

Abstract— several researches have been conducted to
decompose business processes in Service Oriented Architecture
(SOA). There exist several methods that encapsulate each
activity of a business process in one agent, while other methods
focus on fragmenting a business process and encapsulate each
fragment in an agent. As the mentioned approaches decompose
a business process without considering the adaptability of a
process with run-time environment, the intelligent business
process decentralization (IPD) has been presented that uses a
process mining approach. This novel approach detects the
frequent paths of a business process and encapsulates the most
relevant activities as agents. Being disseminated on a network,
the agents are able to communicate with each other through a
middleware. This essay shows how IPD algorithm works and
detects the frequent paths of a loan taking process to
decompose it.

Index Terms—Adaptive Systems; Service Oriented
Architecture; Distributed Orchestrate Engine, Business Process
Decomposition, Frequent Path Mining.

I. INTRODUCTION

According to SOA stack[1], business process logic is
divided to orchestration and choreography layers. From
business process distribution point of view, choreography
layer is instinctively distributed to several distinct business
processes communicating with each other and normally run
on different workflow engines, whereas orchestration layer
is workflow engine centric. It means business processes are
executed by an orchestrate engine that is responsible for
running the activities of a process. A single engine is usually
applied to manage a business process and scalability is
satisfied by replicating orchestration engines which do not
obviate the problems of centralized engines completely [2].

On one hand, several researches have been done to
distribute a business process, but unfortunately there is no
strict pattern to distribute a business process accordingly. To
be more specific, the question is that how we can distribute a
business process and what criteria and patterns can be used
to contribute business process distribution. In our previous
work [3], three methods of business process distribution

have been identified, that are Fully, Semi and Intelligent
Process Distribution or FPD, SPD and IPD, respectively.

Fully Process Distribution (FPD) is already introduced in
[2, 4] and there also exist several researches [2, 4] to fully
distribute a BPEL process to its building activities. Having
broken a process to its activities, we are able to encapsulate
them into agents whose interactions are handled through a
middleware. Fully process distribution, though, improves
average execution time, throughput and service delay.
Negatively, the huge number of produced agents as well as
the number of messages for communication will swamp a
run-time environment. As a matter of fact, FPD puts each
activity in one agent which is the lowest granularity which
results in there being a lot of agents communicating through
a middleware. The run-time system also can move these
small and light weight agents and put them beside their
required resources and decrease the amount of bandwidth
that can be occupied by the interaction of agents and
resources and it increases the system adaptability.

According to [3], Semi Process Distribution (SPD)
contains all methods of process distribution that use different
criteria for partitioning a process such as [5] that
encapsulates segmented activities together. SPD on one
hand, results in more coarse-grained agents that reduce the
number of 1) produced agents, and 2) agent interactions. On
the other hand, this pattern does not consider the adaptability
of a business process with run-time environment. To put it in
another way, SPD degrades the adaptability of the system
owing to the fact that we cannot put together either relevant
agents or an agent along with its required resources due to
coarse granularity. SPD, though, increases the resource
usage such as memory or processor usage because of the
increased size of agents.

Intelligent Process Distribution (IPD) introduced in [3, 6,
7], proposes a process mining approach in which some
patterns have been introduced to encapsulate business
activities in agents, depending on the previous behavior of
process instances. The recommended IPD approach will
improve three aspects of system quality. One; is the
amelioration of business process adaptability with run-time
environment, another; choosing the best agent granularity
based on detecting most relevant activities or frequent paths
and encapsulating them in agents, a third; is decreasing the
resource usage due to reduced and improved number of
produced agents and messages.

In this essay we show how IPD method detects the most
frequent paths of a business process using a mining
approach. The size of a frequent path and subsequently its

A Case Study of
The Intelligent Process Decentralization Method

1Faramarz Safi Esfahani, 2Masrah Azrifah Azmi Murad, 2Md. Nasir Sulaiman, 2Nur Izura Udzir

1Faramarz, Safi Esfahani is with the Department of Software
Engineering of Islamic Azad University, Najaf Abad Branch, Esfahan,
Iran. He is also a PhD Candidate in the Faculty of Computer Science and
Information Technology, Universiti Putra Malaysia (UPM), 43400,
Selangor, Malaysia. Email: fsafi@acm.org

2Assistant Prof. Dr. Masrah Azrifah Azmi Murad, Associate Prof. Dr.
Md. Nasir Sulaiman, and Assistant Prof. Dr Nur Izura Udzir are with the
Faculty of Computer Science and Information Technology, Universiti
Putra Malaysia (UPM), 43400, Selangor, Malaysia. Emails: {masrah,
nasir, izura}@fsktm.upm.edu.my

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

equivalent produced agent depends on the level of
granularity and minimum required frequency that come from
either a Service Level Agreement (SLA) document [8] or
run-time environment feedback. Obviously, a larger agent
demands more memory without communication messages
among its building activities. The detection of relevant
activities or correspondingly frequent paths stem from an
intelligent method based on business process execution log
mining. Finally, the algorithm will be imposed on a loan
taking business process as a case study.

II. BACK GROUND AND RELATED WORK

BPEL: The Business Process Execution Language or
BPEL briefly supports web services relationships from the
following aspects including: message exchange correlation
for long running message exchanges, parallel processing of
activities, the mapping of data between partner interactions
and consistent exception and recovery handling. BPEL
activities can be classified as basic activities that perform
some primitive operations and structured activities that
define the control flow. The key BPEL basic activities are
Invoke, Receive, Reply, Assign, Compensate, Compensate-
Scope, Empty, Exit, Throw, Re-throw, Validate and Wait
whereas the structured BPEL activities are Flow, For-Each,
If, Pick, Repeat-Until, Scope, Sequence and While,
respectively. In addition, two BPEL models have been
identified which are block and graph based. Several
prominent companies have implemented block-based model,
while graph-based BPEL has been implemented by some of
them. The introduced algorithm in this paper supports the
block- based style of BPEL[2, 9, 10].

Service Level Agreement: Combining functionalities is
not the only requirement for e-Business integration. Non-
functional quality requirements must also be met. Service
Level Agreements (SLA) capture the mutual responsibilities
of the provider of a service and its client with respect to the
non-functional properties [8]. SLAs are gaining their
importance due to the increasing number of companies
conducting business over the Internet, requiring the position
of SLAs at organizational boundaries to provide a basis on
which to emulate the electronic equivalents of a contract
based on business management practices. In addition, in[11],
a monitoring method was implemented to show how we can
monitor SLAs in an heterogeneous environment. Our work
can use this method to control SLAs in run time of an
orchestrated workflow engine as future work. Work [12] is a
FPD method that has no control on compile time of
producing agents and uses a cost function to disseminate
agents on network at run-time. Our work produces agents
according to the execution history of previous business
processes at compile time. Run-time management of our
method is in future work and is not comparable to [12] at the
moment. Work [3] studied an SLA-driven business process
distribution and showed how different distribution policies
including FPD, SPD and IPD affect system non-functional
factors. Finally, in this paper, an algorithm is presented to

detect frequent paths of a business process to decompose it
to coarser agents based on granularity level and minimum
support that come from a SLA.

Frequent Path Detection and Process Mining: A
variety of mining algorithms have been developed to detect
frequent paths in different data structures such as graphs and
trees, however, none of them have considered mining
approaches to business process decomposition and the
adaptability of business process with run-time environment
as well. Our work also mines process log information to
detect frequent paths of a process using a mining method.
The final result would be frequent paths and infrequent
activities in terms of granularity level (G) and minimum
support that both come from an SLA. We use G to provide
granular agents commensurate with run-time requirements.

Also, several researches have been conducted towards
building models without a priori knowledge, called Process
Mining, based on sequences of events. Using process
mining, one can look for the presence or absence of certain
patterns and deduce some process models from it [13]. The
main difference with our work is that we already know the
business process description and the structure of executed
business process log files as well.

BPEL Decomposition and Interaction Middleware:
NINOS [2] uses a Publish/Subscribe[2, 14, 15] messaging
service to handle the interaction of agents. In this work, a
distributed agent-based orchestration engine is presented in
which each activity of a business process encapsulated in an
agent and collaborates with other agents in order to execute
the whole process. In [4], a LINDA platform [16] used to
wrap each activity of a BPEL process in agent and Linda
Tuple Space concept is applied to realize the cooperation of
agents. These methods are called Fully Process Distributed
(FPD) in [3]. A different approach is Semi Process
Distribution (SPD) that collapses a business process to
partitions according to a variety of criteria. Work[5]
partitions a business process so that each partition can be
enacted by a different participant. In fact [5] disconnects the
partitioning itself from the design of the business process.
Furthermore SOA stack supports messaging and [5] uses
SOA messaging protocols and WSDL to wire decomposed
components. In [17], each partition is detected according to
the BPEL roles. In [12], a Control Flow Graph has been
used to automatic partitioning of a BPEL process similar to
program partitioning in multiprocessors.

All these methods do not have any control on the number
of produced agents, granularity as well as adaptation of
agents to the run-time environment. IPD [3, 6, 7] uses a
mining process method to discover useful patterns to provide
suitable agents. In [7], some useful IPD distribution patterns
for most salient BPEL activities have been shown and
proved. In [6], also a methodology along with an algorithm
for using IPD has been presented and in [3] IPD has been
studied from an SLA point of view and compared to FPD
and SPD methods. In fact, the common problem in [3, 6, 7]
is that they have not implemented the idea of IPD and only

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

the IPD abilities have been introduced. In [18] an
implementation of the IPD has been shown and the current
paper is an improved version of that work along with a new
loan taking process case study. The methods [2-7, 12, 17,
18] are the most relevant works to our approach from a
business process decentralization point of view.

III. BASIC DEFINITIONS

To be more specific, the idea of IPD is formulated in this
section. We introduce set { }aA = as a set of activities and E

as a set of edges that are used to make a tree of activities.
Based on A and E, ()EABT ,= is defined which stands for a

BPEL tree and is described by BPEL language.
Furthermore, we consider ET as a tree built from a BPEL
execution history log file and definitely BTET ⊆ .

A path is defined as a sequence of activities starting from
process root to a leaf. Also, a frequent path is a path that all
of its activities are frequent. To realize the concept of
frequent path we consider min_sup value that shows the
minimum value of iteration for each activity to be a frequent
activity.

To categorize the activities as well as paths in a BPEL
tree several concepts are required including Frequent
Activity (FA), Frequent Path (FP), Infrequent Activities (IA)
and Infrequent Path (IP) that will be introduced,
respectively.

FA is a set of frequent activities as:
{ } (){ }sup)min_(| ≥∧∈== afrequencyAaafaFA

The frequency of each activity is calculated depends on
the type of activity that is as follows:

 =

=
 maxreturn else,

number iteration activity return , if
)(

(a)))y(children (frequenc

Φ chilren(a)
afrequency

FP includes just frequent activities from the root to the
leaves of a process tree. We would also like to granulate a

FPfp∈ in terms of granularity degree, G, which is defined

as follows:

{ }01| GGGGGG rootiDepthi =>>>>= −

Accordingly, GFP is defined as a set of granular frequent

paths, Gfp , starting from level G of the tree to level

TreeDepth-1. Also function level(G)returns the nodes in

level G of the tree. Should a path include just one frequent
activity, it is not considered as a frequent path.

{ } { }1|)(|),(, 10 |)(>∈∀−≤≤== iiiGG afpGlevelaDepthGafpfpFP

Function)(iafp searches for subsequent frequent

activities of a node and put them in set aifp which is

according to the following definition:

∪=≠

∪==
=

))ien(a fp(childr ai fp aifpΦ))ia(children(if
iaaifpaifpΦ))ia(children(if

iafp
 ,

 ,
)(

IA also is a set of infrequent activities as:
min_sup})afrequency(A,a |{a IA iii <∈= .

In addition IP is the union of infrequent activities as well as
frequent paths that their cardinality is equal to one:

}1|)(|,|)({ =∈∀∪= iii afpAaafpIAIP . Those frequent

paths that include just one activity are behaved as infrequent
paths as well. It is worth mentioning that all the paths in IP
and FP sets are encapsulated in their own dedicated agents,
afterwards.

IV. IPD METHOD

In this part, the essential steps of IPD method, node
frequency calculation and frequent path mining algorithm to
business process decomposition are proposed.

A. IPD BASIC PHASES

The basic steps of the IPD method are introduced in this
section.

Phase0 (SLA Driven Initialization): Users are able to
define their requirements through SLAs including: 1) the
minimum frequency or minimum support for all activities. 2)
Determining the level of granularity for each frequent path.

Phase1 (Pre-processing): In this phase all noise data
must be removed from produced log file.

Phase2 (Tree Construction) includes: 1) the construction
of the process tree from a BPEL file. 2) Marking the
executed activities according to log file information. Each
node’s visited counter is incremented on each visit.

 Phase3 (Frequency Calculation) includes the
calculation of all activities frequency.

Phase4 (Frequent Path Detection and Agent
construction) this phase depends on the required granularity
G and minimum support stem from a SLA. It starts from the
level G and finds the frequent paths in subsequent layers.

Phase5 (Wiring frequent and infrequent agents): In
this phase all agents are being wired so that they can
communicate through a middleware. Wiring is not our main
concern at the moment.

At the first execution of the algorithm, a tree is built from
the execution log of the process and is stored in memory.
Then, the frequency of all activities is calculated and later
on, according to the pre-determined granularity level and
minimum support that come from an SLA, the tree is mined.
Just those children of a node that their frequency is smaller
or equal to the pre-determined minimum frequency are then
selected. The output of the algorithm is the distinct groups of
activities which are encapsulated in distinct agents.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

Figure1) Node Frequency Calculation Algorithm

B. CALCULATING THE FREQUENCY OF ACTIVITIES

In order to detect all frequent patterns of a business
process, we have to know the execution frequency of the
business process activities. The starting point to detect the
frequency of activities is to count the number of visits for
each activity. To achieve this goal, log files produced by a
BPEL engine are used to calculate the number of visits for
each node (visit number). According to Figure1, the frequent
path detection is based on the presumption that if one simple
activity is visited n times, so its frequency is n. While, a
complex activity contains a number of simple and complex
activities, therefore, its frequency is equal to the frequency
of the maximum frequent child. To implement the algorithm
a recursive calculate node frequency method has been
implemented. It traverses a node to reach its children
recursively and finally returns the frequency of the most
frequent child.

Figure2) Frequent Path Mining Algorithm

C. FREQUENT PATH MINING ALGORITHM

The frequent path mining algorithm is based on two
factors including the degree of granularity, G, and the

minimum support of the agents that shows the minimum
frequency required for an activity to be included in a
frequent path. According to Figure2, to obtain the frequent
paths in a BPEL log tree; 1) the frequency of each node is
calculated; 2) The nodes in level G is listed using levelNth
function; 3) For each sub-tree of nodes in level G a new
group is created and finally; 4) Each sub-tree of nodes in
level G is traversed and those activities that their frequency
is equal or larger than min_sup is selected and added to a
relevant group.

D. ALGORITHM ANALYSIS

For a business process tree including n nodes, the frequent
path mining algorithm is consist of three steps including
calculating the frequency of the nodes, returning the nodes in
level G of the tree and finally traversing the sub trees of the
nodes in level G of the tree.

In order to calculate the complexity of the algorithm, the
complexity of each step must be calculated individually. In
the mentioned steps the traversing of the tree is based on a
breadth first algorithm. So, the complexity of the node

frequency algorithm is a function of)(DepthnO . Similarly,

the complexity of finding the nodes in level G of the tree is

as function of)(GnO due to the fact that all the nodes must

be traversed to reach the level G. After obtaining the nodes
in level G, in the worst case all the nodes in level G are
frequent nodes and therefore the entire sub trees have to be
traversed and consequently it would be a function

of)(GDepthG nnO −× . As a result, the final complexity would

be)(DepthnO in the worst case.

V. EXPERIMENTAL RESULTS

Figure 3) a Loan Taking BPEL Process

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

Figure 4) a Log Sample of Loan Process in ActiveBPEL

Figure 5) Loan Taking BPEL Process, a Tree View

Figure 6) Using Different levels of Granularity

This section illustrates a sample execution of the
presented algorithms on a loan taking business process.
Receiving a loan request, the process checks the request
against two surveyors web services and then upon
acceptance of the loan request, issues loan offers. A block-
based BPEL illustration of the loan process has been shown
in Figure 3 that contains several complex and simple
activities including sequence, flow, if (switch), receive,
invoke and assign.

Precisely, java language was used to implement the
algorithms and ActiveBPEL workflow engine[9] and tomcat
servlet container [19] to run the loan BPEL process.
Preprocessing and omitting the noise information, we got a

well formed log file as illustrated in figure 4. Accordingly,
each entry in the log file is an activity which is addressed by
the hierarchy of the activity.

In this experiment, the business process was called 10000
times so that 70% of the calls resulted in the running of the
If-Condition branch of the If activity. Then, the frequent
path mining algorithm was run with a minimum-support of
3% and different levels of granularity G, varying from 0 to
4. Figure 5 is the output of the frequent path mining
algorithms. Figure 6(a-e) shows how different groups of
activities are selected to be encapsulated in agents.
Granularity levels 0 to 4 produce two, three, seven, nine and
twelve agents, respectively.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

VI. CONCLUSION

In this paper, a mining approach has been presented to
detect the frequent paths of block-model BPEL specified
business processes- the purpose being to decompose a
business process which is called Intelligent Processes
Decomposition (IPD). Detecting frequent paths is based on
the granularity level and minimum support parameters that
come from an SLA document, IPD encapsulates them into
agents.

The provided agents were expected to be in their best
granularity, neither fully distributed nor fully centralized,
however commensurate with the run-time behavior of the
previously executed business processes.

IPD, though, was tested on a loan taking business process
as a case study and resulted in decomposing the loan process
to several agents based on the granularity level and
minimum support parameters. So, based on different levels
of granularity a number of agents were provided.

At the moment, we are evaluating the IPD against other
process decomposition methods. In addition, based on
granularity level and minimum support a number of agents
are produced. The main question is which granularity level
would be the best decomposition based on current system
configuration. Indeed, we are extending the idea from
compile time to run-time. By run-time we mean IPD will
automatically reconfigure the process either based on the
changes in SLAs or feedbacks from run-time environment.

REFERENCES

[1]IBM, "SOA terminology overview, Part 1: Service, architecture,
governance, and business terms," IBM, 2007, pp.
http://www.ibm.com/developerworks/webservices/library/ws-soa-term1/.

[2]V. M. Guoli Li, and Hans-Arno Jacobsen, "NiNos: A distributed service
oriented architecture for business process execution," Technical report,
Middleware Systems Research Group, July 2007.

[3]Faramarz Safi Esfahani, Masrah A. A. Murad, Md.Nasir Sulaiman, and
N. I. Udzir, "SLA-Driven Business Process Distribution," in
IARIA/eKnow2009 Mexico: IEEE, 2009.

[4]E. D. Mirkov Viroli, Alessandro Ricci, "Engineering a BPEL
orchestration engine as a multi-agent system," Elsevier, January 2007.

[5]Rania Khalaf and F. Leymann, "E Role-based Decomposition of
Businesses using BPEL," in IEEE International Conference on Web
Services(ICWS'06), 2006.

[6]Faramarz Safi Esfahani, Masrah A. A. Murad, Md.Nasir Sulaiman, and
N. I. Udzir, "Using Process Mining To Business Process Distribution," in
SAC2009 Hawaii/Honolulu: ACM, 2009, pp. 1876-1881.

[7]Faramarz Safi Esfahani, Masrah A. A. Murad, Md.Nasir Sulaiman, and
N. I. Udzir, "An Intelligent Business Process Distribution Approach,"
Journal of Theoretical and Applied Information Technology vol. Vol. 4
No. 12, pp. 1236-1245, 31st December 2008.

[8]J. S. D.Davide Lamanna, Wolfgang Emmerich, "SLAng: A Language
for Defigning Service Level Agreements," in The Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems (FTDCS'03), 2003.

[9]Active-Endpoints, "ActiveBPEL Engine - Open Source BPEL Server,"
2008, p.

http://www.activevos.com/cec/training/content/a_selfPacedTraining.

[10]OASIS, "Advancing Open Standards for the information society,"
2007, pp. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[11]M. Funabashi and A. Grzech, Challenges of Expanding Internet: E-
Commerce, E-Business, and E-Government: E-commerce, E-business, and
E-government: 5th IFIP Conference on E-Commerce, E-Business, and E-
Government (Monitoring Middleware For Service Level Agreements in the
Heterogeneous Environment)(13E'2005), October 28-30, 2005, Poznan,
Poland: Springer-Verlag New York Inc, 2005.

[12]M. G. Nanda, S. Chandra, and V. Sarkar, "Decentralizing execution of
composite web services," ACM SIGPLAN Notices, vol. 39, pp. 170-187,
2004.

[13]"Process Mining and Monitoring Processes and Services: Workshop
Report," in The Role of Business Process in Service Oriented
Architectures, Eindhoven University of Technology, P.O.Box 513, NL-
5600 MB, Eindhoven, The Netherlands., 2006.

[14]H.-A. J. F. Fabret, et al, "Filtering algorithms and implementation for
very fast publish/subscribe systems," In ACM SIGMOD, 2001.

[15]D. S. R. A. Carzaniga, and A. L. Wolf., "Design and evaluation of a
wide-area event notification service," ACM ToCS, vol. 19(3):, pp. 332–
383, Aug. 2001.

[16]N. Carriero and D. Gelernter, "Linda in context," Communications of
the ACM, vol. 32, pp. 444-458, 1989.

[17]Y. Zhai, H. Su, and S. Zhan, "A Data Flow Optimization Based
Approach for BPEL Processes Partition," 2007.

[18]Faramarz Safi Esfahani, Masrah A. A. Murad, Md.Nasir Sulaiman,
and N. I. Udzir, "A Frequent Path Detection Method to Intelligent Business
Process Decomposition," in WORLDCOMP/SWWS'09 - The 2009
International Conference on Semantic Web and Web Services, Las Vegas,
Nevada, USA, 2009.

[19]"The Apache Software Foundation - Apache Tomcat," 2009, p.
http://tomcat.apache.org/.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

