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Abstract—In this paper we represent a protein as
a graph where the vertices are amino acids and the
edges are interactions between them. We propose a
genetic algorithm of reconstructing the graph of inter-
actions between secondary structure elements which
describe the structural motifs. The performance of
our algorithms is validated experimentally.
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1 Introduction

Proteins are biological macromolecules participating in
the large majority of processes which govern organisms.
The roles played by proteins are varied and complex.
Certain proteins, called enzymes, act as catalysts and
increase several orders of magnitude, with a remarkable
specificity, the speed of multiple chemical reactions essen-
tial to the organism survival. Proteins are also used for
storage and transport of small molecules or ions, control
the passage of molecules through the cell membranes, etc.
Hormones, which transmit information and allow the reg-
ulation of complex cellular processes, are also proteins.

Genome sequencing projects generate an ever increasing
number of protein sequences. For example, the Human
Genome Project has identified over 30,000 genes which
may encode about 100,000 proteins. One of the first tasks
when annotating a new genome, is to assign functions to
the proteins produced by the genes. To fully understand
the biological functions of proteins, the knowledge of their
structure is essential.

In their natural environment, proteins adopt a native
compact three-dimensional form. This process is called
folding and is not fully understood. The process is a
result of interactions between the protein’s amino acids
which form chemical bonds. In this paper we identify
some of the properties of the network of interacting amino
acids. We believe that understanding these networks can
help to better understand the folding process.

The rest of the paper is organized as follows. In section
2 we briefly present the main types of amino acid inter-
actions which determine the protein structure. In section

∗Le Havre University, LITIS EA 4108, BP 540, 76058 Le Havre
- France, email: {Omar.Gaci, Stefan.Balev}@univ-lehavre.fr

3 we introduce our model of amino acid interaction net-
works. In section 4 we propose a genetic algorithm of re-
constructing the graph of interactions between secondary
structure elements. Finally, in section 5 we conclude and
give some future research directions.

2 Protein structure

Unlike other biological macromolecules (e.g., DNA), pro-
teins have complex, irregular structures. They are built
up by amino acids that are linked by peptide bonds to
form a polypeptide chain. We distinguish four levels of
protein structure:

• The amino acid sequence of a protein’s polypeptide
chain is called its primary or one-dimensional (1D)
structure. It can be considered as a word over the
20-letter amino acid alphabet.

• Different elements of the sequence form local regular
secondary (2D) structures, such as α-helices or β-
strands.

• The tertiary (3D) structure is formed by packing
such structural elements into one or several compact
globular units called domains.

• The final protein may contain several polypeptide
chains arranged in a quaternary structure.

By formation of such tertiary and quaternary structure,
amino acids far apart in the sequence are brought close
together to form functional regions (active sites). The
reader can find more on protein structure in [4].

One of the general principles of protein structure is that
hydrophobic residues prefer to be inside the protein con-
tributing to form a hydrophobic core and a hydrophilic
surface. To maintain a high residue density in the hy-
drophobic core, proteins adopt regular secondary struc-
tures that allow non covalent hydrogen-bond and hold a
rigid and stable framework. There are two main classes
of secondary structure elements (SSE), α-helices and β-
sheets (see Fig 1).

An α-helix adopts a right-handed helical conformation
with 3.6 residues per turn with hydrogen bonds between
C’=O group of residue n and NH group of residue n + 4.
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Figure 1: Left: an α-helix illustrated as ribbon diagram,
there are 3.6 residues per turn corresponding to 5.4 Å.
Right: A β-sheet composed by three strands.

A β-sheet is build up from a combination of several re-
gions of the polypeptide chain where hydrogen bonds can
form between C’=O groups of one β strand and another
NH group parallel to the first strand. There are two kinds
of β-sheet formations, anti-parallel β-sheets (in which the
two strands run in opposite directions) and parallel sheets
(in which the two strands run in the same direction).

3 Amino Acid Interaction Networks

The 3D structure of a protein is determined by the coor-
dinates of its atoms. This information is available in Pro-
tein Data Bank (PDB) [3], which regroups all experimen-
tally solved protein structures. Using the coordinates of
two atoms, one can compute the distance between them.
We define the distance between two amino acids as the
distance between their Cα atoms. Considering the Cα

atom as a “center” of the amino acid is an approxima-
tion, but it works well enough for our purposes. Let us
denote by N the number of amino acids in the protein.
A contact map matrix is a N ×N 0-1 matrix, whose el-
ement (i, j) is one if there is a contact between amino
acids i and j and zero otherwise. It provides useful in-
formation about the protein. For example, the secondary
structure elements can be identified using this matrix.
Indeed, α-helices spread along the main diagonal, while
β-sheets appear as bands parallel or perpendicular to the
main diagonal [12]. There are different ways to define the
contact between two amino acids. Our notion is based on
spacial proximity, so that the contact map can consider
non-covalent interactions. We say that two amino acids
are in contact iff the distance between them is below a
given threshold. A commonly used threshold is 7 Å and
this is the value we use.

Consider a graph with N vertices (each vertex corre-
sponds to an amino acid) and the contact map matrix
as incidence matrix. It is called contact map graph. The
contact map graph is an abstract description of the pro-
tein structure taking into account only the interactions
between the amino acids. Now let us consider the sub-
graph induced by the set of amino acids participating in
SSE. We call this graph SSE interaction network (SSE-
IN) and this is the object we study in the present paper.

Figure 2: Protein 1DTP (left) and its SSE-IN (right).

The reason of ignoring the amino acids not participating
in SSE is simple. Evolution tends to preserve the struc-
tural core of proteins composed from SSE. In the other
hand, the loops (regions between SSE) are not so impor-
tant to the structure and hence, are subject to more mu-
tations. That is why homologous proteins tend to have
relatively preserved structural cores and variable loop re-
gions. Thus, the structure determining interactions are
those between amino acids belonging to the same SSE
on local level and between different SSEs on global level.
Fig 2 gives an example of a protein and its SSE-IN.

In [14, 5, 2, 6] the authors rely on similar models of
amino acid interaction networks to study some of their
properties, in particular concerning the role played by
certain nodes or comparing the graph to general interac-
tion networks models. Thanks to this point of view the
protein folding problem can be tackled by graph theory
approaches.

4 Motif Prediction

In previous works [8, 9, 10], we have studied the protein
SSE-IN. We have identified notably some of their proper-
ties like the degree distribution or also the way in which
the amino acids interact. These works have allowed us to
determine criteria discrimminating the different strucu-
tral families. We have established a parallel between
structural families and topological metrics describing the
protein SSE-IN.

Using these results, we have proposed a method to predict
the family of an unclassified protein based on the topolog-
ical properties of its SSE-IN, see [11]. Thus, we consider a
protein defined by its sequence in which the amino acids
participating in the secondary strucutre are known. This
preliminary step is usually ensured by threading meth-
ods [13] or also by hidden Markov models [1]. Then, we
apply a method able to associate a family from which we
rely to predict the fold shape of the protein. This work
consists in predicting the family which is the most com-
patible to the unknown sequence. The following step,
is to fold the unknown sequence SSE-IN relying on the
family topological properties.
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Figure 3: 2OUF SS-IN (left) and its associated incidence
matrix (right). The vertices represent the different α-
helices and an edge exists when two amino acids interact.

To fold a SSE-IN, we rely on the Levinthal hypothesis
also called the kinetic hypothesis. Thus, the folding pro-
cess is oriented and the proteins don’t explore their entire
conformational space. In this paper, we use the same ap-
proach: to fold a SSE-IN we limit the toplogical space by
associating a strucutral family to a sequence [11]. Since
the strucutral motifs which describe a strucutral family
are limited, we propose a genetic algorithm (GA) to enu-
merate all possibilities.

In this section, we present a method based on a GA to
predict the graph whose vertices represent the SSE and
edges represent spatial interactions between two amino
acids involved in two different SSE, further this graph is
called Secondary Structure Interaction Network (SS-IN),
see Fig 3.

Thereafter, we use a dataset composed by proteins which
have not fold families in the SCOP v1.73 classification
and for which we have predicted a family in [11].

4.1 Overall description

Our GA works on a population of proteins which have the
same number of SSE as the studied sequence. The initial
population is composed of the proteins of the predicted
family with the same number of SSE. Each individual of
the population has associated SS-IN adjacency matrix.
At each iteration we apply genetic operators in order to
obtain new individuals with new adjacency matrices. Our
fitness function does not use a measure based on the ad-
jacency matrices, it is based only on the SSE sizes.

4.2 Genome structure

The genome structure of a protein SS-IN is an array of
alleles. Each allele represents a SSE notably considering
its size that is the number of amino acids which com-
pose it. The size is normalized contributing to produce
genomes whose alleles describe a value between 0 and
100. Obviously, the position of an allele corresponds to
the SSE position it represents in the sequence, see Fig 4.
In the same time, for each genome we associate its SS-IN
incidence matrix.

Figure 4: Building the chromosome representation for the
unclassified protein 2OUF.

Figure 5: The distance between two chromosomes is
the sum of distances between the alleles, in this case
(32+92+58+24+58).

4.3 Fitness function

We evaluate the performance of a chromosome by using
the L1 distance between this chromosome and the target
sequence. An example is given in Fig 5.

4.4 Crossover operator

This operator uses two parents to produce two children.
After generating a random cut position, we swap the
both parts as shown in Fig 6. Nevertheless, this operator
can produce incidence matrices which are not compatible
with the fold family, we discuss this problem below.

4.5 Mutation operator

This operator is used for a small fraction (about 1%) of
the generated children. It modifies the chromosome and
the associated matrix. For the chromosomes, we define
two operators: the two position swapping and the one
position mutation. Concerning the associated matrix, we
define four operators: the row translation, the column
translation, the two position swapping and the one po-
sition mutation. The crossover and mutation operators
may produce matrices which describe incoherent SS-IN
compared to the predicted sequence fold family. To elim-
inate the wrong cases we develop a topological operator.
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Figure 6: The crossover operators for the chromosomes
(top) and for the associated matrix (bottom).

4.6 Topological operator

In [7, 8] we have shown that the protein SSE-IN can be
described by their topological properties. We have shown
that there exists a parallel between biological classifica-
tion (notably the SCOP fold family level) and the SSE-IN
topological properties. Here we exploit these properties
to exclude the incompatible children generated by our
GA. The principle is the following, we have predicted a
fold family for the sequence from which we extract an ini-
tial population of chromosomes. Thus, we compute the
diameter, the characteristic path length and the mean
degree to evaluate the average topological properties of
the family for the particular SSE number. Then, after
the GA generates a new individual by crossover or mu-
tation, we compare the associated SS-IN matrix with the
properties of the initial population by admitting an error
rate up to 20%. If the new individual is not compatible,
it is rejected.

4.7 Algorithm implementation

Starting from an initial population of chromosomes from
the predicted family, our algorithm modifies the popula-
tion using the genetic operators defined above. The pro-
cess is stopped when the fitness of the population stops
increasing between two iterations, see Algorithm 1.

The genetic process is the following: after the initial pop-
ulation is built, we extract a fraction of parents according
to their fitness and we reproduce them to produce chil-

dren. Then, we select the new generation by including
the chromosomes which are not among the parents plus
a fraction of parents plus a fraction of children. It remains
to compute the new generation fitness.

Algorithm 1: Genetic algorithm for SS-IN adjacency
matrix determination.
Data:
pop: Current chromosome population
parents: Set of parents
children: Set of children

begin
pop ←− setInitialPopulation();
while fitness(pop) is increasing do

parents ←− parentExtraction(pop);
children ←− parentCrossing(parents);
children ←− childrenMutation(children) ;
children ←− exclusionByTopology(children);
pop ←− selection(pop, children);

end

4.8 Algorithm performance

At the end of our GA, the final population contains indi-
viduals close to the target protein in terms of SSE length
distribution because of the choice of our fitness function.
As a side effect, their associated matrices are supposed to
be close to the adjacency matrix of the studied protein.

In order to test the performance of our GA, we pick ran-
domly three chromosomes from the final popualtion and
we compare their associated matrices to the sequence SS-
IN adjacency matrix. To evaluate the difference between
two matrices, we use an error rate defined as the number
of wrong elements divided by the size of the matrix. The
dataset we use is composed of 698 proteins belonging to
the All alpha class and 413 proteins belonging to the All
beta class, see Fig 7.

The average error rate for All alpha class is 16.7% and
for All beta class it is 14.3%. The maximum error rate is
25%. As shown in Fig 8, the error rate strongly depends
on the initial population size. Indeed, when the initial
population contains sufficient number of individuals, the
genetic diversity ensures better SS-IN prediction. When
we have sufficient number of sample proteins from the
predicted family, we expect more reliable results. Note
for example that when the initial population contains at
least 10 individuals, the error rate is always less than
15%.

5 Conclusions and Future Work

In this paper, we are interested in the way the SSEs inter-
act. We propose a genetic algorithm trying to construct
the interaction network of SSEs (SS-IN). The GA starts
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Figure 7: The dataset we use is composed by 698 proteins
from the All alpha class (top) and by 413 proteins from
the All beta class (bottom).
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Figure 8: Error rate as a function of the initial population
size. When the initial size is more than 10, the error rate
becomes less than 15%.

with a population of real proteins from the predicted fam-
ily. To complete the standard crossover and mutation
operators, we introduce a topological operator which ex-
cludes the individuals incompatible with the fold family.
The GA produces SS-IN with maximum error rate about
25% in the general case. The performance depends on the
number of available sample proteins from the predicted
family, when this number is greater than 10, the error
rate is below 15%.

The next step would be to use the SS-IN prediction in
order to build the interaction graph of the target sequence
in amino acid level (SSE-IN).

The characterization we propose constitutes a new ap-
proach to the protein folding problem. The proper-
ties identified here, but also other properties we stud-
ied [9, 10], can give us an insight on the folding process.
They can be used to guide a folding simulation in the
topological pathway from unfolded to folded state.
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