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1 Introduction

In this work, we use the compatibility matrix method
[1, 2, 3, and others] and develop an algorithm for Sudoku
(see Appendix). The compatibility matrix method may
be described as follows.
For a decision/search problem, we partition the guesses in
such a way that the number of the parts will be manage-
able with resources available and the parts’ domains will
be manageable as well. The partition reduces the initial
problem to a detection of non-contradicting combinations
of the parts’ meanings. Obviously, any such compatible
combination of the parts’ meanings is a solution for the
initial problem.
Basically, the compatibility matrix method reduces the
initial problem to a search for non-trivial solutions of a
special kind for the following Horn 2SAT instance:

∧
(i1,j1,i2,j2)∈S

(x̄i1j1 ∨ x̄i2j2) = true

- where xij are Boolean variables and set S represents
the given problem (variable xij is indicator for the j-th
meaning of the i-th part of the guesses). So, it is no won-
der that the method can be successful especially when the
guess parts are well intertwine, and especially when the
initial problem has no solutions at all (if not always then
often, the guessing can be reduced to such a problem).
This article may be seen as an illustration to the compat-
ibility matrix method. We apply the method to Classical
Sudoku (see Appendix). In obvious way, it can be ad-
justed to other Sudoku variants and to Latin Square per
se. Although, the resulting algorithm is not like [4] a
”pencil-and-paper” algorithm, yet it can be realized in
client side JavaScript [6].

2 Compatibility Matrix

For any given input (the initial partial filling of the
square), guess is any complete filling of the square with
numbers from 1 through 9. There are 819 guesses in to-
tal.
Testing of a guess is checking whether or not this guesses
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contains just one number from 1 through 9 in each row, in
each column, and in each little square 3×3; and checking
whether or not the guess extrapolates the given input.
We divide each of the guesses in 81 parts. The parts are
the cells of the square. Each part may take value from
1 through 9: set {1, 2, . . . , 9} is domain for each of the
parts.
Let’s index the parts with four indexes: part PRCrc is the
(r, c)-th cell in the (R,C)-th little square 3 × 3, where

(R,C, r, c) ∈ {1, 2, 3}4 (1)

For each couple of the 81 parts, let’s build a compatibility
box..
The compatibility box for couple

(PR1C1r1c1 , PR2C2r2c2)

is a 9× 9 Boolean matrix (its elements are true of false,
but we will depict the values with 1 and 0, appropriately)

BR1C1r1c1,R2C2r2c2

with elements

BR1C1r1c1,R2C2r2c2,ij , i, j = 1, 2, . . . , 9

The value of an element is true of false (again, we will de-
pict it with 1 and 0, appropriately) depending on whether
or not values i and j in the cells contradict each other ac-
cording to Sudoku rules (we still ignore the input):

BR1C1r1c1,R2C2r2c2,ij = (2)
⎧⎨
⎩

0, i = j ∧ (R1 = R2 ∧ r1 = r2 ∨ C1 = C2 ∧ c1 = c2)
0, i = j ∧ R1 = R2 ∧ C1 = C2

1, Otherwise

The first and the third strings in this definition represent
the Latin Square constrains (each number meets just once
in each row/column); the second and third strings repre-
sent the Classical Sudoku constrains (each number meets
just once in each little square 3 × 3).
There are 812 the compatibility boxes in total (by the
number of couples of the cells; the cells in a couple may
be the same). Let’s aggregate these boxes in some con-
sistent way in a box matrix B whose size in boxes will be
81 × 81. There will be 813 = 531, 441 scalar elements in
that box matrix.
For example, we could see tuples 1 as the numbers writ-
ten in base-4 and sort the cells in ascending order. Then,
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we could aggregate the compatibility boxes in the box
matrix in accordance with the order. Anyway, we call
the resulting box matrix a compatibility matrix for Clas-
sical Sudoku appropriate to the selected partition of the
guesses:

B = (BR1C1r1c1,R2C2r2c2)81×81

- where size of the matrix is shown in boxes. In the
matrix, all diagonal boxes are the identity matrices (in
the boxes all diagonal elements equal true and all non-
diagonal elements equal false). And in the non-diagonal
boxes all non-diagonal elements equals true. In those
diagonal boxes where

R1 = R2 ∨ C1 = C2 (3)

all diagonal elements equal false. And in the rest of the
non-diagonal boxes, all diagonal elements equal true.

3 Solution Grids

Any legitimate filling of the Sudoku square is presented in
the compatibility matrix with a grid of true-elements (the
elements depicted with 1), one element per compatibility
box. Any such grid of elements may be presented as a
solution of the following functional equation:

BR1C1r1c1,R2C2r2c2,f(R1C1r1c1)f(R2C2r2c2) = true (4)

- where function f is the unknown. And visa versa, any
solution of functional equation 4 represents a legitimate
filling of the Sudoku square. We call any solution of equa-
tion 4 a solution grid for Sudoku. The solution grids are
in one-to-one relation with the legitimate fillings of Su-
doku square.
Any legitimate Sudoku input (the initial partial filling of
the square) is a part of a solution grid (it is a partially
given solution f of system 4). The input may seen as
initial conditions for equation 4:

BR0C0r0c0,R0C0r0c0,i0i0 = true (5)

- where the 0-indexes are indexes of cells filled in the given
initial setting. So, solving of the puzzle is just extrapo-
lation of the given input 5 to a whole solution grid. We
may use dynamic programming for the extrapolation.
In those diagonal compatibility boxes which are appropri-
ate to the cells participating in the input, we replace all
true-elements with value false except that one element
which corresponds to the number assigned to this cell in
the initial setting. Then, we propagate these values false
along those rows and columns which come through these
diagonal elements. Because there are such compatibility
boxes whose indexes satisfy clauses 3, the propagation
may nil some rows/columns in these non-diagonal com-
patibility boxes entirely. So, we may continue and prop-
agate value false along the appropriate rows/columns
from these nil rows/columns into the rest of the boxes.
And so on.

We call this dynamic programming procedure depletion
of compatibility matrix. Depletion is just replacement
some of the true-elements in the compatibility matrix
with value false in a way preserving at least one solu-
tion grid.
There is less than 813 elements to deplete in the matrix.
So, sooner or latter, the matrix will be finalized. There
are only three options for the outcome:

1) All elements in the final matrix equal false. This
is a case of an incorrect input - the puzzle has no
solutions. The first nilled compatibility box arising
during the depletion may be called a pattern of un-
satisfiability of the given input. When such pattern
arises, the depletion can be stopped, indeed.

2) All true-elements in the final matrix create one so-
lution grid. This a pure-logical case of the correct
input - the puzzle has unique solution and search for
it did not require any guessing.

3) There still will be uncertainty, i.e. some of the di-
agonal compatibility boxes will have more than one
true-element preserved after the depletion.

The third case also could be tried with pure-logic. It just
needs to intertwine the cells in the square, i.e. it needs
to include in our guess partition some combinations of
those cells - the final compatibility matrix shows which
cells (and possible values) shall be combined. But, such
approach would make the algorithm input-related. So,
let’s just guess.
In any ”uncertain” diagonal compatibility box, let’s se-
lect any of the true-elements and nil the rest of the true-
elements in the box. Let’s propagate these new false-
values exactly as the above. If such depletion will fill the
compatibility matrix with value false entirely, then our
guess was wrong. So, we just nil this diagonal element
and propagate its value false. Then, we try the next
”uncertain” diagonal element, and so on until the com-
patibility matrix will be finalized.
Let’s notice that we could use in the guessing non-
diagonal compatibility boxes as well: we could nil all el-
ements in a non-diagonal box except the one; then, we
would propagate those values false exactly as the above
and see outcome.
Again, there are three possible outcomes of the depletion:

1) All elements in the final matrix equal false. This
is a case of an incorrect input - the puzzle has no
solutions.

2) All true-elements in the final matrix create one solu-
tion grid. This a case of a correct input - the puzzle
has unique solution.

3) There still is uncertainty, i.e. some of the diago-
nal compatibility boxes have more than one true-
element left in them after the depletion. This is a
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case of an incorrect input - solution of the puzzle is
not unique.

The final matrix may be called a general solution for the
given input - it is conjunction of all solution grids satis-
fying the puzzle.
Obviously, there are many ways to rationalize the proce-
dure. Let’s see some of them.

4 Making it more feasible

To save space, let’s partition our guess differently. Let’s
partition them just in 9 parts appropriate to the num-
bers from 1 trough 9. Domain for each of such parts will
be the 81 cells in the Sudoku square. Also, let’s factor-
ize/partition the domain.
Let’s select in the Sudoku square some coordinate lines.
For example, we may select just rows and columns and
present each cell as a couple of numbers - row number
and column number. There are 18 such coordinate lines
in total. And each of those coordinate lines is a part of
our domain.
To better intertwine the domain’s parts, i.e. to make
the following depletion more efficient, we even may se-
lect some curve coordinates in the Sudoku square. The
”straight” and some curve coordinates are shown below.
In the shown curve coordinates, there are 36 coordinate
lines in total - each row/column of the 3 × 3 squares is
described by 6 permutations of its ”little” rows/columns
appropriately.
”Straight” coordinates:

∗
∗
∗
∗

∗ ∗ ∗ ∗ + ∗ ∗ ∗ ∗
∗
∗
∗
∗

Curve coordinates:

∗
∗
∗

∗ ∗ ∗ ∗
∗ × ∗

∗ ∗ ∗ ∗
∗
∗
∗

Whatever coordinates we would choose, let’s combine for
each of the numbers form 1 trough 9 the compatibility

matrix for those coordinate lines (they are the parts of
the domain for each number).
Let’s notice that all ”vertical” coordinates are indepen-
dent among themselves. The same is true for the ”hor-
izontal” coordinates. So, the only essential part of the
compatibility matrix will be its incidence part - the part
consisting of the compatibility boxes connecting the ”ver-
tical” and ”horizontal” coordinate lines. For the straight
coordinates, the matrix is shown below:

n 1 2 3
c1 c2 c3 c1 c2 c3 c1 c2 c3

r1

1 r2 Cn,1,1 Cn,1,2 Cn,1,3

r3

r1

2 r2 Cn,2,1 Cn,2,2 Cn,2,3

r3

r1

3 r2 Cn,3,1 Cn,3,2 Cn,3,3

r3

- where Cnij is the compatibility box for i-the ”horizon-
tal” coordinate line and j-th ”vertical” coordinate line
for number n (n = 1, 2 . . . , 9). For the ”straight” coordi-
nates these boxes have size 3× 3, and they will have size
6 × 6 for the curve coordinates shown above. Let Cn be
this box matrix ror number n:

Cn = (Cnij)3×3, n = 1, 2, . . . , 9

At the beginning, before the input, matrix Cn is entirely
filled with value true, n = 1, 2, . . . , 9.
Now, when there is an input, we enter the given initial
composition in the matrices Cn by the following simple
input rule.
For example, let there be number 9 in the given input
located in the (1, 1)-th cell of the (1, 1)-th little square of
size 3× 3. Then, in the ”straight” coordinates, there will
be

C9,1,1 =

⎛
⎝

1 0 0
0 0 0
0 0 0

⎞
⎠ ; Cn,1,1 =

⎛
⎝

0 1 1
1 1 1
1 1 1

⎞
⎠ , n �= 9

In the curve coordinates, there will be four values true
and false in the upper left corner, appropriately. We en-
ter in such way all numbers from the initial composition.
After the input, the values true and false will be dis-
tributed over matrices Cn in some order. Obviously, all
the solution grid theory is true for the matrices Cn. So,
to resolve the input, we need to search all 9 matrices Cn

for such solution grids which would not contradict one
another. For that we may use the following depletion.
We will propagate the value false over matrices Cn iter-
ating each of the four compatibility boxes

Cnij , Cnik, Cnmj , Cnmk
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by formulas

Cnij = Cnij ∧ (CnikCT
nmkCnmj)

Cnik = Cnik ∧ (CnijC
T
nmjCnmk)

Cnmj = Cnmj ∧ (CnmkCT
nikCnij)

Cnmk = Cnmk ∧ (CnmjC
T
nijCnik)

(6)

- where the parenthesis operations are Boolean matrix
multiplication (see Appendix). The major benefit of
these formulas - they preserve all solution grids.
We iterate all matrices Cn by formulas 6 until they get fi-
nalized. In the outcome, positions of some numbers from
1 trough 9 can be detected exactly. Then, we propagate
those position for the elements in the rest of matrices Cn

by the above input rule and repeat the iterations until
all matrices will be finalized. In total, there are just 720
scalars to deplete in the case of ”straight” coordinates,
and there are just 2, 916 scalars to deplete in the case of
the curve coordinates. So, it will not take long to finalize
the matrices.
We don’t use here any Sudoku ”governing dynamics”. So,
the depletion can have three outcomes:

1) All elements in some matrix Cn equal false. This
is a case of an incorrect input - the puzzle has no
solutions (there is no place for that number n).

2) All true-elements in each of the final matrices Cn cre-
ate one solution grid. This a pure-logical case of the
correct input (formulas 6 are just a form of deduc-
tion) - the puzzle has unique solution and search for
it did not require any guessing (would these solution
grids incompatible, we would get in case 1).

3) There still will be uncertainty, i.e. some of the
compatibility boxes will have more than one true-
element preserved after the depletion. This case re-
quires additional work.

Let’s notice that there are at most 36 = 729 solution grids
in each matrix Cn in the case of ”straight” coordinates,
and there are at most 66 = 46, 656 solution grids in the
case of the curve coordinates. So, it will not take long to
find and test all of them as follows.
For each of the matrices Cn, we may use brute force and
find all solution grids in it. Each such grid presents all
9 positions for number n in Sudoku square. We use the
above input rule and enter all these 9 positions in all ma-
trices Cn. Then, we deploy the above depletion. If a
solution grid nils some of the matrices, then we rid of it.
The resulting version of matrix Cn is disjunction of some
solution grids. We repeat this procedure for all matrices
Cn until they all will get finalized.
Again, the procedure can have three outcomes listed
above. But now, the third outcome would mean that
the given input allows many solutions.

5 Making it smarter

There are 27 ”geographical features” in Sudoku square
(9 little squares 3 × 3, 9 rows, and 9 columns) where
each number may be met just once. But, the same is
true for any combination of the numbers from 1 trough
9. There are just 29 − 1 = 511 such combinations. So,
we may include in the algorithm the allocation of those
combinations as well. But, there is trade-off: complexity
of the logic can slow down the depletion.

6 Conclusion

We described as the compatibility matrix method can be
deployed to Sudoku. The method reduces the puzzle to
solution of functional equation 4 with initial conditions
5. The equation can be solved by depleting the compat-
ibility matrix. The result of the depletion is the general
solution of the puzzle.
The compatibility matrix method may be seen as the fol-
lowing framework for NP-problems.
The goal of the method is to organize parallel testing of
all guesses. For that, we partition the guesses. Formally,
the partition is just several factorizations of the set of all
guesses. Each of the factorizations is a part. Domains
of the parts are the appropriate factor sets. The only
requirements is the number of the factorizations and the
total number of the cossets shall be manageable with re-
sources available; and the whole guesses could be restored
from their parts.
The most natural partition is the real one. Suppose,
the guesses are some strings in a language. Then, we
may equalize those strings which coincide in certain posi-
tions. Effectively, the parts in this case will be the shorter
strings. So, goal of such partition will be to divide those
long strings in these shorter strings in such a way that
the number of those parts and the number of those parts’
meanings both will be manageable. If we could find the
parts belonging to a solution, then we would glue the
whole solution from those shorter strings.
Then, we ”translate” the given checking condition in a re-
lation of compatibility (non-contradiction) on those parts.
For each two parts the relation is a Boolean matrix - the
compatibility box.
Let’s return to our language example. Why a guess is
not a solution? Most likely, it contains wrong substring.
And we can detect this substring - it’s a NP-problem.
Thus, those meanings of parts will be incompatible (con-
tradicting one another) which produce that wrong sub-
string when glued.
Then, we combine the compatibility boxes in a box ma-
trix - the compatibility matrix. The matrix encodes the
problem in contradictions between parts of the guesses.
Any solution creates in the matrix a pattern - the solution
grid. And vise versa, any solution grid delivers a solution
for the problem. So, solving of the problem is searching
of the compatibility matrix for the solution grids. Set of
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all solution grids is a general solution of the problem.
The search for solution grids always can be done effi-
ciently. Actually, the search is a linear problem whose
size is polynomial over the size of the compatibility ma-
trix [1, 2, 3]. So, we could solve Sudoku solving a system
of linear equations and inequalities.
Really, the partition effectively creates in space of all
guesses a system of coordinates. In the coordinates, set
of all solutions is a set of points. For a NP-problem, the
number of points in the set may be exponential and even
factorial. Nevertheless, there is bijection of the set on
the vertices of such a (convex) polytope which can be
described with a polynomial number of linear equations
and inequalities1. And the compatibility matrix is very
instrumental in finding of such polytope.
Depletion is another general approach to the search for
solution grids. Formally, it is just replacement of some
true elements in the compatibility matrix with value
false. The goal is to transform the compatibility matrix
in disjunction of all solution grids - the general solution
of the problem. The obvious benefit of the depletion - it
is more efficient than solution of the linear system. Most
painful drawback - it is not always clear which elements
to inverse. The Boolean matrix multiplication 6 (and
its analogs) preserves all solution grids. But, it can miss
some elements which shall be inversed. In the terms of the
language example, we do not know any relation between
the guess’ parts and the wrong substrings. A priory, there
can be situation when no two parts will cover any wrong
substring. We describe such foul cases as cases when the
guess’ parts are not well intertwine. The general recipes
here may include mixing of the parts, creating another
partition and taking conjunction of the outcomes, etc.
Mechanically, the depletion misses some elements when
there are too much true elements in the compatibility
boxes. So, another approach is to try and test each ele-
ment in the compatibility boxes separately. The elements
shall be tested on belonging to a solution grid.
Above for Sudoku, we have fixed such partition which
allowed the testing of large fragments of the would-be
solution grid.

Appendix

Latin Square. There is given a square matrix n × n.
The matrix is partially filled with some numbers from
1 through n. The problem is to entirely fill the matrix
with the numbers in such a way that each number meets
just once in each row and in each column.
Being centuries old, Latin Square is not just a puzzle.
Completing of Latin Square is a NP-complete problem
[5]. So, many practical and theoretical problems are re-
ducible to it.
Sudoku variants. The most of the puzzles may be seen as

1A well known example of such polytopes is Birkhoff polytope.
It has n! vertices, yet it is described with 2n linear equations and
n2 linear inequalities.

a Latin Square with additional constrains: the numbers
meet just once in certain areas of the square. There are
many such puzzles. They differ by the size of the square
and by the shapes of the areas.
The input (the initial partial filling of the square) is sad
to be correct if it provides just one solution for the puz-
zle.
Again, many practical and theoretical problems can be
modeled with Sudoku variants.
Classical Sudoku. The puzzle is Latin Square 9 × 9 di-
vided in 9 evenly distributed squares 3 × 3:

The problem is to complete the square in such a way that
each number meets just once in each of the 3×3 squares,
i.e. it meets just once in each row, each column, and each
little square.
The puzzle was invented by Howard Garns in 1979, and
it became very popular. Today, there are Sudoku com-
munities, tournaments, TV shows, etc. Among literature,
let’s us mention [4, 7, 8, 9, and many others]. Much more
information and references may be found in Wikipedia.
Boolean matrices. Boolean matrices are matrices whose
elements are true or false. Conjunction and disjunc-
tion of such matrices is just a matrix of the conjunctions
and disjunctions of the appropriate elements (the matri-
ces have to be of the same size). Multiplication of such
matrices can be defined exactly as multiplication of the
numerical matrices with replacement of operations + and
× with the appropriate Boolean operations. Here, we use
the following definition:

XY = (
∨
μ

xiμ ∧ yμj)

- where X and Y are Boolean matrices of the appropriate
sizes (the number of columns in X equal the number of
rows in Y ).
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