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Abstract—In this paper we present two path planning
algorithms based on Bézier curves for autonomous vehicles
with waypoints and corridor constraints. Bézier curves have
useful properties for the path generation problem. This paper
describes how the algorithms apply these properties to gener-
ate the reference trajectory for vehicles to satisfy the path con-
straints. Both algorithms join a set of low-degree Bézier curves
segments smoothly to generate the path. Additionally, we dis-
cuss the constrained optimization problem that optimizes the
resulting path for a user-defined cost function. The simula-
tion demonstrates the improvement of trajectory generation
in terms of smoother steering control and smaller cross track
error compared to previous work.
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1. Introduction
Bézier Curves were invented in 1962 by the French engi-
neer Pierre Bézier for designing automobile bodies. Today
Bézier Curves are widely used in computer graphics and
animation [4]. The Bézier curves have useful properties for
the path generation problem.

Choi has presented two path planning algorithms based
on Bézier curves for autonomous vehicles with waypoints
and corridor constraints [2]. Both algorithms join cubic
Bézier curve segments smoothly to generate the reference
trajectory for vehicles to satisfy the path constraints. Also,
both algorithms are constrained in that the path must cross
over a bisector line of corner area such that the tangent
at the crossing point is normal to the bisector. Addition-
ally, that paper discuss the constrained optimization prob-
lem that optimizes the resulting path for user-defined cost
function. Since the Bézier curve is uniquely defined by its
control points, the optimization problem is parameterized
by the location of control points. Even though the simu-
lation provided in that paper has shown the generation of
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smooth routes, discontinuities of the yaw angular rate have
appeared at junction nodes between curve segments. This is
because the curve segments are constrained to connect each
other by only C1 continuity, so the curvature of the path is
discontinuous at the nodes. (Section 2 describes this more
detail.)

To resolve this problem, the current paper proposes new
path planning algorithms. The algorithms impose con-
straints such that curve segments areC2 continuous in order
to have curvature continuous for every point on the path. In
addition, they give the reference path more freedom by get-
ting rid of redundant constraints used in [2], such as the
tangent being normal to the bisector, the initial/final head-
ing, and symmetry of curve segments on corner area. The
degree of each Bézier curve segments are determined by
the minimum number of control points to satisfy imposed
constraints while cubic Bézier curves are used for every
segments in [2]. The optimized resulting path is obtained
by computing the constrained optimization problem for the
same cost function as the one in [2]. The numerical simula-
tion results provided in this paper demonstrate the improve-
ment of trajectory generation in terms of smoother steering
control and smaller cross track error.

The paper is organized as follows: Section 2 begins by
describing the definition of the Bézier curve and its use-
ful properties for path planning. Section 3 discusses the
control problem for autonomous vehicles, the vehicle dy-
namics, and vehicle control algorithms. Section 4 proposes
two path planning methods based on Bézier curves, and dis-
cusses the constrained optimization problem of these meth-
ods. In Section 5, simulation results of control problem for
autonomous vehicles are given. Finally, Section 6 provides
conclusions.

2. Bézier Curve

A Bézier Curve of degree n can be represented as

P (t) =
n∑
i=0

Bni (t)Pi, t ∈ [0, 1]
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Where Pi are control points such that P (0) = P0 and
P (1) = Pn, Bni (t) is a Bernstein polynomial given by

Bni (t) =
(
n

i

)
(1− t)n−iti, i ∈ {0, 1, . . . , n}

Bézier Curves have useful properties for path planning:

• They always passes through P0 and Pn.

• They are always tangent to the lines connecting P0 →
P1 and Pn → Pn−1 at P0 and Pn respectively.

• They always lie within the convex hull consisting of
their control points.

2.1. The de Casteljau Algorithm
The de Casteljau algorithm describes a recursive pro-
cess to subdivide a Bézier curve P (t) into two segments.
The subdivided segments are also Bézier curves. Let
{P 0

0 , P
0
1 , . . . , P

0
n} denote the control points of P (t). The

control points of the segments can be computed by

P ji =(1− τ)P j−1
i + τP j−1

i+1 ,

j ∈ {1, . . . , n}, i ∈ {0, . . . , n− j}
(1)

where τ ∈ (0, 1). Then, {P 0
0 , P

1
0 , . . . , P

n
0 } are the control

points of one segment and {Pn0 , Pn1 − 1, . . . , P 0
n} are the

another. This leads to the following property [2]:

Remark 1. A Bézier curve P (t) constructed by control
points {P 0

0 , P
0
1 , . . . , P

0
n} always passes through the point

Pn0 computed by applying the de Casteljau algorithm and
using (1). Also, it is always tangent to Pn−1

0 Pn−1
1 at Pn0 .

2.2. Derivatives, Continuity and Curvature
The derivatives of a Bézier curve can be determined
by its control points [4]. For a Bézier curve P (t) =∑n
i=0B

n
i (t)Pi, the first derivative can be represented as:

Ṗ (t) =
n−1∑
i=0

Bn−1
i (t)Di (2)

Where Di, control points of Ṗ (t) is

Di = n(Pi+1 − Pi)

The higher order derivative of a Bézier curve can be ob-
tained by using the relationship of (2), iteratively.

Two Bézier curves P (t) and Q(t) are said to be Ck at t0
continuous [4] if

P (t0) = Q(t0), Ṗ (t0) = Q̇(t0), . . . , P (k)(t0) = Q(k)(t0)
(3)

The curvature of a Bézier curve P (t) =
(
x(t), y(t)

)
at t

is given by [4]

κ(t) =
|ẋ(t)ÿ(t)− ẏ(t)ẍ(t)|

(ẋ2(t) + ẏ2(t))
3
2

. (4)

We can come up with the following property:

Lemma 1. For the path constructed by two Bézier curve
segments P (t)|t∈[t0,t1] and Q(t)|t∈[t1,t2], if P (t) and Q(t)
are at least C2 continuous at t1 then the path has continuous
curvature for every point on it.

Proof. The curvature is expressed in terms of the first and
the second derivative of a curve in (4). Since the Bézier
curves are defined as polynomial functions of t, their k-th
derivative for all k = 1, 2, . . . are continuous. Hence, they
always have continuous curvature for all t. For two different
Bézier curves P (t) and Q(t), it is sufficient that κ(t1), the
curvature at the junction node is continuous if Ṗ (t) = Q̇(t)
and P̈ (t) = Q̈(t) are continuous at t1. Therefore, if P (t)
and Q(t) are at least C2 continuous at t1 then the path have
the curvature continuous for every point on it.

3. Problem Statement
Consider the control problem of a ground vehicle with a
mission defined by waypoints and corridor constraints in
a two-dimensional free-space. Our goal is to develop and
implement an algorithm for navigation that satisfies these
constraints. Let us denote each waypoint Wi ∈ R2 for
i ∈ {1, 2, . . . , N}, where N ∈ R is the total number of
waypoints. Corridor width is denoted as wj , j-th widths of
each segment between two waypoints, j ∈ {1, . . . , N − 1}.

3.1. Dynamic Model of Vehicle Motion
This section describes a dynamic model for motion of a
vehicle that is used in the simulation in Section 5. For
the dynamics of the vehicle, the state and the control vec-
tor are denoted q(t) = (xc(t), yc(t), ψ(t))T and u(t) =
(v(t), ω(t))T respectively. Where (xc, yc) represents the
position of the center of gravity of the vehicle. The vehi-
cle yaw angle ψ is defined to the angle from the X axis.
v is the longitudinal velocity of the vehicle at the center of
gravity. ω = ψ̇ is the yaw angular rate. It follows that

q̇(t) =

cosψ(t) 0
sinψ(t) 0

0 1

u(t)
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Figure 1: The position error is measured from a point z, projected
in front of the vehicle, and unto the desired curve to point p.

3.2. Controls
The vehicle uses feed forward path planning with feedback
corrections as illustrated in Figure 1 [3]. A position and ori-
entation error is computed every 50 ms. The cross track
error ycerr is defined by the shortest distance between the
reference trajectory and the position of the center of gravity
of the vehicle (xc, yc). A point z is computed with the cur-
rent longitudinal velocity and heading of the vehicle from
the current position. z is projected onto the reference tra-
jectory at point p such that zp is normal to the tangent at
p. The cross track error yerr is defined by the distance be-
tween z and p. The steering control ω uses PID controller
with respect to cross track error yerr.

δω = kpyerr + kd
dyerr
dt

+ ki

∫
yerrdt

Figure 2: The course with four waypoints. Gray area is the per-
mitted area for vehicles under a corridor constraint.

4. Path Planning Algorithm
In this section, two path planning methods based on Bézier
curves are proposed. To describe the algorithms, let us

denote lj as the bisector vector of ∠Wj−1WjWj+1 for
j ∈ {2, . . . , N − 1} and mj as the normal line to lj at
the intersection of the curves and lj as illustrated in Figure
2. The planned path must cross over the bisectors under the
waypoints and the corridor constraints. The location of the
crossing point is represented as dj · lj , where dj ∈ R is an
scalar value. The course is divided into segments Gi by lj .
Gi indicates the permitted area for vehicles under corridor
constraint wi, from Wi to Wi+1.

Bézier curves constructed by large numbers of control
points are numerically unstable. For this reason, it is desir-
able to join low-degree Bézier curves together in a smooth
way for path planning [5]. Thus both methods use a set of
low-degree Bézier curves such that the neighboring curves
are C2 continuous at their end nodes. This will lead to con-
tinuous curvature on the resulting path by Lemma 1.

The Bézier curves used for the path plannings are
denoted as iP (t) =

∑ni

k=0B
ni

k (t) · iPk for i ∈
{1, . . . ,M}, t ∈ [0, 1] where M is the total number of
the Bézier curves and ni is the degree of iP . The planned
path denoted as P is a concatenation of all iP .

4.1 Path Planning Placing Bézier Curves
within Segments

In this path planning method, the Bézier curve iP for i ∈
{1, . . . , N − 1} are used within each segment Gi. The
planned path P are designed such that it begins from W1

and ends toWN . Furthermore, the corridor and the C2 con-
tinuity constraints are satisfied.

The control points of iP , iPk for k = {0, . . . , ni} are
determined to maintain these conditions.

• The beginning and the end point are W1 and WN .

1P0 = W1,
N−1PnN−1 = WN (5)

• The adjacent curves, j−1P and jP are C2 continuous
at the crossing point, dj · lj for j ∈ {2, . . . , N − 1}.
j−1Pnj−1 = jP0 = dj · lj
nj−1(j−1Pnj−1 − j−1Pnj−1−1) = nj(jP1 − jP0)

nj−1(nj−1 − 1)(j−1Pnj−1 − 2 · j−1Pnj−1−1+
j−1Pnj−1−2) = nj(nj − 1)(jP2 − 2 · jP1 + jP0)

(6)

• The crossing points are bounded within the corridor.

d <
1
2

min(wj−1, wj) (7)

• iPk always lie within the area of Gi.

iP1 ∈ Gi, . . . , iPni−1 ∈ Gi (8)
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Equation (6) is obtained by applying (2) and (3). Equa-
tion (8) makes the resulting Bézier curve satisfy the corridor
constraint by the convex hull property.

At each crossing point, three control points of each ad-
jacent Bézier curve are dedicated to the C2 continuity con-
straint by (2), (4), and Lemma 1. So the minimum number
of control points to satisfy the constraints independent on
the others are four for 1P , N−1P and six for the others. ni
is determined by this:

{ ni = 3, i ∈ {1, N − 1}
ni = 5, i ∈ {2, . . . , N − 2} (9)

Note that 1P0 and N−1PnN−1 are fixed in (5). j−1Pnj−1

and jP0 rely on dj in (6). Also, j−1Pnj−1−1 and
j−1Pnj−1−2 rely on jP1 and j−1P2.

So the free variables are P1 = {jP1}, P2 = {jP2}
and d = {dj}. The number of the variables or the degree
of freedom is 5(N − 2). The variables are computed by
minimizing the constrained optimization problem:

min
P1,P2,d

J =
N−1∑
i=1

Ji (10)

subject to (7) and (8).
Where Ji is the cost function of iP (t) which is defined

in Section 5. As the result, the planned trajectory goes from
W1 to WN through inside of corridor with C2 continuity at
the crossing point on the bisectors. That is, the trajectory
has curvature continuous at every point on it by Lemma 1.

4.2 Path Planning Placing Bézier Curves on
Corners

In the section 4.1, a Bézier curve is used within each seg-
ment. Another path planning method adds the quadratic
Bézier curves on the corner area around Wj , j ∈
{2, . . . , N − 1}. The Bézier curves denoted as jQ(t) =∑2
k=0B

2
k(t) · jQ0

k intersects the bisector lj . The first con-
trol point jQ0

0 should lie within Gj−1 and the last control
point jQ0

2 within Gj .
Let θj denote the slope of the tangent of jQ at the cross-

ing point, from mj by counter clockwise. Given jQ0
0, jQ0

2,
dj , and θj , let us compute the jQ0

1 such that the location
of jQ2

0 computed by applying the de Casteljau algorithm is
the crossing point, dj · lj and the slope of the tangent at the
crossing point is θj .

In order to compute this, the world coordinate frame T is
transformed and rotated into the local frame jT where the
origin is at the crossing point and X axis is co-linear to the
tangent of the curve at the crossing point. Figure 3 illus-
trates the transformed control points of jQ(t) with respect
to jT frame. For simplicity, superscript j was dropped.
Note that Q2

0 is at the origin by the definition of jT .

Figure 3: The geometry of the control points of jQ(t) in jT .

Lemma 2. Suppose the quadratic Bézier curve Q(t) =(
x(t), y(t)

)
is constructed by control points Q0

i =
(
xi, yi

)
,

i ∈ {0, 1, 2}, where all coordinates are with respect to jT .
For Q2

0 to be at the origin, it is necessary that y0y2 ≥ 0.

Proof. By the definition of jT and Remark 1, Q(t) passes
through the origin with tangent slope of zero. Let t1 ∈
(0, 1) denote the corresponding parameter : x(t1) = 0,
y(t1) = 0 and ẏ(t1) = 0. Suppose that y0 = y(0) < 0.
Since y(t) is a quadratic polynomial, ẏ(t) > 0 and ÿ(t) < 0
for t ∈ [0, t1). Subsequently, ẏ(t) < 0 and ÿ(t) < 0 for
t ∈ (t1, 1]. Thus, y2 = y(1) < 0 and y0y2 > 0. Similarly,
if y0 > 0 then y1 > 0. If y0 = 0 then ẏ(t) = 0 for t ∈ [0, 1]
and y2 = 0. Therefore, y0y2 = 0.

Without loss of generality, suppose that y0 < 0, y2 < 0.
By the definition of jT and Remark 1, Q1

0 and Q1
1 are on

the X axis with respect to jT . Let τ ∈ (0, 1) denote the
subdivision ratio of the de Casteljau algorithm to result in
Q2

0. Since Q2
0 = (1 − τ)Q1

0 + τQ1
1 by (1), the coordinates

of Q1
0 and Q1

1 can be represented as

Q1
0 =

(
− ατ, 0

)
, Q1

1 =
(
α(1− τ), 0

)
, α > 0 (11)

Applying (1) with i = 0 and j = 1 and arranging the result
with respect to Q0

1 by using (11) gives

Q0
1 =

(
− α− 1− τ

τ
x0,−

1− τ
τ

y0
)

(12)

Similarly, applying (1) with i = 1 and j = 1 and arranging
the result with respect to Q0

1 yields

Q0
1 =

(
α− τ

1− τ
x2,−

τ

1− τ
y2
)

(13)

where α and τ are obtained by equating (12) and (13):

τ =
1

1 +
√
y2/y0

, α =
x0y2 − y0x2

2y0
√
y2/y0

(14)

If y0 = y2 = 0 then all control points of jQ are on X
axis (See proof of Lemma 2). In the geometric relation of
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Figure 4: The geometry of jQ(t) in jT when y0 = y2 = 0.

control points as shown in Figure 4, we obtain

x0 = −(α+ β)τ
x2 = (α+ γ)(1− τ)
α = β(1− τ) + γτ

(15)

where α > 0, β > 0, γ > 0 are constants. Using (15),
Q0

1 = (x1, 0) is represented in terms of arbitrary τ ∈ (0, 1):

x1 = −1
2
(1− τ

τ
x0 +

τ

1− τ
x2

)
(16)

Then Bézier curves iP (t) for i ∈ {1, 2, . . . , N − 1} are
used within each segment Gi so that j−1P and jQ are C2

continuous at jQ0, jP and jQ are C2 continuous at jQ2.
The degree of iP (t), ni is determined by the minimum
number of control points to satisfy the constraint:

{ ni = 3, i ∈ {1, N − 1}
ni = 5, i ∈ {2, . . . , N − 2} (17)

The constraints imposed on the planned path are as follows:

• The beginning and end point of P is W1 and WN .

1P0 = W1,
N−1PnN−1 = WN (18)

• j−1P (t) and jQ(t) are C2 continuous at jQ0.

j−1P 0
nj−1

= jQ0
0

nj−1(j−1P 0
nj−1

− j−1P 0
nj−1−1) = 2(jQ0

1 − jQ0
0)

nj−1(nj−1 − 1)(j−1P 0
nj−1

− 2 · j−1P 0
nj−1−1+

j−1P 0
nj−1−2) = 2 · 1 · (jQ0

2 − 2jQ0
1 + jQ0

0)
(19)

• jP (t) and jQ(t) are C2 continuous at jQ2.

jP 0
0 = jQ0

2

nj(jP 0
1 − jP 0

0 ) = 2(jQ0
2 − jQ0

1)

nj(nj − 1)(jP 0
2 − 2 · jP 0

1 + jP 0
0 )

= 2 · 1 · (jQ0
2 − 2jQ0

1 + jQ0
0)

(20)

• The crossing points are bounded within the corridor.

|dj | <
1
2

min(wj−1, wj) (21)

• The slope of the tangent does not exceed lj .

|θj | < π/2 (22)

• jQ0
0 and jQ0

2 with respect to jT satisfies Lemma 2.

{j}y0
{j}y2 ≥ 0 (23)

Where {j}yk denotes the coordinate with respect to jT .

• jQ0
0 and jQ1

0 lie within Gj−1. jQ0
2 and jQ1

1 lie within
Gj .

jQ0
0 ∈ Gj−1,

jQ1
0 ∈ Gj−1,

jQ0
2 ∈ Gj , jQ1

1 ∈ Gj
(24)

• {iP1, . . . ,
iPni−1} always lie within the area of Gi.

iP1 ∈ Gi, . . . , iPni−1 ∈ Gi (25)

Then 6(N − 2) free variables Q = {jQ0}, d = {dj}
and θ = {θj} for j ∈ {2, . . . , N − 1} are computed by
minimizing the constrained optimization problem:

min
Q,d,θ

J =
N−1∑
i=1

Ji (26)

subject to (21), (22), (23), (24), and (25).
Notice that the convex hull property is tested for jQ1

0 and
jQ1

1 of the divided curves instead of jQ0
1. As the result, it

comes up with more tight condition for curves against the
corridor constraint.

5. Simulation Results
Simulation performed in this paper uses the course with
waypoints W = {Wk}, k ∈ {1, . . . , N} and corridor
width wi = 8, i ∈ {1, . . . , N − 1} for N = 4 as illus-
trated in Figure 2. The location of waypoints are given
by two-dimensional world coordinates (X,Y ) in meter
scale: W1 = (10, 5), W2 = (55, 20), W3 = (47, 65),
W4 = (70, 50). Initial position is assumed to fit to the first
waypoint of the reference path respectively. The constant
longitudinal velocity v(t) = 10 m/s is used. The magni-
tude of ω is bounded within |ω|max = 25 rpm. The PID
gains are given by: kp = 2, kd = 1, and ki = 0.1.

Path planning methods based on Section 4.1, and 4.2 are
denoted as Bézier1 and Bézier2 respectively. Figure 5(a)
and 5(b) are the path planned by Bézier1 of [2] and of this
paper, respectively. Figure 6(a) and 6(b) are ones by Bézier2
of two methods. Circles indicate the location of control
points of Bézier curve segments, iP . In Figure 6(a) and
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6(b), control points of jQ are marked by stars. All of them
are obtained by solving Equation (10) or (26) with

Ji =
∫ 1

0

[
(ai
∣∣iκ(t)∣∣2 + bi

∣∣iκ̇(t)∣∣2]dt
Where ai = bi = 1. The cost function leads to resulting
paths with larger radii of curvature for Bézier curves. Com-
paring to the paths generated by [2], the proposed algorithm
generated smoother paths in turning area.

In Figure 7(a) and 8(a), we can see that path planning by
the proposed algorithms has smoother steering compared to
the ones obtained by [2]. The discontinuity of ω by that
method imposes large forces and large changes in forces on
the vehicle in the lateral direction. Moreover, the proposed
algorithms result in smaller cross track error in Figure 7(b)
over the one by [2].

(a) Previous Bézier1 (b) Current Bézier1

Figure 5: The planned path by previous Bézier1 method of [2]
(left) and by current method (right).

(a) Previous Bézier2 (b) Current Bézier2

Figure 6: The planned path by previous Bézier2 method of [2]
(left) and by current method (right).

6. Conclusions
This paper presents two path planning algorithms based on
Bézier curves for autonomous vehicles with waypoints and
corridor constraints. Bézier curves provide an efficient way
to generate the optimized path and satisfy the constraints at

(a) ω of Bézier1. (b) ycerr of Bézier1.

Figure 7: The steering control ω and the cross track error ycerr

by previous Bézier1 method of [2] (x) and by current method (o).

(a) ω of Bézier2. (b) ycerr of Bézier2.

Figure 8: The steering control ω and the cross track error ycerr

by previous Bézier2 method of [2] (x) and by current method (o).

the same time. The simulation results also show that the
trajectory of the vehicle follows the planned path within the
constraints.
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