116 1.000 1.265 1.472 1.237 
40×15 4 1.118 1.000 1.276 1.538 1.272 

Average 1.141 1.000 1.292 1.441 1.258 
 a.   All the results are the ratios of the average makespan of various scheduling algorithms to that of GA. 

 
     

VI. CONCLUSION 
This paper proposed a decomposition-based algorithm 

(DBA) to makespan optimization of an FFS scheduling 
problem with stochastic processing times. In this approach, 
machines are grouped into several clusters by a neighbouring 
K-means clustering algorithm without predefining the number 
of clusters, and each cluster is scheduled by either SPT or GA.  

The effectiveness of DBA was validated with experiment 
results. For most problems in the test-bed, DBA is superior to 
SPT and GA. The better performance of DBA results from the 
decomposition strategy – to schedule with GA in a low 
stochastic environment and with SPT in a high stochastic 
environment. This strategy ensures DBA’s good performance 
when addressing FFS scheduling problems in any stochastic 
environment. 

The proposed DBA provides a promising way to address 
the FFS scheduling problem with stochastic processing times. 
Further research can be devoted to evaluating the performance 
of DBA by optimizing the FFS scheduling problem for 
tardiness related criteria, such as minimizing the mean 
tardiness of jobs.  
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