

Converting Declarative Rules into Decision Trees

Amany Abdelhalim, Issa Traore

Abstract—Most of the methods that generate decision

trees for a specific problem use examples of data instances

in the decision tree generation process. This paper proposes

a method called “RBDT-1”- rule based decision tree -for

learning a decision tree from a set of decision rules that

cover the data instances rather than from the data instances

themselves. RBDT-1 method uses a set of declarative rules as

an input for generating a decision tree. The method’s goal is

to create on-demand a short and accurate decision tree from

a stable or dynamically changing set of rules. We conduct a

comparative study of RBDT-1 with existing decision tree

methods based on different problems. The outcome of the

study shows that in terms of tree complexity (number of

nodes and leaves in the decision tree) RBDT-1 compares

favorably to AQDT-1, AQDT-2 which are methods that

create decision trees from rules. RBDT-1 compares

favorably also to ID3 while is as effective as C4.5 where both

(ID3 and C4.5) are famous methods that generate decision

trees from data examples. Experiments show that the

classification accuracies of the different decision trees

produced by the different methods under comparison are

equal.

Key Words— attribute selection criteria, data-based

decision tree , decision rules, rule-based decision tree,

tree complexity.

I. INTRODUCTION

Decision Trees are one of the most popular

classification algorithms used in data mining and

machine learning to create knowledge structures that

guide the decision making process. The creation of a

good knowledge structure is the main step in the

development of a decision making system.

The most common methods for creating decision trees are

those that create decision trees from a set of examples

(data records). We refer to these methods as data-based

decision tree methods.

On the other hand, to our knowledge there are only few

approaches that create decision trees from rules proposed

in the literature which we refer to as rule-based decision

tree methods.

Manuscript received July 23, 2009. A. Abdelhalim is a PHD student

in the Electrical and Computer Engineering Department, University of

Victoria, P.O.Box 3055 STN CSC,Victoria, B.C., V8W 3P6, Canada,

phone: (250) 721-6036, fax:(250)721-6052, e-mail: amany@ece.uvic.ca

I. Traore is an Associate Professor and the Coordinator of the

Information Security and Object Technology (ISOT) Lab, University of

Victoria, Department of Electrical and Computer Engineering.,

phone:(250)721-8697;fax:(250)721-6052;e-mail: itraore@ece.uvic.ca.

There is a major difference between building a decision

tree from examples and building it from rules. When

building a decision tree from rules the method assigns

attributes to the nodes using criteria based on the

properties of the attributes in the decision rules, rather

than statistics regarding their coverage of the data

examples [1].

A decision tree can be an effective tool for guiding a

decision process as long as no changes occur in the

dataset used to create the decision tree. Thus, for the data-

based decision tree methods once there is a significant

change in the data, restructuring the decision tree

becomes a desirable task. However, it is difficult to

manipulate or restructure decision trees. This is because a

decision tree is a procedural knowledge representation,

which imposes an evaluation order on the attributes. In

contrast, rule-based decision tree methods handle

manipulations in the data through the rules induced from

the data not the decision tree itself. A declarative

representation, such as a set of decision rules is much

easier to modify and adapt to different situations than a

procedural one. This easiness is due to the absence of

constraints on the order of evaluating the rules [2].

On the other hand, in order to be able to make a

decision for some situation we need to decide the best

order in which tests should be evaluated in those rules. In

that case a decision structure (e.g. decision tree) will be

created from the rules.

So, rule-based decision tree methods combine the best

of both worlds. On one hand they easily allow changes to

the data (when needed) by modifying the rules rather than

the decision tree itself. On the other hand they take

advantage of the structure of the decision tree to organize

the rules in a concise and efficient way required to take

the best decision. So knowledge can be stored in a

declarative rule form and then be transformed (on the fly)

into a decision tree only when needed for a decision

making situation [2].

In addition to that, generating a decision structure

from decision rules can potentially be performed faster

than generating it from training examples because the

number of decision rules per decision class is usually

much smaller than the number of training examples per

class. Thus, this process could be done on demand

without any noticeable delay [3], [4]. Data-based decision

tree methods require examining the complete tree to

extract information about any single classification.

Otherwise, with rule-based decision tree methods,

extracting information about any single classification can

be done directly from the declarative rules themselves

[1].

Although rule-based decision tree methods create

decision trees from rules, they could be used also to

create decision trees from examples by considering each

example as a rule. Data-based decision tree methods

create decision trees from data only. Thus, for generating

a decision tree for problems were rules are provided e.g.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

by an expert and no data is available, rule-based decision

tree methods are the only applicable solution.

This paper presents a new rule-based decision tree

method called RBDT-1. To generate a decision tree, the

RBDT-1 method uses in sequence three different criteria

to determine the fit (best) attribute for each node of the

tree, referred to as the attribute effectiveness (AE), the

attribute autonomy (AA), and the minimum value

distribution (MVD). In this paper, the RBDT-1 method is

compared to the AQDT-1 and AQDT-2 methods which

are rule-based decision tree methods, along with the ID3

and C4.5 which are two of the most famous data-based

decision tree methods. The attribute selection criteria in

RBDT-1 method give better results than the other

methods’ criteria in terms of tree complexity as we show

empirically using several publicly available datasets.

The rest of the paper is structured as follows. Section 2

summarizes the related work. Section 3 presents the rule

notation and the rule generation method used. Section 4

describes the RBDT-1 method by presenting, in

particular, the preparation of the rules into a format that

will be used by the method, the different criteria of the

method, the decision tree building process, pruning the

decision rules and an illustration of the method using a

small dataset problem. Section 5 presents the results of an

experiment in which, based on public datasets, the

proposed method is compared to existing decision tree

generation methods. In Section 6, we make some

concluding remarks and outline our future work.

II. RELATED WORK

There are few published works on creating decision

structures from declarative rules.

The AQDT-1 method introduced in [2] is the first

approach proposed in the literature to create a decision

tree from decision rules. The AQDT-1 method uses four

criteria for selecting the fit attribute that will be placed at

each node of the tree. Those criteria are the cost1, the

disjointness, the dominance, and the extent, which are

applied in the same specified order in the method’s

default setting.

The AQDT-2 method introduced in [1] is a variant of

AQDT-1. AQDT-2 uses five criteria in selecting the fit

attribute for each node of the tree. Those criteria are the

cost
1
, disjointness, information importance, value

distribution, and dominance, which are applied in the

same specified order in the method’s default setting. In

both the AQDT-1 & 2 methods, the order of each criterion

expresses its level of importance in deciding which

attribute will be selected for a node in the decision tree.

Although both AQDT-1 & 2 are capable of generating a

decision tree from a set of rules, experiments presented in

this paper show that our proposed method RBDT-1

produces a less complex tree in most of the cases.

Another point is that the calculation of the second

criterion - the information importance - in AQDT-2

method depends on the training examples as well as the

1 In the default setting, the cost equals 1 for all the attributes. Thus,

the disjointness criterion is treated as the first criterion of the AQDT-1
and AQDT-2 methods in the decision tree building experiments

throughout this paper.

rules, which contradicts the method’s fundamental idea of

being a rule-based decision tree method. AQDT-2

requires both the examples and the rules to calculate the

information importance at certain nodes where the first

criterion- Disjointness - is not enough in choosing the fit

attribute. Thus, without the examples, AQDT-2 might not

be able to create the decision tree. AQDT-2 being both

dependent on the examples as well as the rules increases

the running time of the algorithm remarkably in large

datasets especially those with large number of attributes.

In contrast the RBDT-1 method, proposed in this work,

depends only on the rules induced from the examples, and

does not require the presence of the examples themselves.

The calculations of the method’s criteria are based on

certain characteristics of the attributes intrinsic to the

rules only.

Akiba et al. [5] proposed a rule-based decision tree

method for learning a single decision tree that

approximates the classification decision of a majority

voting classifier. Their method was proposed as a

possible solution to solve the issues of intelligibility,

classification speed, and required space in majority voting

classifiers. In their proposed method, if-then rules are

generated from each classifier (a C4.5 based decision

tree) and then a single decision tree is learned from these

rules. Since the final learning result is represented as a

single decision tree, problems of intelligibility and

classification speed and storage consumption are

improved. The procedure that they follow in selecting the

best attribute at each node of the tree is based on the C4.5

method which is a data-based decision tree method. The

input to the proposed method requires both the real

examples used to create the classifiers (decision trees)

and the rules extracted from the classifiers, which are

used to create a set of training examples to be used in the

method.

In [6], the authors proposed a method called

Associative Classification Tree (ACT) for building a

decision tree from association rules rather than from data.

They proposed two splitting algorithms for choosing

attributes in the ACT one based on the confidence gain

criterion and one based on the entropy gain criterion. The

attribute selection process at each node in both splitting

algorithms relies on both the existence of rules and the

data itself as well. Unlike our proposed method RBDT-1,

ACT is not capable of building a decision tree from the

rules in the absence of data, or from data (considering

them as rules) in the absence of rules.

III. RULE GENERATION AND NOTATIONS

In this section, we present the notations used to

describe the rules used by our method. We also present

the methods used to generate the rules that will serve as

input to the rule-based decision tree methods in our

experiments.

A. Notations

In order for our proposed method to be capable of

generating a decision tree for a given dataset, it has to be

presented with a set of rules that cover the dataset. The

rules will be used as input to RBDT-1 which will produce

a decision tree as an output. The rules can either be

provided up front, for instance, by an expert or can be

generated algorithmically.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

Let 1,..., na a denote the attributes characterizing the

data under consideration, and let 1,..., nD D denote the

corresponding domains, respectively (i.e.
iD represents

the set of values for attribute
ia). Let

1,..., mc c represent

the decision classes associated with the dataset.

The datasets used later in our experiments are based on

classification problems where each example in the dataset

belongs to only one class. Thus, a desirable form of a

rule-set would be a logically disjoint and complete family

of rule-sets. Thus, given a collection of rule-sets, one for

each class decision, no two rule-sets for two different

classes shall logically intersect and the union of all the

rule-sets shall cover the whole dataset. In such a case,

each possible example in the dataset will belong to one of

the predefined classes. So the decision classes induce a

partition over the complete set of rules.

B. Rule Generation Method

The RBDT-1 takes rules as input and produces a

decision tree as output. Thus, to illustrate our approach

and compare it to existing similar approaches, we use in

this paper two options for generating a set of disjoint

rules for each dataset. The first option is based on

extracting rules from a decision tree generated by the ID3

and C4.5 methods, where we convert each branch – from

the root to a leaf – of the decision tree to an if-then rule

whose condition part is a pure conjunction. This scenario

will ensure that we will have a collection of disjoint rules.

We refer to these rules as ID3-based rules and C4.5-

based rules.

Using ID3-based and C4.5-based rules will give us an

opportunity to illustrate our method’s capability of

producing a smaller tree while using the same rules

extracted from a decision tree generated by a data-based

decision tree method without reducing the tree’s

accuracy.

The second rule generation option consists of using an

AQ-type rule induction program. AQ-type programs such

as AQ19 [7], AQ21 [8], are a family of programs for

machine learning and pattern discovery, which are

capable of inducing rules from data. In our upcoming

experiments we use the AQ19 program for creating

logically disjoint rules which we refer to as AQ-based

rules.

IV. RBDT-1 METHOD

In this section, we describe the RBDT-1 method by first

outlining the format of the input rules used by the method

and the attribute selection criteria of the method. Then we

summarize the main steps of the underlying decision tree

building process and present the technique used to prune

the rules.

 A. Preparing the Rules

The decision rules must be prepared into the proper

format used by the RBDT-1 method.

This is done by assigning a “don’t care” value to all the

attributes that were omitted in any of the rules. The

“don’t care” value is equivalent to listing all the values

for that attribute. For example, suppose that we have

three attributes 1 2 3, and a a a with the same domain

containing 1 2 3, and v v v as possible values.

Let us assume that the following rules correspond to

class c1:

r1:c1 � a1=v1 & a2=v2,

r2: c1 � a1=v3

The preparation of these two rules will result in the

following formatted rules:

r1: c1 � a1=v1 & a2=v2 & a3=”don’t care”,

r2: c1 � a1=v3 & a2=”don’t care” & a3=”don’t care”

B. Attribute Selection Criteria

The RBDT-1 method applies three criteria on the

attributes to select the fittest attribute that will be

assigned to each node of the decision tree. These criteria

are the Attribute Effectiveness, the Attribute Autonomy,

and the Minimum Value Distribution.

 Attribute Effectiveness (AE)

AE is the first criterion to be examined for the

attributes. It prefers an attribute which has the most

influence in determining the decision classes. In other

words, it prefers the attribute that has the least number of

“don’t care” values for the class decisions in the rules, as

this indicates its high relevance for discriminating among

rule sets of given decision classes. On the other hand, an

attribute which is omitted from all the rules (i.e. has a

“don’t care” value) for a certain class decision does not

contribute in producing that corresponding decision. So

it is considered less important than the other attributes

which are mentioned in the rule for producing a decision

of that class. Choosing attributes based on this criterion

maximizes the chances of reaching leaf nodes faster

which on its turn minimizes the branching process and

leads to producing a smaller tree.

Using the notation provided above (see section 3), let

ijV denote the set of values for attribute ja involved in

the rules in iR , which denote the set of rules associated

with decision class ic , 1 i m≤ ≤ . Let DC denote the

‘don’t care’ value, we calculate ()i jC DC as shown in

(1):

1
()

0

ij

i j

if DC V
C DC

otherwise

∈
=

 (1)

Given an attribute ja , where1 j n≤ ≤ , the

corresponding attribute effectiveness is given in (2).

1

()

()

m

i j

i
j

m C DC

AE a
m

=

−
=

∑
 (2)

(Where m is the total number of different classes in the

set of rules).

The attribute with the highest AE is selected as the fit

attribute.

 Attribute Autonomy (AA)

 AA is the second criterion to be examined for the

attributes. This criterion is examined when the highest AE

score is obtained by more than one attribute. This

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

criterion prefers the attribute that will decrease the

number of subsequent nodes required ahead in the branch

before reaching a leaf node. Thus, it selects the attribute

that is less dependent on the other attributes in deciding

on the decision classes. We calculate the attribute

autonomy for each attribute and the one with the highest

score will be selected as the fit attribute.

For the sake of simplicity, let us assume that the set of

attributes that achieved the highest AE score

are
1,..., , 2 nsa a s≤ ≤ . Let

1
,...,

jj jp
v v denote the set

of possible values for attribute ja including the “don’t

care”, and
jiR denote the rule subset consisting of the

rules that have ja appearing with the value jiv , where

1 j s≤ ≤ and1 ji p≤ ≤ . Note that jiR will include the

rules that have don’t care values for ja as well.

The AA criterion is computed in terms of the Attribute

Disjointness Score (ADS), which was introduced by [1].

For each rule subset
jiR , let MaxADSji denote the

maximum ADS value and let ADS_Listji denote a list that

contains the ADS score for each attribute
ka ,

where1 ,k s k j≤ ≤ ≠ .

According to [1], given an attribute ja and two

decision classes ic and kc

(where1 , ;1i k m j s≤ ≤ ≤ ≤), the degree of

disjointness between the rule set for
ic and the rule set

for
jc with respect to attribute

ja is defined as shown in

(3):

0

1

(, ,)
2 ()

3

if V Vij kj

if V Vij kj
ADS A C Cj i k

if V V or V or Vij ijkj kj

if V Vij kj

⊆

⊇
=

∩ ≠ ∅

∩ =∅

 (3)

The Attribute Disjointness of the attribute ja ;

()jADS a score is the summation of the degrees of class

disjointness (, ,)j i kADS a c c given in (4):

1 1

() (, ,)
m

j j i k

i k s
i k

ADS a ADS a c c
= ≤ ≤

≠

=∑ ∑ (4)

Thus, the number of ADS_List that will be created for

each attribute
ja as well as the number of MaxADS

values that are calculated will be equal to jp . The

MaxADSji value as defined by [8] is 3 (1)m m× × −

where m is the total number of classes in jiR . We

introduce the AA as a new criterion for attribute ja as

given in (5):

1

1

(,)
j

j p

j

i

AA (a)

AA a i
=

=

∑
 (5)

Where (,)jAA a i is defined as shown in (6):

()
()

()
(6)

0 0

1

2

0
: []

1 (1) []
1

 if MaxADSji

 if

s

AA (a , i) MaxADS j ji
l MaxADS ADS_List lji ji

s
 s MaxADS ADS_List l otherwise ji ji

l , l j

=

= ∨
= ≠ ∧

∃ =

+ − × − ∑
= ≠

The AA for each of the attributes is calculated using

the above formula and the attribute with the highest AA

score is selected as the fit attribute. According to the

above formula, jAA (a , i) equals zero when the class

decisions for the rule subset examined corresponds to one

class, in that case MaxADS=0, which indicates that a leaf

node is reached (best case for a branch).

jAA (a , i) equals 1 when s equals 2 or when one of the

attributes in the ADS_list has an ADS score equal to

MaxADS value (second best case). The second best case

indicates that only one extra node will be required to

reach a leaf node. Otherwise jAA (a , i)will be equal to

1 + (the difference between the ADS scores of the

attributes in the ADS_list and the MaxADS value) which

indicates that more than one node will be required until

reaching a leaf node.

 Minimum Value Distribution (MVD)

 The MVD criterion is concerned with the number of

values that an attribute has in the current rules. When the

highest AA score is obtained by more than one attribute,

this criterion selects the attribute with the minimum

number of values in the current rules. MVD criterion

minimizes the size of the tree because the fewer the

number of values of the attributes the fewer the number

of branches involved and consequently the smaller the

tree will become [1]. For the sake of simplicity, let us

assume that the set of attributes that achieved the highest

AA score are 1,..., , 2 q sqa a ≤ ≤ . Given an attribute ja

(where1 j q≤ ≤), we compute corresponding MVD

value as shown in (7).

1

() | |j ij

i m

MVD A V
≤ ≤

= ∪ (7)

(Where |X| denote the cardinality of set X).

When the lowest MVD score is obtained by more than

one attribute, any of these attributes can be selected

randomly as the fit attribute. In our experiments in case

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

where more than two attributes have the lowest MVD

score we take the first attribute.

 C. Building the decision tree

In the decision tree building process, we select the fit

attribute that will be assigned to each node from the

current set of rules CR based on the attribute selection

criteria outlined in the previous section. CR is a subset of

the decision rules that satisfy the combination of attribute

values assigned to the path from the root to the current

node. CR will correspond to the whole set of rules at the

root node.

From each node a number of branches are pulled out

according to the total number of values available for the

corresponding attribute in CR.

Each branch is associated with a reduced set of rules

RR which is a subset of CR that satisfies the value of the

corresponding attribute. If RR is empty, then a single

node will be returned with the value of the most frequent

class found in the whole set of rules. Otherwise, if all the

rules in RR assigned to the branch belong to the same

decision class, a leaf node will be created and assigned a

value of that decision class. The process continues until

each branch from the root node is terminated with a leaf

node and no more further branching is required.

 D. Pruning Decision Rules

RBDT-1 is capable of handling the problem of

generating a decision tree from noisy training data. In

RBDT-1, we handle noisy data by removing rules that

cover only a small portion of the data that could be

considered noise [9]. The examples that were covered by

the truncated rules can often be covered by applying an

analogical matching procedure. The analogical matching

procedure determines the degree of similarity between the

examples to be classified and the rules of a given decision

class, and selects the best matching decision class [10]. In

[11] experiments show that such a rule truncation method

not only simplifies decision rules which could lead to a

simpler decision tree, but could also improve their

prediction accuracy in some cases.

In RBDT-1, rules are pruned if their support level is

less than or equal to a predefined threshold. The support

level of a rule is the percentage of the total number of

examples covered by the rule (called the t-weight) to the

total number of examples in the given decision class.

Table 1. The weekend rule set induced by AQ19.

Rule# Description

1:
Cinema � Parents-visiting=”yes” & weather

=”don’t care” & Money =”rich”

2:
Tennis � Parents-visiting=”no” & weather

=”sunny” & Money =”don’t care”

3:
Shopping � Parents-visiting=”no” & weather

=”windy” & Money =”rich”

4:
Cinema � Parents-visiting=”no” & weather

=”windy” & Money =”poor”

5:
Stay-in � Parents-visiting=”no” & weather

=”rainy” & Money =”poor”

V. ILLUSTRATION OF THE RBDT-1 METHOD

In this section the RBDT-1 method is illustrated by a

dataset named the weekend problem which is a publicly

available dataset.

 A. Illustration

The Weekend problem is a dataset that consists of 10

data records obtained from [12]. For this example, we

used the AQ19 rule induction program to induce the rule

set shown in Table 1 which will serve as the input to our

proposed method RBDT-1. AQ19 was used with the mode

of generating disjoint rules and with producing a

complete set of rules without truncating any of the rules.

The corresponding decision tree created by the

proposed RBDT-1 method for the weekend problem is

shown in Figure 1. It consists of 3 nodes and 5 leaves

with 100% classification accuracy for the data.

Figure 1. The decision tree generated by RBDT-1 for the

weekend problem.

 B. Tree Comparison

In this subsection, we present the decision trees

generated by the AQDT-1, AQDT-2, ID3 and C4.5

methods for the weekend problem, and compare the

outcome trees with that obtained by the RBDT-1 method

outlined in the previous section.

Figure 2. The decision tree generated by AQDT-1, AQDT-2 &

ID3 for the weekend problem.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

Figure 2 depicts the tree created by AQDT-1 & 2 and

the ID3 methods consisting of 5 nodes and 7 leaves,

which is bigger than the decision tree created by the

RBDT-1 method. Both trees have the same classification

accuracy as RBDT-1.

As indicated in subsection 4.4, in RBDT-1, rules are

pruned if their support level is less than or equal to a

predefined threshold. Figure 3 presents a decision tree

obtained after pruning the decision rules for the weekend

problem in Table 1. In this case, we removed rules with

the lowest support level. The produced decision tree by

RBDT-1 misclassified one example out of 10 giving a

predictive accuracy of 90% and consists of 2 nodes and 4

leaves.

Figure 4 depicts the decision tree produced by AQDT-1

& 2 using the same pruned rules; although the produced

tree has the same accuracy as the tree produced with

RBDT-1, it is bigger in size since it has 4 nodes and 6

leaves. When applying C4.5 to the dataset of the weekend

problem it resulted in a tree of the same size and accuracy

as RBDT-1 depicted in Figure 3.

Figure 3. The pruned decision tree generated by RBDT-1
for the weekend problem.

Figure 4. The pruned decision tree generated by AQDT-1,
AQDT-2 for the weekend problem.

Due to space limitations, we are unable to include here

all of our work. We refer the reader to our extended

technical report on RBDT-1 [13] for more details on the

decision tree generation and discussion on tree sizes.

VI. EXPERIMENTS

In this section, we present an evaluation of our

proposed method by comparing it with the AQDT-1 & 2,

the ID3 and the C4.5 methods based on 16 public

datasets. Our evaluation consisted of comparing the

decision trees produced by the methods for each dataset

in terms of tree complexity (number of nodes and leaves)

and accuracy. Other than the weekend dataset, all the

datasets were obtained from the UCI machine learning

repository [14].

We conducted two experiments for comparing RBDT-1

with AQDT-1 &2 and the ID3; the results of these

experiments are summarized in Tables 2 and 3. The

results in Table 2 are based on comparing the methods

using ID3-based rules as input for the rule-based

methods. The ID3-based rules were extracted from the

decision tree generated by the ID3 method from the

whole set of examples of each dataset used. Thus, they

cover the whole set of examples (100% coverage). The

size of the extracted ID3-based rules is equal to the

number of leaves in the ID3 tree.

In Table 3, the experiment was conducted using AQ-

based rules. We used AQ-based rules generated by the

AQ19 rule induction program with 100% correct

recognition on the datasets used as input for the rule-

based methods under comparison. No pruning is applied

by any method in both comparisons presented in Table 2

and 3.

In the following tables, the name of the method that

produced a less complex tree appears in the table in the

method column; the “=” symbol indicates that the same

tree was obtained by all methods under comparison. All

four methods run under the assumption that they will

produce a complete and consistent decision tree yielding

100% correct recognition on the training examples.

Table 2. Comparison of tree complexities of the RBDT-1,

AQDT-1, AQDT-2 & ID3 methods using ID3-based rules.

Dataset Method Dataset Method

Weekend RBDT-1 MONK’s 1 RBDT-1

Lenses RBDT-1, ID3 MONK’s 2
RBDT-1,

AQDT-1 & 2

Chess = MONK’s 3 =

Car RBDT-1, ID3 Zoo =

Shuttle-L-C = Nursery RBDT-1

Connect-4 RBDT-1 Balance RBDT-1, ID3

For 7 of the datasets listed in Table 2, the RBDT-1

produced a smaller tree than that produced by AQDT-1 &

2 with an average of 274 nodes less while producing a

same tree for the rest of the datasets. On the other hand,

RBDT-1 produced a smaller tree with 5 of these datasets

compared to ID3 with an average of 142.6 nodes less

while producing a same tree for the rest of the datasets.

The decision tree classification accuracies of all four

methods were equal.

Based on the results of the comparison in Table 3, the

RBDT-1 method performed better than the AQDT-1 & 2

and the ID3 methods in most cases in terms of tree

complexity by an average of 33.1 nodes less than AQDT-

1 & 2 and by an average of 88.5 nodes less than the ID3

method. The decision tree classification accuracies of all

four methods were equal.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

Table 3. Comparison of tree complexities of the RBDT-1,

AQDT-1, AQDT-2 & ID3 methods using AQ-based rules.

Dataset Method Dataset Method

Weekend RBDT-1 Monk’s2 RBDT-1

lenses RBDT-1, ID3 Monk’s3 =

Zoo RBDT-1 Chess =

Car RBDT-1 Balance RBDT-1, ID3

Monk’s1 RBDT-1 Shuttle-L-C
RBDT-1,

AQDT-1 & 2

We conducted another experiment comparing RBDT-1

to AQDT-1 & 2 and C4.5 using C4.5-based rules. The

C4.5-based rules were extracted from decision trees built

by C4.5 method using its default parameters, in the

Orange implementation [15] with the prune option turned

“on”.

Table. 4. Comparison of tree complexities of the RBDT-1,

AQDT-1, AQDT-2 & C4.5 using C4.5-based rules.
Dataset Method Dataset Method

Weekend RBDT-1, C4.5 MONK’s 1 =

Lenses RBDT-1, C4.5 MONK’s 2 =

Chess = MONK’s 3 AQDT-1 & 2

Car RBDT-1, C4.5 Zoo RBDT-1, C4.5

Shuttle-L-C = Breast-C =

Connect-4 RBDT-1, C4.5 Lung-C RBDT-1, C4.5

Nursery = Primary-T RBDT-1, C4.5

Balance = Voting =

The results are summarized in Table 4. The outcome of

the comparison is that in terms of tree size, our proposed

method RBDT-1 performs better than AQDT-1 & 2 in

most of the rule sets. AQDT-1 & 2 produce a larger tree

by an average of 105 nodes with the exception for the

Monk’s3 problem the RBDT-1 tree was only 2 nodes

bigger. In addition, the results illustrate that RBDT-1 is as

effective as C4.5. In terms of decision tree accuracy, the

four methods have equal performance.

VII. CONCLUSIONS AND FUTURE WORK

The RBDT-1 method proposed in this work allows

generating a decision tree from a set of rules rather than

from the whole set of examples. Following this

methodology, knowledge can be stored in a declarative

rule form and transformed into a decision structure when

it is needed for decision making. Generating a decision

structure from decision rules can potentially be

performed much faster than by generating it from

training examples.

In our experiments, our proposed method was

compared to two other rule-based decision tree methods;

AQDT-1 and AQDT-2 using ID3-based rules and AQ-

based rules. RBDT-1 was also compared to the ID3 and

C4.5 methods which are data-based decision tree

methods. Based on the results of the comparison the

RBDT-1 method performs better than the other three

methods under comparison in most cases in terms of tree

complexity and achieves at least the same level of

accuracy. It appears also that RBDT-1 performs equally

well as C4.5.

In our future work we will conduct more experiments

using rule sets produced by different methods of rule

generation. We will also extend our method to address the

problem of learning from rules that do not logically

intersect.

ACKNOWLEDGMENTS

The authors would like to thank the UCI machine

learning repository for the datasets used in the presented

experiments. We also thank Dr. Janusz Wojtusiak the

director of the Machine Learning and Inference

Laboratory at George Mason University

[http://www.mli.gmu.edu] for providing us with the

AQ19 rule induction program.

 REFERENCES

[1] R. S. Michalski and I. F. Imam, “Learning problem-oriented

decision structures from decision rules: the AQDT-2 system”, In

Proceedings of 8th International Symposium Methodologies for
Intelligent Systems. Lecture Notes in Artificial Intelligence, 869,

Springer Verlag, Heidelberg, 1994, pp. 416-426.

[2] Imam, I. F., and R. S. Michalski. “Should decision trees be learned

from examples of from decision rules?”, Source Lecture Notes in

Computer Science. In Proceedings of the 7th International

Symposium on Methodologies, 689, 1993, pp. 395–404.

[3] J. R. Quinlan, “Discovering rules by induction from large

collections of examples”, In D. Michie (Edr), Expert Systems in

the Microelectronic Age, Edinburgh University Press, 1979, pp.
168-201.

[4] I. H. Witten, and B. A. MacDonald. “Using concept learning for

knowledge acquisition”, International Journal of Man-Machine

Studies, 1988, pp. 349-370.

[5] Y. Akiba,, S. Kaneda, and H. Almuallim, “Turning majority

voting classifiers into a single decision tree”, In Proceedings of the
10th IEEE International Conference on Tools with Artificial

Intelligence, 1998, pp. 224-230.

[6] Y. Chen, L. T. Hung,” Using decision trees to summarize

associative classification rules”. Expert Syst. Appl. Pergamon

Press, Inc. Publisher, 2009, 36(2): pp. 2338--2351

[7] R. S. Michalski, and K. Kaufman. “The aq19 system for machine
learning and pattern discovery: a general description and user's

guide”, Reports of the Machine Learning and Inference

Laboratory, MLI 01-2, George Mason University, Fairfax, VA,
2001.

[8] J. Wojtusiak, “AQ21 user’s guide”. Reports of the Machine

Learning and Inference Laboratory, MLI 04-5, George Mason

University, 2004.

[9] R. S. Michalski, I. F. Imam, “On learning decision structures”.

fundamenta informaticae, 1997, 31(1): pp. 49--64
[10] Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N.: The Multi-

Purpose Incremental Learning System AQ15 and its Testing
Application to Three Medical Domains. In: Proceedings of AAAI-

86, Philadelphia, PA, 1986, pp. 1041--1045

[11] F. Bergadano, S. Matwin, R. S. Michalski, J. Zhang, “Learning

two-tiered descriptions of flexible concepts: the POSEIDON

system”. Machine Learning, 1992, Vol. 8, No. 1, pp. 5--43

[12] Colton, S. Online Document, Available:
http://www.doc.ic.ac.uk/~sgc/teaching/v231/lecture11.html. 2004.

[13] A. Abdelhalim and I. Traore, “The RBDT-1 Method for Rule-

based Decision Tree Generation”, Technical report #ECE-09-1,
ECE Department, University of Victoria, PO Box 3055, STN

CSC, Victoria, BC, Canada, July 2009.

[14] A. Asuncion, and D.J. Newman, UCI Machine Learning

Repository [http://www.ics.uci.edu/~mlearn/MLRepository.html].

Irvine, CA: University of California, School of Information and

Computer Science, 2007.
[15] J. Demsar,, B. Zupan, G. Leban, “Orange: from experimental

machine learning to interactive data mining”, White Paper,

Available: (www.ailab.si/orange), Faculty of Computer and

Information Science, University of Ljubljana, 2004.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

