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Abstract—Most of the methods that generate decision 

trees for a specific problem use examples of data instances 

in the decision tree generation process. This paper proposes 

a method called “RBDT-1”- rule based decision tree -for 

learning a decision tree from a set of decision rules that 

cover the data instances rather than from the data instances 

themselves. RBDT-1 method uses a set of declarative rules as 

an input for generating a decision tree. The method’s goal is 

to create on-demand a short and accurate decision tree from 

a stable or dynamically changing set of rules. We conduct a 

comparative study of RBDT-1 with existing decision tree 

methods based on different problems. The outcome of the 

study shows that in terms of tree complexity (number of 

nodes and leaves in the decision tree) RBDT-1 compares 

favorably to AQDT-1, AQDT-2 which are methods that 

create decision trees from rules. RBDT-1 compares 

favorably also to ID3 while is as effective as C4.5 where both 

(ID3 and C4.5) are famous methods that generate decision 

trees from data examples. Experiments show that the 

classification accuracies of the different decision trees 

produced by the different methods under comparison are 

equal. 

 

Key Words— attribute selection criteria, data-based 

decision tree , decision rules,  rule-based decision tree, 

tree complexity. 

 

I. INTRODUCTION 

Decision Trees are one of the most popular 

classification algorithms used in data mining and 

machine learning to create knowledge structures that 

guide the decision making process. The creation of a 

good knowledge structure is the main step in the 

development of a decision making system.  

The most common methods for creating decision trees are 

those that create decision trees from a set of examples 

(data records). We refer to these methods as data-based 

decision tree methods.  

On the other hand, to our knowledge there are only few 

approaches that create decision trees from rules proposed 

in the literature which we refer to as rule-based decision 

tree methods.  
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There is a major difference between building a decision 

tree from examples and building it from rules. When 

building a decision tree from rules the method assigns 

attributes to the nodes using criteria based on the 

properties of the attributes in the decision rules, rather 

than statistics regarding their coverage of the data 

examples [1].  

A decision tree can be an effective tool for guiding a 

decision process as long as no changes occur in the 

dataset used to create the decision tree. Thus, for the data-

based decision tree methods once there is a significant 

change in the data, restructuring the decision tree 

becomes a desirable task. However, it is difficult to 

manipulate or restructure decision trees. This is because a 

decision tree is a procedural knowledge representation, 

which imposes an evaluation order on the attributes. In 

contrast, rule-based decision tree methods handle 

manipulations in the data through the rules induced from 

the data not the decision tree itself. A declarative 

representation, such as a set of decision rules is much 

easier to modify and adapt to different situations than a 

procedural one. This easiness is due to the absence of 

constraints on the order of evaluating the rules [2].   

On the other hand, in order to be able to make a 

decision for some situation we need to decide the best 

order in which tests should be evaluated in those rules. In 

that case a decision structure (e.g. decision tree) will be 

created from the rules.  

So, rule-based decision tree methods combine the best 

of both worlds. On one hand they easily allow changes to 

the data (when needed) by modifying the rules rather than 

the decision tree itself. On the other hand they take 

advantage of the structure of the decision tree to organize 

the rules in a concise and efficient way required to take 

the best decision. So knowledge can be stored in a 

declarative rule form and then be transformed (on the fly) 

into a decision tree only when needed for a decision 

making situation [2].  

In addition to that, generating a decision structure 

from decision rules can potentially be performed faster 

than generating it from training examples because the 

number of decision rules per decision class is usually 

much smaller than the number of training examples per 

class. Thus, this process could be done on demand 

without any noticeable delay [3], [4]. Data-based decision 

tree methods require examining the complete tree to 

extract information about any single classification. 

Otherwise, with rule-based decision tree methods, 

extracting information about any single classification can 

be done directly from the declarative rules themselves 

[1]. 

Although rule-based decision tree methods create 

decision trees from rules, they could be used also to 

create decision trees from examples by considering each 

example as a rule. Data-based decision tree methods 

create decision trees from data only. Thus, for generating 

a decision tree for problems were rules are provided e.g. 
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by an expert and no data is available, rule-based decision 

tree methods are the only applicable solution. 

This paper presents a new rule-based decision tree 

method called RBDT-1. To generate a decision tree, the 

RBDT-1 method uses in sequence three different criteria 

to determine the fit (best) attribute for each node of the 

tree, referred to as the attribute effectiveness (AE), the 

attribute autonomy (AA), and the minimum value 

distribution (MVD). In this paper, the RBDT-1 method is 

compared to the AQDT-1 and AQDT-2 methods which 

are rule-based decision tree methods, along with the ID3 

and C4.5 which are two of the most famous data-based 

decision tree methods. The attribute selection criteria in 

RBDT-1 method give better results than the other 

methods’ criteria in terms of tree complexity as we show 

empirically using several publicly available datasets.  

The rest of the paper is structured as follows. Section 2 

summarizes the related work. Section 3 presents the rule 

notation and the rule generation method used. Section 4 

describes the RBDT-1 method by presenting, in 

particular, the preparation of the rules into a format that 

will be used by the method, the different criteria of the 

method, the decision tree building process, pruning the 

decision rules and an illustration of the method using a 

small dataset problem. Section 5 presents the results of an 

experiment in which, based on public datasets, the 

proposed method is compared to existing decision tree 

generation methods. In Section 6, we make some 

concluding remarks and outline our future work.  

 

II. RELATED WORK 

There are few published works on creating decision 

structures from declarative rules.  

The AQDT-1 method introduced in [2] is the first 

approach proposed in the literature to create a decision 

tree from decision rules. The AQDT-1 method uses four 

criteria for selecting the fit attribute that will be placed at 

each node of the tree. Those criteria are the cost1, the 

disjointness, the dominance, and the extent, which are 

applied in the same specified order in the method’s 

default setting. 

The AQDT-2 method introduced in [1] is a variant of 

AQDT-1. AQDT-2 uses five criteria in selecting the fit 

attribute for each node of the tree. Those criteria are the 

cost
1
, disjointness, information importance, value 

distribution, and dominance, which are applied in the 

same specified order in the method’s default setting. In 

both the AQDT-1 & 2 methods, the order of each criterion 

expresses its level of importance in deciding which 

attribute will be selected for a node in the decision tree. 

Although both AQDT-1 & 2 are capable of generating a 

decision tree from a set of rules, experiments presented in 

this paper show that our proposed method RBDT-1 

produces a less complex tree in most of the cases. 

Another point is that the calculation of the second 

criterion - the information importance - in AQDT-2 

method depends on the training examples as well as the 

                                                           
1 In the default setting, the cost equals 1 for all the attributes. Thus, 

the disjointness criterion is treated as the first criterion of the AQDT-1 
and AQDT-2 methods in the decision tree building experiments 

throughout this paper. 

 

rules, which contradicts the method’s fundamental idea of 

being a rule-based decision tree method. AQDT-2 

requires both the examples and the rules to calculate the 

information importance at certain nodes where the first 

criterion- Disjointness - is not enough in choosing the fit 

attribute. Thus, without the examples, AQDT-2 might not 

be able to create the decision tree. AQDT-2 being both 

dependent on the examples as well as the rules increases 

the running time of the algorithm remarkably in large 

datasets especially those with large number of attributes. 

In contrast the RBDT-1 method, proposed in this work, 

depends only on the rules induced from the examples, and 

does not require the presence of the examples themselves. 

The calculations of the method’s criteria are based on 

certain characteristics of the attributes intrinsic to the 

rules only. 

Akiba et al. [5] proposed a rule-based decision tree 

method for learning a single decision tree that 

approximates the classification decision of a majority 

voting classifier. Their method was proposed as a 

possible solution to solve the issues of intelligibility, 

classification speed, and required space in majority voting 

classifiers. In their proposed method, if-then rules are 

generated from each classifier (a C4.5 based decision 

tree) and then a single decision tree is learned from these 

rules. Since the final learning result is represented as a 

single decision tree, problems of intelligibility and 

classification speed and storage consumption are 

improved. The procedure that they follow in selecting the 

best attribute at each node of the tree is based on the C4.5 

method which is a data-based decision tree method. The 

input to the proposed method requires both the real 

examples used to create the classifiers (decision trees) 

and the rules extracted from the classifiers, which are 

used to create a set of training examples to be used in the 

method. 

In [6], the authors proposed a method called 

Associative Classification Tree (ACT) for building a 

decision tree from association rules rather than from data. 

They proposed two splitting algorithms for choosing 

attributes in the ACT one based on the confidence gain 

criterion and one based on the entropy gain criterion. The 

attribute selection process at each node in both splitting 

algorithms relies on both the existence of rules and the 

data itself as well. Unlike our proposed method RBDT-1, 

ACT is not capable of building a decision tree from the 

rules in the absence of data, or from data (considering 

them as rules) in the absence of rules. 

III. RULE GENERATION AND NOTATIONS 

In this section, we present the notations used to 

describe the rules used by our method. We also present 

the methods used to generate the rules that will serve as 

input to the rule-based decision tree methods in our 

experiments. 

 

A. Notations 

In order for our proposed method to be capable of 

generating a decision tree for a given dataset, it has to be 

presented with a set of rules that cover the dataset. The 

rules will be used as input to RBDT-1 which will produce 

a decision tree as an output. The rules can either be 

provided up front, for instance, by an expert or can be 

generated algorithmically. 
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Let 1,..., na a denote the attributes characterizing the 

data under consideration, and let 1,..., nD D  denote the 

corresponding domains, respectively (i.e. 
iD  represents 

the set of values for attribute
ia ). Let 

1,..., mc c represent 

the decision classes associated with the dataset.  

The datasets used later in our experiments are based on 

classification problems where each example in the dataset 

belongs to only one class. Thus, a desirable form of a 

rule-set would be a logically disjoint and complete family 

of rule-sets. Thus, given a collection of rule-sets, one for 

each class decision, no two rule-sets for two different 

classes shall logically intersect and the union of all the 

rule-sets shall cover the whole dataset. In such a case, 

each possible example in the dataset will belong to one of 

the predefined classes. So the decision classes induce a 

partition over the complete set of rules. 

 

B. Rule Generation Method 

The RBDT-1 takes rules as input and produces a 

decision tree as output. Thus, to illustrate our approach 

and compare it to existing similar approaches, we use in 

this paper two options for generating a set of disjoint 

rules for each dataset. The first option is based on 

extracting rules from a decision tree generated by the ID3 

and C4.5 methods, where we convert each branch – from 

the root to a leaf – of the decision tree to an if-then rule 

whose condition part is a pure conjunction. This scenario 

will ensure that we will have a collection of disjoint rules. 

We refer to these rules as ID3-based rules and C4.5-

based rules. 

Using ID3-based and C4.5-based rules will give us an 

opportunity to illustrate our method’s capability of 

producing a smaller tree while using the same rules 

extracted from a decision tree generated by a data-based 

decision tree method without reducing the tree’s 

accuracy.   

The second rule generation option consists of using an 

AQ-type rule induction program. AQ-type programs such 

as AQ19 [7], AQ21 [8], are a family of programs for 

machine learning and pattern discovery, which are 

capable of inducing rules from data. In our upcoming 

experiments we use the AQ19 program for creating 

logically disjoint rules which we refer to as AQ-based 

rules.  

IV. RBDT-1 METHOD 

In this section, we describe the RBDT-1 method by first 

outlining the format of the input rules used by the method 

and the attribute selection criteria of the method. Then we 

summarize the main steps of the underlying decision tree 

building process and present the technique used to prune 

the rules. 

 

     A.  Preparing the Rules 

The decision rules must be prepared into the proper 

format used by the RBDT-1 method.  

This is done by assigning a “don’t care” value to all the 

attributes that were omitted in any of the rules. The 

“don’t care” value is equivalent to listing all the values 

for that attribute. For example, suppose that we have 

three attributes 1 2 3,  and a a a with the same domain 

containing 1 2 3,  and v v v  as possible values. 

Let us assume that the following rules correspond to 

class c1: 

r1:c1 � a1=v1 & a2=v2, 

r2: c1 � a1=v3  

The preparation of these two rules will result in the 

following formatted rules: 

r1: c1 � a1=v1 & a2=v2 & a3=”don’t care”, 

r2: c1 � a1=v3 & a2=”don’t care” & a3=”don’t care”  

B.   Attribute Selection Criteria 

The RBDT-1 method applies three criteria on the 

attributes to select the fittest attribute that will be 

assigned to each node of the decision tree. These criteria 

are the Attribute Effectiveness, the Attribute Autonomy, 

and the Minimum Value Distribution.  

 

    Attribute Effectiveness (AE) 

AE is the first criterion to be examined for the 

attributes. It prefers an attribute which has the most 

influence in determining the decision classes. In other 

words, it prefers the attribute that has the least number of 

“don’t care” values for the class decisions in the rules, as 

this indicates its high relevance for discriminating among 

rule sets of given decision classes. On the other hand, an 

attribute which is omitted from all the rules (i.e. has a 

“don’t care” value) for a certain class decision does not 

contribute in producing that corresponding decision.   So 

it is considered less important than the other attributes 

which are mentioned in the rule for producing a decision 

of that class. Choosing attributes based on this criterion 

maximizes the chances of reaching leaf nodes faster 

which on its turn minimizes the branching process and 

leads to producing a smaller tree. 

Using the notation provided above (see section 3), let 

ijV  denote the set of values for attribute ja  involved in 

the rules in iR ,  which denote the set of rules associated 

with decision class ic , 1 i m≤ ≤ . Let DC denote the 

‘don’t care’ value, we calculate ( )i jC DC  as shown in 

(1): 

1
( )

0

ij

i j

if DC V
C DC

otherwise

∈
= 


               (1) 

Given an attribute ja , where1 j n≤ ≤ , the 

corresponding attribute effectiveness is given in (2). 

1

( )

( )

m

i j

i
j

m C DC

AE a
m

=

−
=

∑
                   (2) 

(Where m is the total number of different classes in the 

set of rules).  

The attribute with the highest AE is selected as the fit 

attribute.  

 

    Attribute Autonomy (AA) 

 AA is the second criterion to be examined for the 

attributes. This criterion is examined when the highest AE 

score is obtained by more than one attribute. This 
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criterion prefers the attribute that will decrease the 

number of subsequent nodes required ahead in the branch 

before reaching a leaf node. Thus, it selects the attribute 

that is less dependent on the other attributes in deciding 

on the decision classes. We calculate the attribute 

autonomy for each attribute and the one with the highest 

score will be selected as the fit attribute.  

For the sake of simplicity, let us assume that the set of 

attributes that achieved the highest AE score 

are
1,..., ,  2 nsa a s≤ ≤ . Let 

1
,...,

jj jp
v v denote the set 

of possible values for attribute ja  including the “don’t 

care”, and 
jiR  denote the rule subset consisting of the 

rules that have ja  appearing with the value jiv , where 

1 j s≤ ≤  and1 ji p≤ ≤ . Note that jiR  will include the 

rules that have don’t care values for ja  as well.  

The AA criterion is computed in terms of the Attribute 

Disjointness Score (ADS), which was introduced by [1]. 

For each rule subset
jiR , let MaxADSji denote the 

maximum ADS value and let  ADS_Listji denote a list that 

contains the ADS score for each attribute
ka , 

where1 ,k s k j≤ ≤ ≠ .  

According to [1], given an attribute ja and two 

decision classes ic  and kc  

(where1 , ;1i k m j s≤ ≤ ≤ ≤ ), the degree of 

disjointness between the rule set for 
ic  and the rule set 

for 
jc  with respect to attribute 

ja is defined as shown in 

(3): 

0

1

( , , )  
2 (       ) 

3

if V Vij kj

if V Vij kj
ADS A C Cj i k

if V V or V or Vij ijkj kj

if V Vij kj

⊆

⊇
=

∩ ≠ ∅

∩ =∅









 (3) 

The Attribute Disjointness of the attribute ja ; 

( )jADS a  score is the summation of the degrees of class 

disjointness ( , , )j i kADS a c c given in (4): 

1 1

( ) ( , , ) 
m

j j i k

i k s
i k

ADS a ADS a c c
= ≤ ≤

≠

=∑ ∑  (4) 

Thus, the number of ADS_List that will be created for 

each attribute 
ja  as well as the number of MaxADS 

values that are calculated will be equal to jp . The 

MaxADSji value as defined by [8] is 3 ( 1)m m× × −  

where m is the total number of classes in jiR . We 

introduce the AA as a new criterion for attribute ja  as 

given in (5):  

1

1

( , )
j

j p

j

i

AA (a ) 

AA a i
=

=

∑
     (5) 

Where ( , )jAA a i is defined as shown in (6): 

( )
( )

( )
(6)

0        0

1       

2   

0
: [ ]

1 ( 1) [ ]
1

   if    MaxADSji

    if 

s

AA (a , i)  MaxADS   j ji
l MaxADS   ADS_List lji ji

 

s
 s MaxADS ADS_List l      otherwise ji ji

l , l j

=

= ∨
= ≠ ∧

∃ =

+ − × − ∑
= ≠






    
  

  

      

 

The AA for each of the attributes is calculated using 

the above formula and the attribute with the highest AA 

score is selected as the fit attribute. According to the 

above formula, jAA (a , i) equals zero when the class 

decisions for the rule subset examined corresponds to one 

class, in that case MaxADS=0, which indicates that a leaf 

node is reached (best case for a branch). 

jAA (a , i) equals 1 when s equals 2 or when one of the 

attributes in the ADS_list has an ADS score equal to 

MaxADS value (second best case). The second best case 

indicates that only one extra node will be required to 

reach a leaf node. Otherwise jAA (a , i)will be equal to 

1 + (the difference between the ADS scores of the 

attributes in the ADS_list and the MaxADS value) which 

indicates that more than one node will be required until 

reaching a leaf node.  

 

   Minimum Value Distribution (MVD) 

 The MVD criterion is concerned with the number of 

values that an attribute has in the current rules. When the 

highest AA score is obtained by more than one attribute, 

this criterion selects the attribute with the minimum 

number of values in the current rules. MVD criterion 

minimizes the size of the tree because the fewer the 

number of values of the attributes the fewer the number 

of branches involved and consequently the smaller the 

tree will become [1]. For the sake of simplicity, let us 

assume that the set of attributes that achieved the highest 

AA score are 1,..., ,  2 q sqa a ≤ ≤ . Given an attribute ja  

(where1 j q≤ ≤ ), we compute corresponding MVD 

value as shown in (7). 

 

1

( ) | |j ij

i m

MVD A V
≤ ≤

= ∪          (7) 

(Where |X| denote the cardinality of set X). 

 

When the lowest MVD score is obtained by more than 

one attribute, any of these attributes can be selected 

randomly as the fit attribute. In our experiments in case 
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where more than two attributes have the lowest MVD 

score we take the first attribute. 

 

 

     C.  Building the decision tree 

In the decision tree building process, we select the fit 

attribute that will be assigned to each node from the 

current set of rules CR based on the attribute selection 

criteria outlined in the previous section. CR is a subset of 

the decision rules that satisfy the combination of attribute 

values assigned to the path from the root to the current 

node. CR will correspond to the whole set of rules at the 

root node. 

From each node a number of branches are pulled out 

according to the total number of values available for the 

corresponding attribute in CR.  

Each branch is associated with a reduced set of rules 

RR which is a subset of CR that satisfies the value of the 

corresponding attribute.  If RR is empty, then a single 

node will be returned with the value of the most frequent 

class found in the whole set of rules. Otherwise, if all the 

rules in RR assigned to the branch belong to the same 

decision class, a leaf node will be created and assigned a 

value of that decision class. The process continues until 

each branch from the root node is terminated with a leaf 

node and no more further branching is required. 

    D.   Pruning Decision Rules 

RBDT-1 is capable of handling the problem of 

generating a decision tree from noisy training data. In 

RBDT-1, we handle noisy data by removing rules that 

cover only a small portion of the data that could be 

considered noise [9]. The examples that were covered by 

the truncated rules can often be covered by applying an 

analogical matching procedure. The analogical matching 

procedure determines the degree of similarity between the 

examples to be classified and the rules of a given decision 

class, and selects the best matching decision class [10]. In 

[11] experiments show that such a rule truncation method 

not only simplifies decision rules which could lead to a 

simpler decision tree, but could also improve their 

prediction accuracy in some cases.  

In RBDT-1, rules are pruned if their support level is 

less than or equal to a predefined threshold. The support 

level of a rule is the percentage of the total number of 

examples covered by the rule (called the t-weight) to the 

total number of examples in the given decision class. 

  
 

Table 1. The weekend rule set induced by AQ19. 

Rule# Description 

1: 
Cinema � Parents-visiting=”yes” & weather 

=”don’t care” & Money =”rich” 

2: 
Tennis � Parents-visiting=”no” & weather 

=”sunny” & Money =”don’t care” 

3: 
Shopping � Parents-visiting=”no” & weather 

=”windy” & Money =”rich” 

4: 
Cinema � Parents-visiting=”no” & weather 

=”windy” & Money =”poor” 

5: 
Stay-in � Parents-visiting=”no” & weather 

=”rainy” & Money =”poor” 

 

V. ILLUSTRATION OF THE RBDT-1 METHOD 

In this section the RBDT-1 method is illustrated by a 

dataset named the weekend problem which is a publicly 

available dataset.  

 

 

    A.  Illustration  

The Weekend problem is a dataset that consists of 10 

data records obtained from [12]. For this example, we 

used the AQ19 rule induction program to induce the rule 

set shown in Table 1 which will serve as the input to our 

proposed method RBDT-1. AQ19 was used with the mode 

of generating disjoint rules and with producing a 

complete set of rules without truncating any of the rules. 

The corresponding decision tree created by the 

proposed RBDT-1 method for the weekend problem is 

shown in Figure 1. It consists of 3 nodes and 5 leaves 

with 100% classification accuracy for the data.  

 

 
 

Figure 1. The decision tree generated by RBDT-1 for the 

weekend problem. 

 

   B.   Tree Comparison 

In this subsection, we present the decision trees 

generated by the AQDT-1, AQDT-2, ID3 and C4.5 

methods for the weekend problem, and compare the 

outcome trees with that obtained by the RBDT-1 method 

outlined in the previous section.  

 

 
Figure 2. The decision tree generated by AQDT-1, AQDT-2 & 

ID3 for the weekend problem. 
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Figure 2 depicts the tree created by AQDT-1 & 2 and 

the ID3 methods consisting of 5 nodes and 7 leaves, 

which is bigger than the decision tree created by the 

RBDT-1 method. Both trees have the same classification 

accuracy as RBDT-1. 

As indicated in subsection 4.4, in RBDT-1, rules are 

pruned if their support level is less than or equal to a 

predefined threshold. Figure 3 presents a decision tree 

obtained after pruning the decision rules for the weekend 

problem in Table 1. In this case, we removed rules with 

the lowest support level. The produced decision tree by 

RBDT-1 misclassified one example out of 10 giving a 

predictive accuracy of 90% and consists of 2 nodes and 4 

leaves. 

Figure 4 depicts the decision tree produced by AQDT-1 

& 2 using the same pruned rules; although the produced 

tree has the same accuracy as the tree produced with 

RBDT-1, it is bigger in size since it has 4 nodes and 6 

leaves. When applying C4.5 to the dataset of the weekend 

problem it resulted in a tree of the same size and accuracy 

as RBDT-1 depicted in Figure 3. 

 

 
 

Figure 3. The pruned decision tree generated by RBDT-1 
for the weekend problem. 

 

 

 
 

Figure 4. The pruned decision tree generated by AQDT-1, 
AQDT-2 for the weekend problem. 

 
Due to space limitations, we are unable to include here 

all of our work. We refer the reader to our extended 

technical report on RBDT-1 [13] for more details on the 

decision tree generation and discussion on tree sizes. 

 

VI. EXPERIMENTS 

In this section, we present an evaluation of our 

proposed method by comparing it with the AQDT-1 & 2, 

the ID3 and the C4.5 methods based on 16 public 

datasets. Our evaluation consisted of comparing the 

decision trees produced by the methods for each dataset 

in terms of tree complexity (number of nodes and leaves) 

and accuracy. Other than the weekend dataset, all the 

datasets were obtained from the UCI machine learning 

repository [14].  

We conducted two experiments for comparing RBDT-1 

with AQDT-1 &2 and the ID3; the results of these 

experiments are summarized in Tables 2 and 3. The 

results in Table 2 are based on comparing the methods 

using ID3-based rules as input for the rule-based 

methods. The ID3-based rules were extracted from the 

decision tree generated by the ID3 method from the 

whole set of examples of each dataset used. Thus, they 

cover the whole set of examples (100% coverage). The 

size of the extracted ID3-based rules is equal to the 

number of leaves in the ID3 tree. 

In Table 3, the experiment was conducted using AQ-

based rules. We used AQ-based rules generated by the 

AQ19 rule induction program with 100% correct 

recognition on the datasets used as input for the rule-

based methods under comparison. No pruning is applied 

by any method in both comparisons presented in Table 2 

and 3. 

In the following tables, the name of the method that 

produced a less complex tree appears in the table in the 

method column; the “=” symbol indicates that the same 

tree was obtained by all methods under comparison. All 

four methods run under the assumption that they will 

produce a complete and consistent decision tree yielding 

100% correct recognition on the training examples. 

 
Table 2. Comparison of tree complexities of the RBDT-1, 

AQDT-1, AQDT-2 & ID3 methods using ID3-based rules. 

Dataset Method Dataset Method 

Weekend RBDT-1 MONK’s 1 RBDT-1 

Lenses RBDT-1, ID3 MONK’s 2 
RBDT-1, 

AQDT-1 & 2 

Chess = MONK’s 3 = 

Car RBDT-1, ID3 Zoo = 

Shuttle-L-C = Nursery RBDT-1 

Connect-4 RBDT-1 Balance RBDT-1, ID3 

 

For 7 of the datasets listed in Table 2, the RBDT-1 

produced a smaller tree than that produced by AQDT-1 & 

2 with an average of 274 nodes less while producing a 

same tree for the rest of the datasets. On the other hand, 

RBDT-1 produced a smaller tree with 5 of these datasets 

compared to ID3 with an average of 142.6 nodes less 

while producing a same tree for the rest of the datasets. 

The decision tree classification accuracies of all four 

methods were equal. 

Based on the results of the comparison in Table 3, the 

RBDT-1 method performed better than the AQDT-1 & 2 

and the ID3 methods in most cases in terms of tree 

complexity by an average of 33.1 nodes less than AQDT-

1 & 2 and by an average of 88.5 nodes less than the ID3 

method. The decision tree classification accuracies of all 

four methods were equal. 

 

 

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009



 

Table 3. Comparison of tree complexities of the RBDT-1, 

AQDT-1, AQDT-2 & ID3 methods using AQ-based rules. 

Dataset Method Dataset Method 

Weekend RBDT-1 Monk’s2 RBDT-1 

lenses RBDT-1, ID3 Monk’s3 = 

Zoo RBDT-1 Chess = 

Car RBDT-1 Balance RBDT-1, ID3 

Monk’s1 RBDT-1 Shuttle-L-C 
RBDT-1, 

AQDT-1 & 2 

 

We conducted another experiment comparing RBDT-1 

to AQDT-1 & 2 and C4.5 using C4.5-based rules. The 

C4.5-based rules were extracted from decision trees built 

by C4.5 method using its default parameters, in the 

Orange implementation [15] with the prune option turned 

“on”. 

 
Table. 4. Comparison of tree complexities of the RBDT-1, 

AQDT-1, AQDT-2 & C4.5 using C4.5-based rules. 
Dataset Method Dataset Method 

Weekend RBDT-1, C4.5 MONK’s 1 = 

Lenses RBDT-1, C4.5 MONK’s 2 = 

Chess = MONK’s 3 AQDT-1 & 2 

Car RBDT-1, C4.5 Zoo RBDT-1, C4.5 

Shuttle-L-C = Breast-C = 

Connect-4 RBDT-1, C4.5 Lung-C RBDT-1, C4.5 

Nursery = Primary-T RBDT-1, C4.5 

Balance = Voting = 

 

The results are summarized in Table 4. The outcome of 

the comparison is that in terms of tree size, our proposed 

method RBDT-1 performs better than AQDT-1 & 2 in 

most of the rule sets. AQDT-1 & 2 produce a larger tree 

by an average of 105 nodes with the exception for the 

Monk’s3 problem the RBDT-1 tree was only 2 nodes 

bigger. In addition, the results illustrate that RBDT-1 is as 

effective as C4.5. In terms of decision tree accuracy, the 

four methods have equal performance. 

 

VII. CONCLUSIONS AND FUTURE WORK 

The RBDT-1 method proposed in this work allows 

generating a decision tree from a set of rules rather than 

from the whole set of examples. Following this 

methodology, knowledge can be stored in a declarative 

rule form and transformed into a decision structure when 

it is needed for decision making. Generating a decision 

structure from decision rules can potentially be 

performed much faster than by generating it from 

training examples.  

In our experiments, our proposed method was 

compared to two other rule-based decision tree methods; 

AQDT-1 and AQDT-2 using ID3-based rules and AQ-

based rules. RBDT-1 was also compared to the ID3 and 

C4.5 methods which are data-based decision tree 

methods. Based on the results of the comparison the 

RBDT-1 method performs better than the other three 

methods under comparison in most cases in terms of tree 

complexity and achieves at least the same level of 

accuracy. It appears also that RBDT-1 performs equally 

well as C4.5. 

In our future work we will conduct more experiments 

using rule sets produced by different methods of rule 

generation. We will also extend our method to address the 

problem of learning from rules that do not logically 

intersect. 
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