
 
 

 

  
Abstract—The purpose of a variable step-size normalized 

LMS filter is to solve the dilemma of fast convergence rate and 
low excess MSE. In the past two decades, many VSS-NLMS 
algorithms have been presented and have claimed that they have 
good convergence and tracking properties. This paper 
summarizes several promising algorithms and gives a 
performance comparison via extensive simulation. Simulation 
results demonstrate that Benesty’s NPVSS and our GSER have 
the best performance in both time-invariant and time-varying 
systems. 
 

Index Terms—Adaptive filters, normalized least mean square 
(NLMS), variable step-size NLMS, regularization parameter. 
 

I. INTRODUCTION 
Adaptive filtering algorithms have been widely employed 

in many signal processing applications. Among them, the 
normalized least mean square (NLMS) adaptive filter is most 
popular due to its simplicity. The stability of the basic NLMS 
is controlled by a fixed step-size constant μ , which also 
governs the rate of convergence, speed of tracking ability and 
the amount of steady-state excess mean-square error (MSE). 
In practice, the NLMS is usually implemented by adding the 
squared norm of input vector with a small positive number ε , 
commonly called the regularization parameter. For the basic 
ε-NLMS algorithm, the role of ε  is to prevent the associated 
denominator from getting too close to zero, so as to keep the 
filter from divergence. Since the performance of ε-NLMS is 
affected by the overall step-size parameter, the regularization 
parameter has an effect on convergence properties and the 
excess MSE as well, i.e., a too big ε  may slow down the 
adaptation of the filter in certain applications. 

There are conflicting objectives between fast convergence 
and low excess MSE for NLMS with fixed regularization 
parameter. In the past two decades, many variable step-size 
NLMS (VSS-NMS) algorithms have been proposed to solve 
this dilemma of the conventional NLMS [1-11]. For example, 
Kwong used the power of instantaneous error to introduce a 
variable step-size LMS (VSSLMS) filter [6]. This VSSLMS 
has a larger step size when the error is large, and has a smaller 
step size when the error is small. Later Aboulnasr pointed out 
that VSSLMS algorithm is fairly sensitive to the 
accompanying noise, and presented a modified VSSLMS 
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(MVSS) algorithm to alleviate the influence of uncorrelated 
disturbance [1]. The step-size update of MVSS is adjusted by 
utilizing an estimate of the autocorrelation of errors at 
adjacent time samples. Recently Shin, Sayed, and Song used 
the norm of filter coefficient error vector as a criterion for 
optimal variable step-size, and proposed a variable step-size 
affine projection algorithm (VS-APA), and a variable 
step-size NLMS (VS-NLMS) as well [5, 10]. Lately Benesty 
proposed a non-parametric VSS NLMS algorithm (NPVSS), 
which need not tune many parameters as that of many variable 
step size algorithms [3]. 

Another type of VSS algorithms has time-varying 
regularization parameter that is fixed in the conventional 
ε-NLMS filters. By making the regularization parameter 
gradient-adaptively, Mandic [9] presented a generalized 
normalized gradient descent (GNGD) algorithm. Mandic 
claimed that the GNGD adapts its learning rate according to 
the dynamics of the input signals, and its performance is 
bounded from below by the performance of the NLMS. Very 
recently, Mandic introduced another scheme with hybrid 
filters structure to further improve the steady-state 
misadjustment of the GNGD [8]. Choi, Shin, and Song [4] 
then proposed a robust regularized NLMS (RR-NLMS) filter, 
which uses a normalized gradient to update the regularization 
parameter. While most variable step-size algorithms need to 
tune several parameters for better performance, we presented 
an almost tuning-free generalized square-error-regularized 
NLMS algorithm (GSER) [7] recently. Our GSER exhibits 
very good performance with fast convergence, quick tracking 
and low steady-state MSE. 

The purpose of this paper is to provide a fair comparison 
among these VSS algorithms. In Section II, we summarize the 
algorithms. Section III illustrates the simulation results. 
Conclusions are given in Section IV.  

II. VARIABLE STEP-SIZE ALGORITHMS 
In this section, we summarize several variable step-size 

adaptive filtering algorithms including VSSLMS [6], MVSS 
[1], VS-APA [5, 10], VS-NLMS [5, 10], NPVSS [3], GNGD 
[9], RR-NLMS [4], and GSER algorithm [7]. 

Let ( )d n  be the desired response signal of the adaptive 
filter 

( ) ( ) ( ) ( )x hTd n n n v n= + ,  (1) 
where ( )h n denotes the coefficient vector of the unknown 
system with length M ,  

0 1 1( ) [ ( ), ( ), , ( )]h T
Mn h n h n h n−= … , (2) 

( )x n  is the input vector 
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( ) [ ( ), ( 1), , ( 1)]x Tn x n x n x n M= − − +… , (3) 
and ( )v n  is the system noise that is independent of ( )x n . 

Let the adaptive filter have same structure and same order 
as that of the unknown system. Denoting the coefficient 
vector of the filter at iteration n as ( )w n . We express the a 
priori estimation error as  

( ) ( ) ( ) ( )Te n d n n n= − x w . (4) 

A. VSSLMS algorithm [6] 
Kwong used the squared instantaneous a priori estimation 

error to update the step size as  
2( 1) ( ) ( )n n e nμ αμ γ+ = + , (5) 

where 0 1α< < , 0γ > , and ( 1)nμ +  is restricted in some 
pre-decided min max[ , ]μ μ . The filter coefficient vector update 
recursion is given by 

( 1) ( ) ( ) ( ) ( )w w xn n n e n nμ+ = + . (6) 

B. MVSS algorithm [1] 
Aboulnasr utilized an estimate of the autocorrelation of 
( )e n  at adjacent time samples to update the variable step size 

as  
2( 1) ( ) ( )n n p nμ αμ γ+ = + , (7) 

where 
( ) ( 1) (1 ) ( ) ( 1)p n p n e n e nβ β= − + − − , (8)  

and 0 1β< < . 

C. VS-APA and VS-NLMS [4,10] 
Shin, Sayed, and Song proposed a variable step-size affine 

projection algorithm (VS-APA), which employed an error 
vector, instead of a scalar error as used in VSSLMS [6] and 
MVSS [1], to adjust the variable step size. The coefficient 
vector update recursion is given by 

( 1) ( )w wn n+ = ,  

( ) 1
1( ) ( ) ( ) ( ) ( )X X X eTn n n n I nμ δ

−
+ +   (9) 

where 1δ  is a small positive number, I  is an unit matrix of 
size K K× , ( )X n  is an M K×  input matrix defined as 

( ) [ ( ), ( 1), , ( 1)]X x x xn n n n K= − − +… , (10) 
and  

( ) [ ( ), ( 1), , ( 1)]e Tn e n e n e n K= − − +… . (11) 
The variable step size ( )nμ  is obtained by  

2

max 2
2

( )
( )

( )

p

p

n
n

n
μ μ

δ
=

+
, (12) 

where 2δ  is a positive number proportional to K, max 2μ < , 
and ( )p n  is an 1M ×  vector recursively given by 

( ) ( 1)p pn nβ= − . 

( ) 1
1(1 ) ( ) ( ) ( ) ( )X X X eTn n n I nβ δ

−
+ − + . (13) 

A variable stepsize NLMS (VS-NLMS) was obtained as a 
special case of VS-APA by choosing 1K =  as follows. 

( ) 1
1( ) ( 1) (1 ) ( ) ( ) ( ) ( )p p x x x eTn n n n n nβ β δ

−
= − + − + , (14) 

2

max 2
2

( )
( )

( )

p

p

n
n

n
μ μ

δ
=

+
, (15) 

( ) 1
1( 1) ( ) ( ) ( ) ( ) ( ) ( )w w x x x eTn n n n n n nμ δ

−
+ = + + .  (16) 

D. NPVSS algorithm [3] 
Benesty argued that many variable step-size algorithms may 

not work reliably because they need to set several parameters 
which are not easy to tune in practice, and proposed a 
nonparametric variable step-size NLMS algorithm (NPVSS). 
The filter coefficient vector update recursion is given as that 
of (6), and the variable step size is updated as 

2 2
2

43

1 1 , ˆ ( )ˆ ( )( ) ( )
0,

 
x

v
e v

e
if nnn n

otherwise

σ
σ σσ δμ δ

⎧ ⎛ ⎞
− ≥⎪ ⎜ ⎟+= +⎨ ⎝ ⎠

⎪
⎩

, (17) 

where 3 4,δ δ  are positive numbers, 2
vσ is the power of the 

system noise, and the power of the error signal is estimated as  
2 2 2ˆ ˆ( ) ( 1) (1 ) ( )e en n e nσ βσ β= − + − . (18) 

E. GNGD algorithm [9] 
The GNGD belongs to the family of time-varying 

regularized VSS algorithm. The filter coefficient vector is 
updated as 

2( 1) ( ) ( ) ( )
( ) ( )

w w x
x

cn n e n n
n n

μ

ε
+ = +

+
, (19) 

where cμ is a fixed step size, and the regularization parameter 
( )nε  is recursively calculated as 

2 2

( ) ( 1) ( ) ( 1)
( ) ( 1)

( ( 1) ( 1))
x x

x

T

c
e n e n n n

n n
n n

ε ε ρμ
ε

− −
= − −

− + −
, (20) 

where ρ  is an adaptation parameter needs tuning, and the 
initial value (0)ε  has to be set as well.  

F. RR-NLMS Algorithm [4] 
Choi’s RR-NLMS algorithm is a modified version of 

GNGD. The regularization parameter is updated as  

min

min min

'( ) ( 1) sgn ( ) ( 1) ( ) ( 1)

'( ), '( )
( )

, '( )

Tn n e n e n n n

n if n
n

if n

ε ε ρ

ε ε ε
ε

ε ε ε

x x

    
 

      

⎡ ⎤= − − − −⎣ ⎦
≥⎧

= ⎨ <⎩

, (21) 

where sgn( )x  represents the sign function, and minε  is a 
parameter needs tuning. 

G. GSER Algorithm [7] 
The GSER updates ( )w n  as follows 

2

22

ˆ ( )
( 1) ( ) ( ) ( )

ˆ ( ) ( )
w w x

x
e c

e

n
n n e n n

n n

σ μ

σ θ
+ = +

+
, (22) 

where θ  is a positive parameter that makes the filter more 
general, and the power of the error signal is estimated as that 
of (18). 

III. SIMULATION RESULTS 
In this section, we present the comparison results of several 

experiments of VSSLMS [6], MVSS [1], VS-APA [5, 10], 
VS-NLMS [5, 10], NPVSS [3], GNGD [9], RR-NLMS [4], 
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and GSER algorithm [7]. The adaptive filter is used to 
identify a 128-tap acoustic echo system ( )ho n . We have used 
the normalized squared coefficient error (NSCE) to evaluate 
the performance of the algorithms. The NSCE is defined as 

2

10 2

( ) ( )
( ) 10log

( )

h w

h
o

o

n n
NSCE n

n

−
=  (23) 

We have run extensive simulations. The results are reasonably 
consistent. In this section, we show some simulation results 
with the following parameters setup: 0.99,α β= =  

55 10 ,γ −= × 1 0.1,δ = 4
2 10 ,δ −= 3 20,δ = 3

4 10 ,δ −=
4

min 10 ,ε −= 3
min 10 ,μ −= max 1,μ = 1,cμ = 0.15,ρ =  and 

4K = . We assume the power of system noise, 2
vσ , is 

available for NPVSS algorithm.  

A. Time-Invariant System 
The reference input, ( )x n , is either a zero mean, unit 

variance white Gaussian signal or a second-order AR process. 
The power of the echo system is about 1. An independent 
white Gaussian signal with zero mean and variance 0.001 is 
added to the system output. Figures 1 and 2 are the results of 
white Gaussian signal input and AR process input, 
respectively. The NSCE curves are ensemble averages over 
20 independent runs. As can be seen, VS-NLMS has the worst 
performance. GNGD and RR-NLMS have similar 
convergence speed in the early period, and GNGD exhibits 
very limited performance in later phase while RR-NLMS 
keeps adaptation to a lower NSCE. However, we notice that 
RR-NLMS is out-performed by the rest algorithms in this 
category. VSSLMS and MVSS have the same performance in 
the simulation. VS-APA, NPVSS and GSER are among the 
best group that has fast convergence speed and low NSCE. 

B. Time-Varying System 
Tracking the time-varying system is an important issue in 

adaptive signal processing. We compare RR-NLMS, 
VA-APA, NPVSS and GSER in a scenario that the acoustic 
echo system ( )ho n  is changed to its negative value at sample 
35,000. The additive zero mean white Gaussian noise, ( )v n , 
is either with variance 0.01 or 0.001.  

Figures 3 and 4 are the results of white Gaussian signal 
input with 30-dB signal-to-noise ration (SNR) and 20-dB 
SNR, respectively. All algorithms have fast tracking 
performance. RR-NLMS has worst NSCE. VS-APA achieves 
the lowest NSCE when SNR is 30 dB. However, the NSCE of 
VS-APA is 5 dB worse than that of NPVSS and GSER. 
Notice that VS-APA exhibits slow convergence rate. NPVSS 
has slightly NSCE advantage than that of GSER in 20-dB 
SNR case. It should be noted that NPVSS assume 2

vσ  is 
available in the simulation. 

Figures 5 and 6 are the results of AR process input with 
30-dB SNR and 20-dB SNR, respectively. RR-NLMS has 
worst NSCE and shows slower tracking behavior compare to 
white Gaussian signal input case. VS-APA still has problem 
in low SNR situation: the NSCE of VS-APA is 10 dB worse 
than that of its competing algorithms. GSER has fastest 
tracking and convergence speed in 30-dB SNR case. 

IV. CONCLUSIONS 
Many variable step-size NLMS algorithms have been 

proposed to achieve fast convergence rate, rapid tracking, and 
low misalignment in the past two decades. This paper 
summarized several promising algorithms and presented a 
performance comparison by means of extensive simulation. 
According to the simulation, Benesty’s NPVSS and our 
GSER have the best performance in both time-invariant and 
time-varying systems. 
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Fig. 1, NSCE curves of variable step-size algorithms in time-invariant 

system case. The input is a white Gaussian signal.  
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Fig. 2, NSCE curves of variable step-size algorithms in time-invariant 

system case. The input is an AR process. 
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Fig. 3, NSCE curves of variable step-size algorithms in time-varying system 

case. The input is a white Gaussian signal, and SNR = 30 dB. 
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Fig. 4, NSCE curves of variable step-size algorithms in time-varying system 

case. The input is a white Gaussian signal, and SNR = 20 dB. 
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Fig. 5, NSCE curves of variable step-size algorithms in time-varying system 

case. The input is an AR process, and SNR = 30 dB. 
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Fig. 6, NSCE curves of variable step-size algorithms in time-varying system 

case. The input is an AR process, and SNR = 20 dB. 
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